Wartość Shapleya. Oskar Skibski. Institute of Informatics, University of Warsaw. 8 października 2012
|
|
- Sabina Jastrzębska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wartość Shapleya Oskar Skibski Institute of Informatics, University of Warsaw 8 października 2012 Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
2 Przykład Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
3 Przykład Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
4 Przykład Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
5 CO TERAS? Jak podzielić wspólną wypłatę? Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
6 Gry koalicyjne zbiór graczy N koalicja dowolny podzbiór graczy S N podział (lub układ koalicyjny) zbiór rozłącznych koalicji P = {S 1, S 2,..., S k } których sumą jest N gra koalicyjna funkcja v : 2 N R która przypisuje każdej koalicji jej wartość (zakładamy, że v( ) = 0). Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
7 Gry koalicyjne zbiór graczy N koalicja dowolny podzbiór graczy S N podział (lub układ koalicyjny) zbiór rozłącznych koalicji P = {S 1, S 2,..., S k } których sumą jest N gra koalicyjna funkcja v : 2 N R która przypisuje każdej koalicji jej wartość (zakładamy, że v( ) = 0). Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
8 Gry koalicyjne Problem tworzenia koalicji (ang. Coalition formation problem) Znajdź podział P P(N) dla którego S P v(s) jest maksymalne. Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
9 Gry koalicyjne Problem tworzenia koalicji (ang. Coalition formation problem) Znajdź podział P P(N) dla którego S P v(s) jest maksymalne. Inaczej: jaki układ koalicyjny powstanie? Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
10 Gry koalicyjne Problem podziału (ang. Problem of division) Załóżmy, że powstanie grand coalition, czyli koalicja wszystkich graczy. Znajdź funkcję ϕ : R 2N R N, która przypisuje każdemu graczowi jego udział we wspólnej wypłacie. Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
11 Gry koalicyjne Problem podziału (ang. Problem of division) Załóżmy, że powstanie grand coalition, czyli koalicja wszystkich graczy. Znajdź funkcję ϕ : R 2N R N, która przypisuje każdemu graczowi jego udział we wspólnej wypłacie. Inaczej: jak się podzielić tym co uzyskaliśmy? Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
12 Wartość Shapleya Odpowiedź Wartość Shapleya: Sh i (v) = S N,i S ( S 1)!( N S )! (v(s) v(s \ {i})) N! Załóżmy, że gracze przychodzą na miejsce spotkania w losowej kolejności. Gracz i zwiększa wartość zastanego zbioru S \ {i} o swój wkład marginalny v(s) v(s \ {i}). Jego wartość w grze wyliczamy teraz jako średnią z jego wszystkich wkładów marginalnych po wszystkich porządkach przyjścia graczy. Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
13 Wartość Shapleya Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
14 Wartość Shapleya Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
15 Wartość Shapleya Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
16 Wartość Shapleya Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
17 Standardowa aksjomatyka Efektywność cała wypłata jest rozdzielona pomiędzy graczy ϕ i (v) = v(n) i N Symetria podział wypłaty nie zależy od imion graczy ϕ(σ(v)) = σ(ϕ(v)) Addytywność wypłata graczy w dwóch połączonych grach jest równa sumie wypłat w tych grach rozpatrywanych rozłącznie ϕ(v 1 + v 2 ) = ϕ(v 1 ) + ϕ(v 2 ) Aksjomat gracza-atrapy gracz który nie wnosi nic do wartości żadnej koalicji nic nie dostaje S N (v(s) v(s \ {i}) = 0) ϕ i (v) = 0 Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
18 Standardowa aksjomatyka Twierdzenie (Shapley, 1953) Wartość Shapleya jest jedyną wartością która spełnia aksjomaty Efektywności, Symetrii, Addytywności oraz Gracza-atrapy. Dowód Wartość Shapleya je spełnia (łatwe), pokażemy że jest jedyna. 1 znajdź (jedyne) rozbicie gry v(r) = S N α S e S (R) na proste gry e S postaci: (addytywność) { 1 jeżeli S R, e S (R) = 0 wpp; 2 wyznacz wypłatę dla gracza i S w grze e S ; (aksj. gracza-atrapy) 3 wyznacz wypłatę dla gracza i S w grze e S. (efektywność,symetria) Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
19 Aksjomat Marginalności (...) Shapley value, which happens to be calculated as the average of marginal contributions of players to coalitions. This comes as a surprise at first glance: uniqueness is the consequence of four basic axioms, and nothing in those axioms hints at the marginality principle, of long tradition in economic theory. In the clarification of this puzzle, Young (1985) provided a key piece. De Clippel & Serrano, Econometrica, 2008 Marginalność wypłata gracza zależy tylko od jego wektora wkładów marginalnych mc i (v 1 ) = mc i (v 2 ) ϕ i (v 1 ) = ϕ i (v 2 ) gdzie mc i (v) = v(s) v(s \ i) S N,i S. Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
20 Aksjomat Marginalności Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
21 Aksjomat Marginalności Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
22 Aksjomat Marginalności Wniosek: na wektor marginalny możemy patrzyć jak na grę! Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
23 Aksjomat Marginalności Wniosek: na wektor marginalny możemy patrzyć jak na grę! Co więcej: wektor marginalny w tej grze jest znowu tą samą grą! Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
24 Aksjomat Marginalności Twierdzenie (Young, 1985) Wartość Shapleya jest jedyną wartością która spełnia aksjomaty Efektywności, Symetrii oraz Marginalności. Dowód Wartość Shapleya je spełnia (łatwe), pokażemy że jest jedyną. Zastosujemy odwrotną indukcję po przecięciu wszystkich koalicji z niezerową wartością: S(v) = {S v(s) 0}. 1 podstawa: pokaż, że jeżeli S(v) = N to wypłaty graczy łatwo wyznaczyć; (efektywność,symetria) 2 założenie: jeżeli S(v) > k to wypłaty graczy są jednoznaczne; 3 krok: niech S(v) = k; pokaż, jak wyznaczyć jednoznacznie wypłatę gracza i S (marginalność), a następnie gracza i S. Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
25 Balanced Contributions Czemu gracze mają się zgodzić na taki podział? Może mogą wytargować więcej od kogoś? Sprzeciw! (gracza i względem j) Daj mi więcej, bo odejdę i zamiast Twojej wielkiej wypłaty ϕ j (v) dostaniesz tylko ϕ j (v i )! Odpowiedź (gracza j do i) To prawda, że jak odejdziesz to stracę, ale nie cwaniakuj, bo jak ja odejdę to Ty stracisz ϕ i (v) ϕ i (v j ). Balanced Contributions zysk z kooperacji dwóch graczy jest dzielony po równo między nich ϕ i (v) ϕ i (v j ) = ϕ j (v) ϕ j (v i ) Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
26 Balanced Contributions Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
27 Balanced Contributions Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
28 Balanced Contributions Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
29 Balanced Contributions Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
30 Balanced Contributions Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
31 Balanced Contributions Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
32 Balanced Contributions Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
33 Balanced Contributions Twierdzenie (Myerson, 1977) Wartość Shapleya jest jedyną wartością która spełnia aksjomaty Efektywności oraz Balanced Contributions. Dowód Wartość Shapleya je spełnia (łatwe), pokażemy że jest jedyna. Aby to zrobić wystarczy zsumować nasze równanie przy ustalonym i po wszystkich j. ϕ i (v) = ϕ j (v) ϕ j (v i ) + ϕ i (v j ) j Zauważając, że j ϕ j(v) = v(n) oraz j ϕ j(v i ) = v(n \ {i}) (oba z efektywności) dostajemy równanie rekurencyjne: ϕ i (v) = v(n) v(n \ {i}) + j ϕ i (v j ). Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
34 Balanced Contributions Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
35 Balanced Contributions Oskar Skibski (University of Warsaw) Shapley value 8 października / 17
Algorytmiczna Teoria Gier Koalicyjnych
Algorytmiczna Teoria Gier Koalicyjnych Oskar Skibski Institute of Informatics, University of Warsaw 15 października 2013 Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października
Algorytmiczna Teoria Gier Koalicyjnych 2015/16
Algorytmiczna Teoria Gier Koalicyjnych 2015/16 Oskar Skibski MIMUW 4 października 2015 Oskar Skibski (MIMUW) ATGK-16 4 października 2015 1 / 21 Przykład Oskar Skibski (MIMUW) ATGK-16 4 października 2015
Obliczanie wartości Shapleya rozszerzonej do gier koalicyjnych z efektami zewnętrznymi
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Oskar Skibski Nr albumu: 237720 Obliczanie wartości Shapleya rozszerzonej do gier koalicyjnych z efektami zewnętrznymi Praca magisterska
Wartość Shapleya w grach koalicyjnych
Wartość Shapleya w grach koalicyjnych Dawid Migacz, i LO w Tarnowie 1 Wprowadzenie W zasadzie każdą sytuację występującą na świecie można wymodelować matematycznie. W przypadku sytuacji, w których kilka
Gry wieloosobowe. Zdzisław Dzedzej
Gry wieloosobowe Zdzisław Dzedzej 2012 2013-01-16 1 Przykład 1 Warstwa A Warstwa B K K W A B W A B A 1,1,-2-4,3,1 A 3,-2,-1-6,-6,12 B 2,-4,2-5,-5,10 B 2,2,-4-2,3,-1 2013-01-16 2 Diagram przesunięć 2013-01-16
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
WARTOŚĆ SHAPLEYA DLA GIER
WARTOŚĆ SHAPLEYA DLA GIER Z EFEKTAMI ZEWNETRZNYMI I GIER NA GRAFACH AUTOREFERAT OSKAR SKIBSKI 9 CZERWCA 2014 Problem sprawiedliwego podziału zysku z kooperacji jest jednym z podstawowych zagadnień teorii
Rozkład figury symetrycznej na dwie przystające
Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
Rozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
Teoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya
Teoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya Na poprzednim wykładzie mówiliśmy o dwóch rodzajach pojęcia rozwiązania" gry kooperacyjnej: o rdzeniu i o zbiorach stabilnych. Oba
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
GRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI
GRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI Marcin Malawski Akademia Leona Koźmińskiego i Instytut Podstaw Informatyki PAN Warszawa 6 Forum Matematyków Polskich, Warszawa, wrzesień 2015 1 Pojęcia 2 Rozwiązania
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Wprowadzenie do teorii gier
Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe
Gry o sumie niezerowej
Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a
Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d
C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz
Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ
TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Grupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Praca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
1. ODPOWIEDZI DO ZADAŃ TESTOWYCH
R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie
Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017
Indukcja matematyczna, zasada minimum i maksimum 17 lutego 2017 Liczby naturalne - Aksjomatyka Peano (bez zera) Aksjomatyka liczb naturalnych N jest nazwą zbioru liczb naturalnych, 1 jest nazwą elementu
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Endomorfizmy liniowe
Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Zastosowanie wartości Shapleya w podejmowaniu decyzji przez importerów
Zastosowanie wartości Shapleya w podejmowaniu decyzji przez importerów dr hab. Leszek S. Zaremba 1. Postawienie problemu RozwaŜmy zagadnienie decyzyjne, jakie pojawia się w przypadku importerów pewnego
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej
Load balancing games
Load balancing games Marcin Witkowski Uniwersytet im. Adama Mickiewicza w Poznaniu 11 grudnia 2010 1 / 34 Szeregowanie zadań Przyporządkowanie zbioru zadań do zbioru maszyn, w ten sposób, aby obciążenie
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Pogromcy duchów. Wstęp. Krok 1: Stwórz latającego ducha
Poziom 1 Pogromcy duchów Wstęp Ten projekt bazuje na popularnej angielskiej grze zwanej Whack-A-Mole: zdobywasz punkty klikając w duchy, które pojawiają się na ekranie. Celem gry jest zdobycie jak największej
II. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =
Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Wstęp do Teorii Gier 5 X Tadeusz P/latkowski
Tadeusz Płatkowski 5 X 2017 Organizacyjne Pokój: 4440 Konsultacje: np. poniedziałek 15.00 16.00 Drzwi 4440: koperta WTG Grupa I: Pon 16:00 s. 2100, Grupa II: Czwartek 12:15 s. 3320. Organizacyjne Pokój:
TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ
TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25
MIMUW 5 Wyznaczniki 25 5 Wyznaczniki Wyznacznik macierzy kwadratowych jest funkcją det : K m n K, (m = 1, 2, ) przypisującą każdej macierzy kwadratowej skalar, liniowo ze względu na każdy wiersz osobno
Procesy stochastyczne
Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy
Przestrzenie liniowe
Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie
Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi
Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni
Wyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Zadanie 4 Zadanie 5 Zadanie 6. Repetytorium z JFiZO. Jakub Michaliszyn 25 maja 2017
Repetytorium z JFiZO Jakub Michaliszyn 25 maja 2017 dom(m) jest rekurencyjny wtw, gdy istnieje całkowita funkcja rekurencyjna t M (n) taka, że jeśli M(n) staje, to staje po dokładnie t M (n) krokach. dom(m)
Rozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Teoria Gier. Piotr Kuszewski 2018L
Teoria Gier Piotr Kuszewski 2018L Tematyka wykładów plan akcji Wykład I John von Neumann Trochę historii Czym jest gra i strategia Użyteczność Jak wyeliminować niektóre strategie Wykład II John Nash Równowaga
WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski
WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 12B/14 Permutacje bez punktów stałych Nieporządek na zbiorze X to permutacja taka, że dla dowolnego, czyli permutacja "bez punktów
Skala Wiary w Grę o Sumie Zerowej autorstwa Wojciszke, Baryły, Różyckiej
Skala Wiary w Grę o Sumie Zerowej autorstwa Wojciszke, Baryły, Różyckiej Natalia Skrzypczak Gra o sumie zerowej dla każdego możliwego zestawu strategii gry: przykłady: - Kamień Papier Nożyczki - Orzeł
Kombinatoryka. Reguła dodawania. Reguła dodawania
Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Algebra liniowa z geometrią. wykład I
Algebra liniowa z geometrią wykład I 1 Oznaczenia N zbiór liczb naturalnych, tutaj zaczynających się od 1 Z zbiór liczb całkowitych Q zbiór liczb wymiernych R zbiór liczb rzeczywistych C zbiór liczb zespolonych
PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank
PageRank Bartosz Makuracki 28 listopada 2013 Definicja Definicja PageRank jest algorytmem używanym przez wyszukiwarkę Google do ustalania kolejności stron pojawiających się w wynikach wyszukiwania. Definicja
Tomasz Rostański. Gry wieloosobowe. Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl)
Tomasz Rostański Gry wieloosobowe Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl) Wprowadzenie. Dotychczas analizowaliśmy gry, w których udział brały tylko 2 osoby.
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Algebry skończonego typu i formy kwadratowe
Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite
10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
1 Nierówność Minkowskiego i Hoeldera
1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami
1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Topologia zbioru Cantora a obwody logiczne
Adam Radziwończyk-Syta Michał Skrzypczak Uniwersytet Warszawski 1 lipca 2009 http://students.mimuw.edu.pl/~mskrzypczak/dokumenty/ obwody.pdf Zbiór Cantora Topologia Definicja Przez zbiór Cantora K oznaczamy
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Podział czworokątów wynika z wymagań jakie im stawiamy. Jeśli nie mamy żadnych wymagań to nasz czworokąt może wyglądać dowolnie, np.
Każdy z nas czworokąt widział: to figura geometryczna, która ma cztery boki, cztery kąty. Ponieważ jedną przekątną można dowolny czworokąt podzielić na dwa trójkąty to suma miar kątów wewnętrznych czworokąta