Gry wieloosobowe. Zdzisław Dzedzej
|
|
- Łukasz Wróbel
- 8 lat temu
- Przeglądów:
Transkrypt
1 Gry wieloosobowe Zdzisław Dzedzej
2 Przykład 1 Warstwa A Warstwa B K K W A B W A B A 1,1,-2-4,3,1 A 3,-2,-1-6,-6,12 B 2,-4,2-5,-5,10 B 2,2,-4-2,3,
3 Diagram przesunięć
4 Analiza Dwie równowagi czyste: BAA =2,-4,2; AAB=3,-2,-1 Równowagi nie są ani wymienne, ani ekwiwalentne Gra jest o sumie zerowej Dopuszczając komunikację, umożliwiamy graczom tworzenie koalicji. Na przykład Kolumna i Warstwa mogą zjednoczyć się przeciwko Wierszowi. Otrzymamy grę dwuosobową o sumie zerowej
5 Koalicja: Kolumna +Warstwa K+Wa W AA BA AB BB A B Optymalna strategia Wiersza 3/5A+2/5B Optymalna strategia koalicji 4/5BA+1/5BB Wartość gry -4,4-4,4 jest zatem poziomem bezpieczeństwa Wiersza Kolumna ma zatem grać zawsze B, zaś Warstwa 4/5A+1/5B
6 Koalicja: Warstwa+Wiersz W+Wa K AA BA AB BB A Optymalna strategia Kolumny A Optymalna strategia koalicji BA Wartość gry -4, -4 jest zatem poziomem bezpieczeństwa Kolumny Warstwa ma zatem grać zawsze B, zaś Wiersz A B
7 Koalicja: Wiersz+ Kolumna W+K Wa AA BA AB BB A B Optymalna strategia Warstwy 3/7A+4/7B Optymalna strategia koalicji 6/7AA+1/7BA Wartość gry (-1,43) -1,43 jest zatem poziomem bezpieczeństwa Warstwy Kolumna ma zatem grać zawsze A, zaś Wiersz 6/7A+1/7B
8 Jak podzieli się wypłata w koalicji? 3/5.4/5 ABA + 3/5.1/5 ABB + 2/5.4/5 BBA + 2/5.1/5 BBB = 12/25.(-4,3,1) +3/25.(-6,-6,12) + 8/25.(-5,-5,10) + 2/25.(-2,,3,-1) = (-4,40; -0,64; 5,04 ) Warstwa zdecydowanie zyskuje. Kolumna i tak ma lepiej niż jej poziom bezpieczeństwa. W drugim przypadku (koalicja Wiersz+Warstwa) dostajemy wypłaty: (2,00 ; -4,00 ; 2,00) W trzecim (koalicja Wiersz+Kolumna): (2,12 ; -0,69 ; -1,43) Wiersz woli koalicję z Kolumną. Kolumna woli Warstwę. Warstwa woli Kolumnę. Możemy przewidywać, że zostanie zawiązana koalicja Kolumna+Warstwa. Jest to analiza gry bez wypłat ubocznych
9 Założenia (vn-m) Gracze mogą się ze sobą komunikować i zawierać koalicje. Gracze mogą sobie przekazywać wypłaty uboczne. Założenie 2 wymaga, aby użyteczności były transferowalne między graczami, a także ich wartości muszą być porównywalne dla wszystkich graczy
10 Gry koalicyjne w postaci funkcji charakterystycznej DEFINICJA. Gra w postaci funkcji charakterystycznej to para (N, v), gdzie N jest zbiorem graczy, a v: P(N) R jest funkcją Liczbę v(s) nazywamy wartością koalicji S. Na ogół zakładamy, że v(ø)=0. Grę w postaci normalnej można przekształcić do funkcji charakterystycznej: v(s) to poziom bezpieczeństwa S w dwuosobowej grze między S i N\S. W przykładzie:v(ø)=0, v(w)=-4,4, v(k)=-4, v(wa)=-1,43, v(kwa)=4,4,v(wwa)=4, v(wk)=1,43, v(wkwa)=
11 Funkcja charakterystyczna nie musi pochodzić od postaci normalnej Przykład (podział dolara): Trzech graczy dostanie dolara, jeśli uprzednio ustalą w głosowaniu większościowym sposób podzielenia go między siebie. v(ø)=v(1)=v(2)=v(3)=0, v(12)=v(13)=v(23)=v(123)=1 Trzy firmy telekomunikacyjne: Western Union(W), Hughes Aircraft(H) i General Telephone(G) rozważają wysłanie satelitów samodzielnie lub użytkowanie wspólne: v(ø)=0, v(w)=3, v(h)=2, v(g)=1, v(wh)=8, v(wg)=6,5, v(hg)=8,2, v(whg)=11,
12 Definicja: Gra jest superaddytywna, jeśli dla każdej pary rozłącznych koalicji v(sυt) v(s)+v(t) Podział dolara jest grą superaddytywną. Gra powstała z postaci normalnej przez przyporządkowanie poziomów bezpieczeństwa zawsze jest superaddytywna. Gra satelitów jest superaddytywna, choć nie jest grą o stałej sumie. Uwaga: rozważanie funkcji charakterystycznej nie zawsze daje sensowny wynik
13 3-osobowy dylemat więźnia Warstwa C Warstwa D C D C D C 1,1,1 0,3,0 C 0,0,3-2,2,2 D 3,0,0 2,2,-2 D 2,-2,2-1,-1,
14 Analiza przykładu Gra jest symetryczna Dla każdego z graczy strategia D dominuje C Jedyną równowagą jest DDD z wypłatami (-1,-1,-1) Ten wynik jest zdominowany w sensie Pareto przez CCC =1,1,1 Dopuszczamy możliwość zawierania koalicji, np. Kolumna +Warstwa CC CD DC DD C 1,2 0,3 0,3-2,4 D 3,0 2,0 2,0-1,
15 Analiza -cd Gra Wiersza ma punkt siodłowy DDD, zatem poziom bezpieczeństwa to -1. Gra koalicji ma dwa punkty siodłowe DCD i DDC o wartości 0. Stąd v(ø)=0, v(w)=v(k)=v(wa)=-1, v(wkwa)=3, v(wk)=v(wwa)=v(kwa)=0 Wydaje się, że najlepsza byłaby wielka koalicja CCC Ale analiza gry przeciw koalicji wskazuje, że najlepiej dla Wiersza grać D i zostawić koalicję z tym problemem. To daje wypłaty (2,0)!
16 Wartość Shapley a Imputacją w grze n-osobowej nazywamy każdy wektor (x 1,, x 2,,, x n
Gry o sumie niezerowej
Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.
TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ
TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy
Bardziej szczegółowoTeoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.
Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz
Bardziej szczegółowoTeoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Bardziej szczegółowoTomasz Rostański. Gry wieloosobowe. Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl)
Tomasz Rostański Gry wieloosobowe Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl) Wprowadzenie. Dotychczas analizowaliśmy gry, w których udział brały tylko 2 osoby.
Bardziej szczegółowo11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ
TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o
Bardziej szczegółowoTemat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe
Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu
Bardziej szczegółowo10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Bardziej szczegółowoModelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?
Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowoAlgorytmiczna Teoria Gier Koalicyjnych
Algorytmiczna Teoria Gier Koalicyjnych Oskar Skibski Institute of Informatics, University of Warsaw 15 października 2013 Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Bardziej szczegółowoAlgorytmiczna Teoria Gier Koalicyjnych 2015/16
Algorytmiczna Teoria Gier Koalicyjnych 2015/16 Oskar Skibski MIMUW 4 października 2015 Oskar Skibski (MIMUW) ATGK-16 4 października 2015 1 / 21 Przykład Oskar Skibski (MIMUW) ATGK-16 4 października 2015
Bardziej szczegółowoTeoria gier w ekonomii - opis przedmiotu
Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki
Bardziej szczegółowoGRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne
GRY DWUOSOBOWE O SUMIE NIEZEROWEJ 1. 2. Równowaga Nasha Rozwiązania niekooperacyjne Gdy dwuosobowa gra nie jest grą o sumie zerowej, to aby ją opisać musimy podać wypłaty obu graczy. Jak wiadomo niektóre
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o
Bardziej szczegółowoModelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.
GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy
Bardziej szczegółowoWartość Shapleya. Oskar Skibski. Institute of Informatics, University of Warsaw. 8 października 2012
Wartość Shapleya Oskar Skibski Institute of Informatics, University of Warsaw 8 października 2012 Oskar Skibski (University of Warsaw) Shapley value 8 października 2012 1 / 17 Przykład Oskar Skibski (University
Bardziej szczegółowoLista zadań. Równowaga w strategiach czystych
Lista zadań Równowaga w strategiach czystych 1. Podaj wszystkie czyste równowagi Nasha. Podaj definicję Pareto optymalności i znajdź pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,-1 (b)
Bardziej szczegółowo-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji
1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą
Bardziej szczegółowoLista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne.
Lista zadań 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. (a) U 2,3-2,7 D 6,-5 0,-1 (b) U 2,3-2,7 D 6,-5 3,5 2. Rozwiąż gry używając algorytmu eliminacji
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Bardziej szczegółowoTeoria gier. Gry powtarzane i ruchy strategiczne w stronę kooperacji Zdzisław Dzedzej 1
Teoria gier Gry powtarzane i ruchy strategiczne w stronę kooperacji 2011-12-06 Zdzisław Dzedzej 1 Agenda Na przykładach zanalizujemy wrażliwość gier dwuosobowych na: Kolejność ruchów graczy Wielokrotne
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą
TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji
Bardziej szczegółowoDaria Sitkowska Katarzyna Urbaniak
Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu i kooperacji; bada jak gracze racjonalnie powinni rozgrywać grę.
Bardziej szczegółowoGry w postaci normalnej
Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać
Bardziej szczegółowoMetody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Bardziej szczegółowoTeoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoOPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie
Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw
Bardziej szczegółowoCzym jest użyteczność?
Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,
Bardziej szczegółowoTeoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowo2372829797728297727 2777787 73772327 227728297827 28237 7372327227 728297727 7!7" 7 # 7 $%7 "7!7# 7 " 7 %7 &2'7# 7 7 7 23789722772277287 77277232227897 227 27!""7 #2$7!""7%7!&"7 #2$7!&"7%7'""7 #2$7'""7%7'&"7
Bardziej szczegółowoMikroekonomia. O czym dzisiaj?
Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...
Bardziej szczegółowoSTRATEGIA PRZYBLIŻONA. Inna propozycja: szukanie optymalnej strategii metodą iteracyjną.
STRATEGIA PRZYBLIŻONA Ogólna strategia rozwiązywania gier NxN może być trudna obliczeniowo. Np. sprawdzenie otrzymanej mieszanej strategii wyrównującej : czy wszystkie strategie przeciwnika dają te same
Bardziej szczegółowoTeoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:
Bardziej szczegółowoPrzykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna
Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.
Bardziej szczegółowoNazwa przedmiotu. pierwsza
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu Teoria gier UTH/I/O/MT//C/ST/1(i)/ 6L /C1B.6a Game theory Język wykładowy polski Wersja przedmiotu
Bardziej szczegółowoUniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3
LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,
Bardziej szczegółowoPropedeutyka teorii gier
Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII
Bardziej szczegółowoCzęść wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:
Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich
Bardziej szczegółowoTeoria Gier. Schemat arbitrażowy Nasha Zdzisław Dzedzej
Teoria Gier Schemat arbitrażowy Nasha Zdzisław Dzedzej 1 Bargaining Zdzisław Dzedzej 2 Zdzisław Dzedzej 3 Rozwiązania kooperacyjne Załóżmy, że gracze przed grą negocjują, jaki wynik byłby racjonalny i
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowoMaszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
Bardziej szczegółowoMateriał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak
Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w
Bardziej szczegółowoElementy teorii gier
Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia
Bardziej szczegółowoElementy teorii gier. Badania operacyjne
2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie
Bardziej szczegółowoWartość Shapleya w grach koalicyjnych
Wartość Shapleya w grach koalicyjnych Dawid Migacz, i LO w Tarnowie 1 Wprowadzenie W zasadzie każdą sytuację występującą na świecie można wymodelować matematycznie. W przypadku sytuacji, w których kilka
Bardziej szczegółowoLoad balancing games
Load balancing games Marcin Witkowski Uniwersytet im. Adama Mickiewicza w Poznaniu 11 grudnia 2010 1 / 34 Szeregowanie zadań Przyporządkowanie zbioru zadań do zbioru maszyn, w ten sposób, aby obciążenie
Bardziej szczegółowoCo jest grane w dylematach społecznych
Co jest grane w dylematach społecznych Tadeusz Płatkowski Dylemat społeczny to sytuacja grupy ludzi w której interes jednostki nie jest zbieżny z interesem grupy. Na ogół charakteryzuje się tym że jeżeli
Bardziej szczegółowoStrategie kwantowe w teorii gier
Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane
Bardziej szczegółowoWyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Bardziej szczegółowoGRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI
GRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI Marcin Malawski Akademia Leona Koźmińskiego i Instytut Podstaw Informatyki PAN Warszawa 6 Forum Matematyków Polskich, Warszawa, wrzesień 2015 1 Pojęcia 2 Rozwiązania
Bardziej szczegółowo1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania
1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,
Bardziej szczegółowoEKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.
Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna
Bardziej szczegółowoPODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH
PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM cz. 6 dr BOŻENA STARUCH bostar@matman.uwm.edu.pl Optymalizacja wielokryterialna Optymalizacją wielokryterialną nazwiemy próbę znalezienia
Bardziej szczegółowoAnaliza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Bardziej szczegółowoWprowadzenie do teorii gier
Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe
Bardziej szczegółowoTeoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1
Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe 1
D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata, którą zgodnie
Bardziej szczegółowoKOMBINATORYKA. Problem przydziału prac
KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty
Bardziej szczegółowo11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.
/22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:
Bardziej szczegółowoSchemat sprawdzianu. 25 maja 2010
Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoLEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.
LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,
Bardziej szczegółowoJaki język zrozumie automat?
Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy
Bardziej szczegółowoMatematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d
C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz
Bardziej szczegółowoKonkurencja i współpraca w procesie podejmowania decyzji
Konkurencja i współpraca w procesie podejmowania woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Dzień liczby π, Toruń, 12 marca 2015 Plan działania Przykład
Bardziej szczegółowoTEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00
Bardziej szczegółowoMateusz Topolewski. Świecie, 8 grudnia 2014
woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Świecie, 8 grudnia 2014 Plan działania Przykład 1. Negocjacje Właściciele dwóch domów negocjują w którym miejscu
Bardziej szczegółowoZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),
Bardziej szczegółowoTeoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya
Teoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya Na poprzednim wykładzie mówiliśmy o dwóch rodzajach pojęcia rozwiązania" gry kooperacyjnej: o rdzeniu i o zbiorach stabilnych. Oba
Bardziej szczegółowoGry dwuosobowe o sumie zerowej i ich zastosowanie
Uniwersytet Łódzki Wydział Matematyki i Informatyki Joanna Sujka Nr albumu: 314325 Gry dwuosobowe o sumie zerowej i ich zastosowanie Praca magisterska na kierunku MATEMATYKA w zakresie TEORII GIER Praca
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Gry dwuosobowe i gry z naturą............... 5
Bardziej szczegółowoAukcje groszowe. Podejście teoriogrowe
Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].
Bardziej szczegółowoAdam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling
Bardziej szczegółowoTeoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY
Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY Na poprzednich wykładach zajmowaliśmy się głównie takimi sytuacjami, w których gracze podejmowali decyzje jednocześnie
Bardziej szczegółowoa) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...
Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.
Bardziej szczegółowoTEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:
Bardziej szczegółowoRozwiązania gier o charakterze kooperacyjnym
13 października 2008 Część 1 Część 1: Kooperacja Kooperacja Postać normalna gry Definicja gry Grą w postaci normalnej nazywamy układ (S 1, S 2, W 1, W 2 ), gdzie S i zbiór strategii i-tego gracza (i =
Bardziej szczegółowoTEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników).
TEOR GER 1. Wstęp Teoria gier jest dziedziną zajmującą się opisem sytuacji, w których podmioty (gracze) podejmujący świadome decyzje (nazywane strategie), w wyniku których zapadają rozstrzygnięcia mogące
Bardziej szczegółowo1. S³owo wstêpne Geologia gospodarcza g³ówne aspekty problematyki badawczej Zakres, treœæ i cel rozprawy...
Spis treœci Streszczenie... 11 Summary... 13 1. S³owo wstêpne... 15 1.1. Geologia gospodarcza g³ówne aspekty problematyki badawczej... 16 1.2. Zakres, treœæ i cel rozprawy... 17 2. Zarys teorii decyzji...
Bardziej szczegółowo; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
Bardziej szczegółowoMixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych
Mixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych
Bardziej szczegółowoProgramowanie Współbieżne. Algorytmy
Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm :. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica
Bardziej szczegółowoĘ Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą
Bardziej szczegółowoż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć
Bardziej szczegółowoń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź
Bardziej szczegółowoĄ Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś
Bardziej szczegółowoĘ Ł ć Ą ż Ł Ł Ą Ó ż Ł Ś Ę Ś Ó Ł Ń Ą Ą Ł Ą ĄĄ ż ć Ś Ź ć ć Ł ć ć ć Ś Ó Ś Ś ć ć ć ć Ó ć ć ć Ś ż Ł Ą ż Ś ż Ł ć ć Ó ć ć Ą ć Ś ć ż ć ć Ś ć Ł Ń ć ć Ę ć ć ć Ó ć ć ć ć ć ć ź ć ć Ó ć ć ć ć ć ż ć ć ć ć Ł ć ć ć ć
Bardziej szczegółowo