Gry wieloosobowe. Zdzisław Dzedzej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Gry wieloosobowe. Zdzisław Dzedzej"

Transkrypt

1 Gry wieloosobowe Zdzisław Dzedzej

2 Przykład 1 Warstwa A Warstwa B K K W A B W A B A 1,1,-2-4,3,1 A 3,-2,-1-6,-6,12 B 2,-4,2-5,-5,10 B 2,2,-4-2,3,

3 Diagram przesunięć

4 Analiza Dwie równowagi czyste: BAA =2,-4,2; AAB=3,-2,-1 Równowagi nie są ani wymienne, ani ekwiwalentne Gra jest o sumie zerowej Dopuszczając komunikację, umożliwiamy graczom tworzenie koalicji. Na przykład Kolumna i Warstwa mogą zjednoczyć się przeciwko Wierszowi. Otrzymamy grę dwuosobową o sumie zerowej

5 Koalicja: Kolumna +Warstwa K+Wa W AA BA AB BB A B Optymalna strategia Wiersza 3/5A+2/5B Optymalna strategia koalicji 4/5BA+1/5BB Wartość gry -4,4-4,4 jest zatem poziomem bezpieczeństwa Wiersza Kolumna ma zatem grać zawsze B, zaś Warstwa 4/5A+1/5B

6 Koalicja: Warstwa+Wiersz W+Wa K AA BA AB BB A Optymalna strategia Kolumny A Optymalna strategia koalicji BA Wartość gry -4, -4 jest zatem poziomem bezpieczeństwa Kolumny Warstwa ma zatem grać zawsze B, zaś Wiersz A B

7 Koalicja: Wiersz+ Kolumna W+K Wa AA BA AB BB A B Optymalna strategia Warstwy 3/7A+4/7B Optymalna strategia koalicji 6/7AA+1/7BA Wartość gry (-1,43) -1,43 jest zatem poziomem bezpieczeństwa Warstwy Kolumna ma zatem grać zawsze A, zaś Wiersz 6/7A+1/7B

8 Jak podzieli się wypłata w koalicji? 3/5.4/5 ABA + 3/5.1/5 ABB + 2/5.4/5 BBA + 2/5.1/5 BBB = 12/25.(-4,3,1) +3/25.(-6,-6,12) + 8/25.(-5,-5,10) + 2/25.(-2,,3,-1) = (-4,40; -0,64; 5,04 ) Warstwa zdecydowanie zyskuje. Kolumna i tak ma lepiej niż jej poziom bezpieczeństwa. W drugim przypadku (koalicja Wiersz+Warstwa) dostajemy wypłaty: (2,00 ; -4,00 ; 2,00) W trzecim (koalicja Wiersz+Kolumna): (2,12 ; -0,69 ; -1,43) Wiersz woli koalicję z Kolumną. Kolumna woli Warstwę. Warstwa woli Kolumnę. Możemy przewidywać, że zostanie zawiązana koalicja Kolumna+Warstwa. Jest to analiza gry bez wypłat ubocznych

9 Założenia (vn-m) Gracze mogą się ze sobą komunikować i zawierać koalicje. Gracze mogą sobie przekazywać wypłaty uboczne. Założenie 2 wymaga, aby użyteczności były transferowalne między graczami, a także ich wartości muszą być porównywalne dla wszystkich graczy

10 Gry koalicyjne w postaci funkcji charakterystycznej DEFINICJA. Gra w postaci funkcji charakterystycznej to para (N, v), gdzie N jest zbiorem graczy, a v: P(N) R jest funkcją Liczbę v(s) nazywamy wartością koalicji S. Na ogół zakładamy, że v(ø)=0. Grę w postaci normalnej można przekształcić do funkcji charakterystycznej: v(s) to poziom bezpieczeństwa S w dwuosobowej grze między S i N\S. W przykładzie:v(ø)=0, v(w)=-4,4, v(k)=-4, v(wa)=-1,43, v(kwa)=4,4,v(wwa)=4, v(wk)=1,43, v(wkwa)=

11 Funkcja charakterystyczna nie musi pochodzić od postaci normalnej Przykład (podział dolara): Trzech graczy dostanie dolara, jeśli uprzednio ustalą w głosowaniu większościowym sposób podzielenia go między siebie. v(ø)=v(1)=v(2)=v(3)=0, v(12)=v(13)=v(23)=v(123)=1 Trzy firmy telekomunikacyjne: Western Union(W), Hughes Aircraft(H) i General Telephone(G) rozważają wysłanie satelitów samodzielnie lub użytkowanie wspólne: v(ø)=0, v(w)=3, v(h)=2, v(g)=1, v(wh)=8, v(wg)=6,5, v(hg)=8,2, v(whg)=11,

12 Definicja: Gra jest superaddytywna, jeśli dla każdej pary rozłącznych koalicji v(sυt) v(s)+v(t) Podział dolara jest grą superaddytywną. Gra powstała z postaci normalnej przez przyporządkowanie poziomów bezpieczeństwa zawsze jest superaddytywna. Gra satelitów jest superaddytywna, choć nie jest grą o stałej sumie. Uwaga: rozważanie funkcji charakterystycznej nie zawsze daje sensowny wynik

13 3-osobowy dylemat więźnia Warstwa C Warstwa D C D C D C 1,1,1 0,3,0 C 0,0,3-2,2,2 D 3,0,0 2,2,-2 D 2,-2,2-1,-1,

14 Analiza przykładu Gra jest symetryczna Dla każdego z graczy strategia D dominuje C Jedyną równowagą jest DDD z wypłatami (-1,-1,-1) Ten wynik jest zdominowany w sensie Pareto przez CCC =1,1,1 Dopuszczamy możliwość zawierania koalicji, np. Kolumna +Warstwa CC CD DC DD C 1,2 0,3 0,3-2,4 D 3,0 2,0 2,0-1,

15 Analiza -cd Gra Wiersza ma punkt siodłowy DDD, zatem poziom bezpieczeństwa to -1. Gra koalicji ma dwa punkty siodłowe DCD i DDC o wartości 0. Stąd v(ø)=0, v(w)=v(k)=v(wa)=-1, v(wkwa)=3, v(wk)=v(wwa)=v(kwa)=0 Wydaje się, że najlepsza byłaby wielka koalicja CCC Ale analiza gry przeciw koalicji wskazuje, że najlepiej dla Wiersza grać D i zostawić koalicję z tym problemem. To daje wypłaty (2,0)!

16 Wartość Shapley a Imputacją w grze n-osobowej nazywamy każdy wektor (x 1,, x 2,,, x n

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne. TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy

Bardziej szczegółowo

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce. Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Tomasz Rostański. Gry wieloosobowe. Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl)

Tomasz Rostański. Gry wieloosobowe. Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl) Tomasz Rostański Gry wieloosobowe Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl) Wprowadzenie. Dotychczas analizowaliśmy gry, w których udział brały tylko 2 osoby.

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo? Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Algorytmiczna Teoria Gier Koalicyjnych

Algorytmiczna Teoria Gier Koalicyjnych Algorytmiczna Teoria Gier Koalicyjnych Oskar Skibski Institute of Informatics, University of Warsaw 15 października 2013 Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Algorytmiczna Teoria Gier Koalicyjnych 2015/16

Algorytmiczna Teoria Gier Koalicyjnych 2015/16 Algorytmiczna Teoria Gier Koalicyjnych 2015/16 Oskar Skibski MIMUW 4 października 2015 Oskar Skibski (MIMUW) ATGK-16 4 października 2015 1 / 21 Przykład Oskar Skibski (MIMUW) ATGK-16 4 października 2015

Bardziej szczegółowo

Teoria gier w ekonomii - opis przedmiotu

Teoria gier w ekonomii - opis przedmiotu Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki

Bardziej szczegółowo

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne GRY DWUOSOBOWE O SUMIE NIEZEROWEJ 1. 2. Równowaga Nasha Rozwiązania niekooperacyjne Gdy dwuosobowa gra nie jest grą o sumie zerowej, to aby ją opisać musimy podać wypłaty obu graczy. Jak wiadomo niektóre

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

Wartość Shapleya. Oskar Skibski. Institute of Informatics, University of Warsaw. 8 października 2012

Wartość Shapleya. Oskar Skibski. Institute of Informatics, University of Warsaw. 8 października 2012 Wartość Shapleya Oskar Skibski Institute of Informatics, University of Warsaw 8 października 2012 Oskar Skibski (University of Warsaw) Shapley value 8 października 2012 1 / 17 Przykład Oskar Skibski (University

Bardziej szczegółowo

Lista zadań. Równowaga w strategiach czystych

Lista zadań. Równowaga w strategiach czystych Lista zadań Równowaga w strategiach czystych 1. Podaj wszystkie czyste równowagi Nasha. Podaj definicję Pareto optymalności i znajdź pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,-1 (b)

Bardziej szczegółowo

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą

Bardziej szczegółowo

Lista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne.

Lista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. Lista zadań 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. (a) U 2,3-2,7 D 6,-5 0,-1 (b) U 2,3-2,7 D 6,-5 3,5 2. Rozwiąż gry używając algorytmu eliminacji

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z

Bardziej szczegółowo

Teoria gier. Gry powtarzane i ruchy strategiczne w stronę kooperacji Zdzisław Dzedzej 1

Teoria gier. Gry powtarzane i ruchy strategiczne w stronę kooperacji Zdzisław Dzedzej 1 Teoria gier Gry powtarzane i ruchy strategiczne w stronę kooperacji 2011-12-06 Zdzisław Dzedzej 1 Agenda Na przykładach zanalizujemy wrażliwość gier dwuosobowych na: Kolejność ruchów graczy Wielokrotne

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji

Bardziej szczegółowo

Daria Sitkowska Katarzyna Urbaniak

Daria Sitkowska Katarzyna Urbaniak Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu i kooperacji; bada jak gracze racjonalnie powinni rozgrywać grę.

Bardziej szczegółowo

Gry w postaci normalnej

Gry w postaci normalnej Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw

Bardziej szczegółowo

Czym jest użyteczność?

Czym jest użyteczność? Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

2372829797728297727 2777787 73772327 227728297827 28237 7372327227 728297727 7!7" 7 # 7 $%7 "7!7# 7 " 7 %7 &2'7# 7 7 7 23789722772277287 77277232227897 227 27!""7 #2$7!""7%7!&"7 #2$7!&"7%7'""7 #2$7'""7%7'&"7

Bardziej szczegółowo

Mikroekonomia. O czym dzisiaj?

Mikroekonomia. O czym dzisiaj? Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...

Bardziej szczegółowo

STRATEGIA PRZYBLIŻONA. Inna propozycja: szukanie optymalnej strategii metodą iteracyjną.

STRATEGIA PRZYBLIŻONA. Inna propozycja: szukanie optymalnej strategii metodą iteracyjną. STRATEGIA PRZYBLIŻONA Ogólna strategia rozwiązywania gier NxN może być trudna obliczeniowo. Np. sprawdzenie otrzymanej mieszanej strategii wyrównującej : czy wszystkie strategie przeciwnika dają te same

Bardziej szczegółowo

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:

Bardziej szczegółowo

Przykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna

Przykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.

Bardziej szczegółowo

Nazwa przedmiotu. pierwsza

Nazwa przedmiotu. pierwsza Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu Teoria gier UTH/I/O/MT//C/ST/1(i)/ 6L /C1B.6a Game theory Język wykładowy polski Wersja przedmiotu

Bardziej szczegółowo

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3 LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,

Bardziej szczegółowo

Propedeutyka teorii gier

Propedeutyka teorii gier Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII

Bardziej szczegółowo

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B: Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich

Bardziej szczegółowo

Teoria Gier. Schemat arbitrażowy Nasha Zdzisław Dzedzej

Teoria Gier. Schemat arbitrażowy Nasha Zdzisław Dzedzej Teoria Gier Schemat arbitrażowy Nasha Zdzisław Dzedzej 1 Bargaining Zdzisław Dzedzej 2 Zdzisław Dzedzej 3 Rozwiązania kooperacyjne Załóżmy, że gracze przed grą negocjują, jaki wynik byłby racjonalny i

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady

Bardziej szczegółowo

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w

Bardziej szczegółowo

Elementy teorii gier

Elementy teorii gier Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia

Bardziej szczegółowo

Elementy teorii gier. Badania operacyjne

Elementy teorii gier. Badania operacyjne 2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie

Bardziej szczegółowo

Wartość Shapleya w grach koalicyjnych

Wartość Shapleya w grach koalicyjnych Wartość Shapleya w grach koalicyjnych Dawid Migacz, i LO w Tarnowie 1 Wprowadzenie W zasadzie każdą sytuację występującą na świecie można wymodelować matematycznie. W przypadku sytuacji, w których kilka

Bardziej szczegółowo

Load balancing games

Load balancing games Load balancing games Marcin Witkowski Uniwersytet im. Adama Mickiewicza w Poznaniu 11 grudnia 2010 1 / 34 Szeregowanie zadań Przyporządkowanie zbioru zadań do zbioru maszyn, w ten sposób, aby obciążenie

Bardziej szczegółowo

Co jest grane w dylematach społecznych

Co jest grane w dylematach społecznych Co jest grane w dylematach społecznych Tadeusz Płatkowski Dylemat społeczny to sytuacja grupy ludzi w której interes jednostki nie jest zbieżny z interesem grupy. Na ogół charakteryzuje się tym że jeżeli

Bardziej szczegółowo

Strategie kwantowe w teorii gier

Strategie kwantowe w teorii gier Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane

Bardziej szczegółowo

Wyznaczanie strategii w grach

Wyznaczanie strategii w grach Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych

Bardziej szczegółowo

GRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI

GRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI GRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI Marcin Malawski Akademia Leona Koźmińskiego i Instytut Podstaw Informatyki PAN Warszawa 6 Forum Matematyków Polskich, Warszawa, wrzesień 2015 1 Pojęcia 2 Rozwiązania

Bardziej szczegółowo

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna

Bardziej szczegółowo

PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH

PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM cz. 6 dr BOŻENA STARUCH bostar@matman.uwm.edu.pl Optymalizacja wielokryterialna Optymalizacją wielokryterialną nazwiemy próbę znalezienia

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Wprowadzenie do teorii gier

Wprowadzenie do teorii gier Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe

Bardziej szczegółowo

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1 Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe 1

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe 1 D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata, którą zgodnie

Bardziej szczegółowo

KOMBINATORYKA. Problem przydziału prac

KOMBINATORYKA. Problem przydziału prac KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

Jaki język zrozumie automat?

Jaki język zrozumie automat? Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

Konkurencja i współpraca w procesie podejmowania decyzji

Konkurencja i współpraca w procesie podejmowania decyzji Konkurencja i współpraca w procesie podejmowania woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Dzień liczby π, Toruń, 12 marca 2015 Plan działania Przykład

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00

Bardziej szczegółowo

Mateusz Topolewski. Świecie, 8 grudnia 2014

Mateusz Topolewski. Świecie, 8 grudnia 2014 woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Świecie, 8 grudnia 2014 Plan działania Przykład 1. Negocjacje Właściciele dwóch domów negocjują w którym miejscu

Bardziej szczegółowo

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),

Bardziej szczegółowo

Teoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya

Teoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya Teoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya Na poprzednim wykładzie mówiliśmy o dwóch rodzajach pojęcia rozwiązania" gry kooperacyjnej: o rdzeniu i o zbiorach stabilnych. Oba

Bardziej szczegółowo

Gry dwuosobowe o sumie zerowej i ich zastosowanie

Gry dwuosobowe o sumie zerowej i ich zastosowanie Uniwersytet Łódzki Wydział Matematyki i Informatyki Joanna Sujka Nr albumu: 314325 Gry dwuosobowe o sumie zerowej i ich zastosowanie Praca magisterska na kierunku MATEMATYKA w zakresie TEORII GIER Praca

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Gry dwuosobowe i gry z naturą............... 5

Bardziej szczegółowo

Aukcje groszowe. Podejście teoriogrowe

Aukcje groszowe. Podejście teoriogrowe Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].

Bardziej szczegółowo

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling

Bardziej szczegółowo

Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY

Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY Na poprzednich wykładach zajmowaliśmy się głównie takimi sytuacjami, w których gracze podejmowali decyzje jednocześnie

Bardziej szczegółowo

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek... Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:

Bardziej szczegółowo

Rozwiązania gier o charakterze kooperacyjnym

Rozwiązania gier o charakterze kooperacyjnym 13 października 2008 Część 1 Część 1: Kooperacja Kooperacja Postać normalna gry Definicja gry Grą w postaci normalnej nazywamy układ (S 1, S 2, W 1, W 2 ), gdzie S i zbiór strategii i-tego gracza (i =

Bardziej szczegółowo

TEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników).

TEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników). TEOR GER 1. Wstęp Teoria gier jest dziedziną zajmującą się opisem sytuacji, w których podmioty (gracze) podejmujący świadome decyzje (nazywane strategie), w wyniku których zapadają rozstrzygnięcia mogące

Bardziej szczegółowo

1. S³owo wstêpne Geologia gospodarcza g³ówne aspekty problematyki badawczej Zakres, treœæ i cel rozprawy...

1. S³owo wstêpne Geologia gospodarcza g³ówne aspekty problematyki badawczej Zakres, treœæ i cel rozprawy... Spis treœci Streszczenie... 11 Summary... 13 1. S³owo wstêpne... 15 1.1. Geologia gospodarcza g³ówne aspekty problematyki badawczej... 16 1.2. Zakres, treœæ i cel rozprawy... 17 2. Zarys teorii decyzji...

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Mixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych

Mixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych Mixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych

Bardziej szczegółowo

Programowanie Współbieżne. Algorytmy

Programowanie Współbieżne. Algorytmy Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm :. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica

Bardziej szczegółowo

Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą

Bardziej szczegółowo

ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć

Bardziej szczegółowo

ń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź

Bardziej szczegółowo

Ą Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś

Bardziej szczegółowo

Ę Ł ć Ą ż Ł Ł Ą Ó ż Ł Ś Ę Ś Ó Ł Ń Ą Ą Ł Ą ĄĄ ż ć Ś Ź ć ć Ł ć ć ć Ś Ó Ś Ś ć ć ć ć Ó ć ć ć Ś ż Ł Ą ż Ś ż Ł ć ć Ó ć ć Ą ć Ś ć ż ć ć Ś ć Ł Ń ć ć Ę ć ć ć Ó ć ć ć ć ć ć ź ć ć Ó ć ć ć ć ć ż ć ć ć ć Ł ć ć ć ć

Bardziej szczegółowo