Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}"

Transkrypt

1 Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór : wszystkich podzbiorów jedno lub dwuelementowych zbioru V. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. Przykład: Graficzna prezentacja grafu: Niech G V E γ gdzie: V = {1, 2, 3}, E={a, b, c, d, e} Zaś funkcja γ określona jest za pomocą tabeli: f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3} Uwaga: 1 Pętla to krawędź łącząca wierzchołek z nim samym γ e v v} = {v}). 2 Krawędź wielokrotna to taka która się powtarza jeżeli krawędzie e i f są różne i γ e γ f to nazywamy je wielokrotnymi lub równoległymi. Jeżeli w grafie G a i b nie są krawędziami równoległymi oraz a y i b y z, to mówimy że: Krawędzie a i b są krawędziami sąsiednimi lub przyległymi mają wspólny wierzchołek y. Wierzchołki y oraz y i z są wierzchołkami sąsiednimi. Wierzchołek a także y jest incydentny do krawędzi a jest końcem tej krawędzi.

2 Definicja grafu prostego. Graf bez krawędzi wielokrotnych i pętli nazywamy grafem prostym. Przykład: Uwaga: W przypadku grafów bez krawędzi wielokrotnych w szczególności w przypadku grafów prostych definicja grafu sprowadza się do podania zbioru wierzchołków V i krawędzi w postaci p q gdzie p q V. Zatem graf bez krawędzi wielokrotnych w szczególności prosty można zapisać jako: pamiętając że. Definicja stopnia wierzchołka. Liczbę krawędzi incydentnych do danego wierzchołka v z pętlami liczonymi podwójnie nazywamy stopniem wierzchołka v i oznaczamy deg(v). Liczbę wierzchołków stopnia k oznaczamy Dk G i dla każdego grafu definiujemy ciąg stopni wierzchołków grafu G D0(G), D1(G), D2 G. Uwaga: 1) Wierzchołek stopnia zerowego nazywamy wierzchołkiem izolowanym. 2) Wierzchołek stopnia pierwszego nazywamy wierzchołkiem końcowym lub wiszącym. Definicja stopnia grafu. Stopniem grafu nazywamy najwyższy ze stopni jego wierzchołków tzn. liczbę: G ma deg v. Przykład:

3 W powyższym grafie: wierzchołki izolowane: 5 i x7 wierzchołki wiszące to 4 i x6 deg(x1)=2, deg(x2)=5, deg(x3)=4, deg(x8)=3 ciąg stopni wierzchołków tego grafu jest następujący stopień tego grafu wynosi 5 Definicja grafu skierowanego. Grafem skierowanym lub digrafem G nazywamy uporządkowaną trójkę gdzie V jest niepustym zbiorem wierzchołków E- zbiorem krawędzi skierowanych łuków odwzorowaniem zbioru E w zbiór. Definicja źródła i ujścia w grafie skierowanym. Źródłem w digrafie nazywamy wierzchołek do którego nie wchodzi żaden łuk. Wierzchołek digrafu który nie jest początkiem żadnego łuku nazywamy ujściem. Definicja grafu ważonego. Grafem ważonym nazywamy graf w którym każdej krawędzi przyporządkowana jest liczba rzeczywista zwana wagą tej krawędzi. Przykład: Definicja drogi. Drogą w grafie G nazywamy skończony ciąg krawędzi taki że 1 oraz istnieją wierzchołki takie że dla 1. Uwaga: 1) Wierzchołek nazywamy wierzchołkiem początkowym, - wierzchołkiem końcowym drogi. 2) Jeżeli w drodze wierzchołek początkowy pokrywa się z wierzchołkiem końcowym to taką drogę nazywamy drogą zamkniętą. Definicja drogi prostej. Drogą prostą lub ścieżką nazywamy drogę w której wszystkie krawędzi są różne. Jeżeli jest drogą prostą to możemy identyfikować ją po wierzchołkach przez które przechodzi.

4 Przykład: Droga degbac jest drogą prostą. Droga fkhkc nie jest drogą prostą ponieważ krawędź k powtarza się dwa razy. Definicja cyklu w grafie. Zamkniętą drogę prostą której odpowiada ciąg wierzchołków, nazywamy cyklem jeśli wszystkie wierzchołki są różne. Przykład: Droga dgba jest drogą prostą zamkniętą.

5 Droga degba nie jest cyklem, chociaż jest drogą prostą zamkniętą ponieważ w ciągu wierzchołków odpowiadających tej drodze wierzchołek powtarza się. Definicja grafu acyklicznego. Graf nie zawierający cykli nazywamy grafem acyklicznym. Definicja grafu spójnego. Graf G nazywamy spójnym wtedy i tylko wtedy, gdy każda para jego różnych wierzchołków jest połączona drogą w tym grafie. Zadanie komiwojażera Dlaczego komiwojażera? Komiwojażer ma odwiedzić kilka miast każde dokładnie jeden raz i powrócić do miasta z którego wyruszył przebywając łącznie najkrótszą najtańszą lub najszybciej przebytą drogę. Znane są odległości koszty lub czas przejazdu między każdą parą miast. Należy wyznaczyć komiwojażerowi trasę przejazdu tak aby mógł odwiedzić każde miasto dokładnie jeden raz i całkowita droga koszt lub czas podróży była/był możliwie najkrótsza/najmniejszy.

6 Definicja. Drogą Hamiltona nazywamy drogę która przechodzi przez każdy wierzchołek grafu dokładnie jeden raz. Cyklem Hamiltona nazywamy cykl przechodzący przez wszystkie wierzchołki grafu. Sformułowanie problemu. Zbudujmy graf ważony którego wierzchołki są miastami. Każdą parę miast połączmy krawędziami. Każdej krawędzi nadajemy wagę równą 'odległości' między miastami odpowiadającymi wierzchołkom które są końcami tej krawędzi. Otrzymujemy w ten sposób graf pełny który ma tyle wierzchołków ile miast musi odwiedzić komiwojażer wliczając w to miasto z którego wyrusza. Odwiedzenie wszystkich miast odpowiada cyklowi Hamiltona. Poszukujemy więc w grafie pełnym cyklu Hamiltona o minimalnej sumie wag krawędzi. Wniosek: Problem ten możemy sformułować w teorii n - wierzchołkowej sieci pełnej a następnie znaleźć najkrótszy najtańszy lub najszybszy cykl Hamiltona. Mamy cykl a, b, c, d, e a ma wagę 230 cykl a b e c d a ma wagę 120 Teoretycznie problem komiwojażera można rozwiązać poprzez wyznaczenie 1 cykli Hamiltona i wybranie tego który ma najmniejszą sumę wag. Już przy pięciu miastach wszystkich możliwych tras podróży komiwojażera jest Można zauważyć że przy wiekszej liczbie miast rozważanie wszystkich możliwości nie jest najlepszym pomysłem. Dla zobrazowania problemu sprawdzenia wszystkich możliwych permutacji wierzchołków możliwych tras podam kilka obliczeń: Dla 3 miast jest 1 możliwość

7 Dla miast są 3 możliwości Dla 5 miast 12 tras Dla 6 już 60 tras Dla 7 miast 360 Dla 9 miast mamy dróg Dla 11 mamy Dla 26 miast dróg. Dlaczego rozwiązanie tego problemu zawsze istnieje? Dowolny graf pełny posiada co najmniej jeden cykl Hamiltona. Ponieważ graf ma skończoną liczbę wierzchołków to w zbiorze cykli Hamiltona istnieje taki (niekoniecznie jedyny który posiada minimalną sumę wag krawędzi. Rozwiązując problem komiwojażera możemy wybrać jedną z dwóch metod: metodę dokładną np. metodę podziału i ograniczeń która wygeneruje dokładne rozwiązanie ale działającą w czasie wykładniczym a więc metoda wolna metodę przybliżoną inaczej nazywaną metodą aproksymacyjną która generuje rozwiązanie bliskie optymalnemu ale działającą w czasie wielomianowym. Algorytmy przybliżone Czas rozwiązywania problemu komiwojażera można zmniejszyć stosując jeden ze znanych algorytmów przybliżonych które nie wymagają rozważania aż tak dużej liczby przypadków. Jednak algorytmy takie nie zawsze znajdują optymalne rozwiązanie. Stworzona przez nie trasa może być znacznie 'dłuższa' od najkrótszej. Stosowanie algorytmów przybliżonych wynika z konieczności wyboru pomiędzy szybkością znajdowania a 'jakością' znalezionego rozwiązania. Z reguły zakłada sie że wynik działania takiego algorytmu nie może być gorszy od optymalnego o więcej niż pewna ustalona z góry wartość. Rozwiązania heurystyczne Wyjaśnijmy najpierw słowo heurystyka jest to praktyczna oparta na doświadczeniu reguła postępowania która może znacznie uprościć lub skrócić proces rozwiązania rozważanego problemu gdy metoda rozwiązania nie jest znana lub jest zawiła i czasochłonna. Jeśli w zadaniu mamy do czynienia z wieloma rozwiązaniami ważne jest szybkie odrzucenie nieobiecujących kierunków poszukiwania rozwiązania. Zapewnia to ogromne oszczędności na kosztach obliczeniowych a w rezultacie przyspiesza znalezienie rozwiązania. Metody heurystyczne pozwalają na znalezienie w akceptowalnym czasie przynajmniej przybliżonego rozwiązania problemu choć nie gwarantują tego we wszystkich przypadkach.

8 Skuteczności kroków heurystycznych nie można w pełni udowodnić teoretycznie można jedynie pokazać doświadczalnie ich trafność. Algorytmy mrówkowe Owady żyjące w koloniach jak np. mrówki pszczoły rozwiązują w naturze złożone zadania. Budowa gniazda lub poszukiwanie pokarmu to zadania które przekraczają możliwości pojedynczego zwierzęcia. Jednak pojedynczy osobnik dysponuje umiejętnościami które po wykorzystaniu przez pozostałych członków populacji danej kolonii potrafią dać zaskakująco dobre rezultaty w rozwiązywaniu skomplikowanych problemów. Jedną z grup takich naturalnych społecznych algorytmów występującą w przyrodzie stanowią właśnie algorytmy mrówkowe. Algorytmy te zawdzięczają swoją nazwę oraz ideę działania analogii do natury. W 1991 M. Dorigo A. Colornie oraz R. Maniezzo na podstawie wcześniejszych badań wykonanych przez J. L. Deneubourga oraz S. Gossa, zainspirowani poszukiwaniem pokarmu przez mrówki argentyńskie przenieśli zachowanie kolonii mrówek na szukanie rozwiązań w kombinatorycznych problemach optymalizacyjnych. Mrówki orientują się w poszukiwaniu pokarmu przy pomocy substancji chemicznej feromonu którą wydzielają z tylnej części swojego ciała poruszając się. Podążające za nimi kolejne mrówki dokonują wyboru kierunku drogi na podstawie intensywności pozostawionego feromonu. Substancja ta pełni rolę wspólnego mózgu kolonii zapisując wybór drogi. Obserwacje natury pokazują że mrówki wyznaczają swoje drogi bezpośrednio pomiędzy swoim gniazdem a źródłem pokarmu. Fakt że droga ta jest najczęściej najkrótsza wynika z tego że na drogach częściej uczęszczanych znajduje się większa ilość feromonu i jest on dłużej zachowywany. W jednostce czasu może więc większa ilość mrówek przebiec odcinek krótszy niż ten który jest dłuższy. Fakt że mrówki wybierają zawsze krótszą drogę z większym prawdopodobieństwem powoduje że po pewnym czasie droga między gniazdem a pokarmem jest bardzo bliska drodze optymalnej. Przykłady zastosowań Rozwiązania problemu komiwojażera mają wiele praktycznych zastosowań: - w transporcie - w przemyśle np.: jeżeli maszyna wiertnicza ma zrobić kilka otworów w materiale komputer powinien wymyślić taką drogę żeby trasa przejścia wiertła między punktami była jak najkrótsza - ramię automatycznej maszyny nitującej rozmieszczającej nity na skrzydle samolotu porusza się z punktu do punktu i po umocowaniu n nitów w n różnych miejscach wraca do punktu wyjścia optymalna droga poruszania się ramienia jest rozwiązaniem odpowiedniego problemu komiwojażera. - zestaw maszyn ma być użyty do wyprodukowania n elementów. Zmiana obrabianego elementu na inny jest związana ze zmianą oprzyrządowania maszyny i koszty tej

9 dodatkowej czynności są znane optymalna kolejność wyprodukowania n elementów jest rozwiązaniem problemu komiwojażera. - także w poznawaniu struktury kryształów promień rentgenowski musi przejść w krysztale przez kilka tysięcy punktów Przepływ jednotowarowy w sieci Definicja sieci przepływowej. Siecią przepływową (G, s, t, c), nazywamy graf skierowany G=(V, E w którym wyróżniono wierzchołki : źródło s V i ujście t V oraz z każdą krawędzią związana jest funkcja przepustowości : 0 taka że Definicja przepływu w sieci. Przepływem w sieci (G, s,t, c nazywamy funkcję f: spełniającą warunki: dla mamy warunek ograniczenia przepustowości dla mamy 0 0 warunek skośnej symetrii dla każdego (warunek zachowania przepływu 0 Definicja wartości przepływu f. Wartość przepływu f oznaczamy f i definiujemy jako sumaryczną wielkość przepływu wypływającego z s wszystkimi krawędziami Definicja maksymalnego przepływu w sieci. Dla danej sieci (G, s, t, c przepływ f, którego wartość będzie maksymalna Nazywamy maksymalnym przepływem sieci G s, t, c)

10 Definicja przepustowości residualnej. Niech G s t c będzie siecią. f pewnym przepływem w tej sieci. Przepustowością residualną pary wierzchołków (u, v) sieci G s t c nazywamy liczbę Definicja sieci residualnej. Siecią residualną dla sieci (G, s, t, c) indukowaną przez przepływ f nazywamy sieć Gf, s, t, cf w której Gf = (V, Ef), przy czym Krawędzie sieci residualnej nazywamy krawędziami residualnymi. Definicja ścieżki powiększającej. Dla danej sieci G s t c i przepływu f ścieżką powiększającą p nazywamy każdą ścieżkę ze źródła s do ujścia t w sieci residualnej (Gf, s, t, cf). Twierdzenie Forda Fulkersona o maksymalnym przepływie i minimalnym przekroju Niech (G, s, t, c będzie siecią przepływową. f przepływem w tej sieci. Następujące warunki są równoważne: 1 przepływ f jest maksymalny 2 sieć residualna Gf, s, t, cf nie zawiera ścieżek powiększających 3) dla pewnego przekroju (S, T) w sieci (G, s, t, c) zachodzi f = c = (S, T) Podstawowy algorytm Forda-Fulkersona brzmi następująco: Wyzeruj wszystkie przepływy w sieci Dopóki w sieci residualnej istnieje ścieżka rozszerzająca p zwiększaj przepływ o cf p wzdłuż kanałów zgodnych z kierunkiem ścieżki a zmniejszaj przepływ wzdłuż kanałów przeciwnych (wygaszanie przepływu. Przepływ sieciowy rośnie o cf(p). Aby lepiej zrozumieć ten algorytm oprzyjmy się na prostym przykładzie. Oto nasza sieć przepływowa. W kanałach zaznaczyliśmy ich przepustowości. Przepływy są zerowe. Również przepływ sieci f Dla zerowych przepływów sieć residualna jest identyczna z siecią pierwotną. Szukamy w niej ścieżki rozszerzającej która połączy źródło s z ujściem t. Takich ścieżek może być

11 wiele. Umówmy się że wybieramy najkrótszą z nich mającą najmniej krawędzi. Na przykład może to być ścieżka: Na ścieżce p znajdują się trzy kanały sieci residualnej: s A A B i B t. Przepustowość residualna cf p ścieżki jest równa najmniejszej przepustowości residualnej jej kanałów. Najmniejszą przepustowość residualną posiada kanał B-t dla którego cf(b,t) = 6. Zatem wzdłuż krawędzi ścieżki przepływ można zwiększyć o 6 jednostek. O tyle rośnie również przepływ sieciowy czyli fnowy = fstary + cf(p) = = 6 Zwiększenie przepływu w kanale sieci pierwotnej o cf(p) odpowiada zmniejszeniu przepustowości residualnej tego kanału. Jednocześnie wraz z pojawieniem się przepływu w kanale sieci pierwotnej powstaje kanał przeciwny w sieci residualnej o przepustowości residualnej równej przepływowi. Nasza sieć residualna wygląda teraz następująco: Przepustowość residualna kanału s A wynosi 3 - oznacza to iż kanałem tym można wciąż jeszcze przesłać trzy dodatkowe jednostki przepływu. Zwróćmy uwagę iż w siei residualnej pojawił się kanał przeciwny A s o przepustowości residualnej cf(a,s) = 6. Kanał A B może jeszcze przesłać 1 dodatkową jednostkę przepływu. Również tutaj pojawił się kanał przeciwny o przepustowości residualnej równej 6. Kanał B t przestał istnieć w sieci residualnej ponieważ osiągnął już swoją maksymalną przepustowość - 6 jednostek przepływu. Nie może on być dalej wykorzystywany do

12 powiększania przepływu. Na jego miejscu mamy jednak kanał przeciwny z przepustowością residualną równą 6. W nowej sieci residualnej szukamy kolejnej ścieżki rozszerzającej: Przepływ zwiększamy f i modyfikujemy przepustowości residualne krawędzi ścieżki rozszerzającej otrzymując nową sieć residualną: Z sieci residualnej znikają kanały s A i A C - wykorzystały już swój potencjał zwiększania przepływu. Szukamy kolejnej ścieżki rozszerzającej: p s D E t cf(p) = 6 Przepływ zwiększamy f Wzdłuż ścieżki rozszerzającej modyfikujemy odpowiednio przepustowości residualne kanałów i otrzymujemy nową sieć residualną:

13 W nowej sieci residualnej zniknął kanał D E. Wciąż jednakże możemy znaleźć nową ścieżkę rozszerzającą: p s D C t cf(p) = 3 Przepływ zwiększamy f Po zmodyfikowaniu sieci residualnej otrzymujemy: W tej sieci residualnej nie znajdziemy już żadnej ścieżki rozszerzającej - ze źródła s nie wychodzi żaden kanał. Otrzymaliśmy maksymalny przepływ. Z sieci residualnej można w prosty sposób przejść do sieci przepływowej wraz z rozkładem przepływów na poszczególne kanały. Wystarczy od przepustowości kanałów odjąć otrzymane przepustowości residualne - dla nieistniejących kanałów ich przepustowość residualna wynosi 0. W efekcie otrzymamy następującą sieć przepływową z wyznaczonym maksymalnym przepływem sieciowym:

14

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako

Bardziej szczegółowo

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska.

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska. Grafy dla każdego dr Krzysztof Bryś brys@mini.pw.edu.pl Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska www.mini.pw.edu.pl Warszawa, 28 marca 2015 Graf składa się z elementów pewnego zbioru

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Grafy

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Przykład planowania sieci publicznego transportu zbiorowego

Przykład planowania sieci publicznego transportu zbiorowego TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

Modele całkowitoliczbowe zagadnienia komiwojażera (TSP)

Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) & Zagadnienie komowojażera 1 Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) Danych jest miast oraz macierz odległości pomiędzy każdą parą miast. Komiwojażer wyjeżdża z miasta o numerze 1 chce

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

Matematyka dyskretna - 6.Grafy

Matematyka dyskretna - 6.Grafy Matematyka dyskretna - 6.Grafy W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Znajdowanie wyjścia z labiryntu

Znajdowanie wyjścia z labiryntu Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych

Bardziej szczegółowo

Rozdział 8 PROGRAMOWANIE SIECIOWE

Rozdział 8 PROGRAMOWANIE SIECIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 8 PROGRAMOWANIE SIECIOWE 8.2. Ćwiczenia komputerowe Ćwiczenie 8.1 Wykorzystując

Bardziej szczegółowo

Wstęp do informatyki dr Adrian Horzyk, paw. H Wykład TEORIA GRAFÓW

Wstęp do informatyki dr Adrian Horzyk, paw. H Wykład TEORIA GRAFÓW TEORIA GRAFÓW W osiemnastym wieku mieszkańcy Królewca lubili spacerować po mostach na rzece Pregole, których mieli w mieście siedem. Plan mostów pokazuje rysunek. Ale takie zwykłe spacerowanie po jakimś

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x 2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)

Bardziej szczegółowo

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992

Bardziej szczegółowo

Matematyka od zaraz zatrudnię

Matematyka od zaraz zatrudnię Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone

Bardziej szczegółowo

Algorytmy z powracaniem

Algorytmy z powracaniem Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne y mrówkowe P. Oleksyk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 14 kwietnia 2015 1 Geneza algorytmu - biologia 2 3 4 5 6 7 8 Geneza

Bardziej szczegółowo

Problem Komiwojażera - algorytmy metaheurystyczne

Problem Komiwojażera - algorytmy metaheurystyczne Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Wykład 11 O czym dzisiaj? labirynty, dużo labiryntów; automaty komórkowe; algorytmy do budowy labiryntów; algorytmy do szukania wyjścia z labiryntów; Blueprints i drzewa zachowań

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/

Bardziej szczegółowo

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

6a. Grafy eulerowskie i hamiltonowskie

6a. Grafy eulerowskie i hamiltonowskie 6a. Grafy eulerowskie i hamiltonowskie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny6a. w Krakowie) Grafy eulerowskie i hamiltonowskie

Bardziej szczegółowo

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Drzewa: Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node).

Bardziej szczegółowo