L.O. św. Marii Magdaleny w Poznaniu, O POŻYTKACH PŁYN ACYCH Z RZUCANIA MONETA. Tomasz Łuczak
|
|
- Teresa Kurowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 L.O. św. Marii Magdaleny w Poznaniu, O POŻYTKACH PŁYN ACYCH Z RZUCANIA MONETA Tomasz Łuczak
2 NA POCZATEK DOBRA WIADOMOŚĆ! Dzięki naszym o hojnym sponsorom: Poznańskiej Fundacji Matematycznej oraz Miastu Poznań finansujacemu program Matma jest super wykład ten nie będzie przerywany reklamami!
3 DWIE DROGI BADANIA ŚWIATA Rozwijanie teorii Rozwiazywanie problemów
4 DWIE DROGI W NAUCE Albert Einstein Pál Erdős
5 DWIE DROGI W NAUCE Albert Einstein Ernst Straus Pál Erdős
6 DWIE DROGI W NAUCE Sir Galahad Don Juan Albert Einstein Pál Erdős
7 PROBLEM PROBLEM Przypuśćmy, że mamy rodzinę F składajac a się z 2015 podzbiorów 12-elementowych 1000-elementowego zbioru A. Czy zawsze da się pokolorować elementy zbioru A dwoma kolorami tak, by żaden ze zbiorów z rodziny F nie miał wszystkich elementów pokolorowanych jednym kolorem?
8 A CÓŻ TO ZA... NIEMADRE PYTANIE!?! PROBLEM Przypuśćmy, że mamy rodzinę F składajac a się z 2015 podzbiorów 12-elementowych 1000-elementowego zbioru A. Czy zawsze da się pokolorować elementy zbioru A dwoma kolorami tak, by żaden ze zbiorów z rodziny F nie miał wszystkich elementów pokolorowanych jednym kolorem?
9 A CÓŻ TO ZA... NIEMADRE PYTANIE!?! Gdybyśmy widzieli taka rodzinę, to jakoś byśmy sobie z nia poradzili!
10 A CÓŻ TO ZA... NIEMADRE PYTANIE!?! Gdybyśmy widzieli taka rodzinę, to jakoś byśmy sobie z nia poradzili!
11 A CÓŻ TO ZA... NIEMADRE PYTANIE!?! 1000 i 2015 to nieduże liczby, więc komputer może łatwo sprawdzić, czy istnieje takie kolorowanie!
12 A CÓŻ TO ZA... NIEMADRE PYTANIE!?! 1000 i 2015 to nieduże liczby, więc komputer może łatwo sprawdzić, czy istnieje takie kolorowanie! Liczba kolorowań: Liczba atomów w naszej galaktyce Liczba operacji na sekundę dla procesora 10GHz: Wiek naszej Galaktyki: s
13 ZAMIEŃMY NASZ PROBLEM NA MNIEJSZY... PROBLEM Przypuśćmy, że mamy rodzinę F składajac a się z 2015 podzbiorów 12-elementowych 1000-elementowego zbioru A. Czy zawsze da się pokolorować elementy zbioru A dwoma kolorami tak, by żaden ze zbiorów z rodziny F nie miał wszystkich elementów pokolorowanych jednym kolorem?
14 ZAMIEŃMY NASZ PROBLEM NA MNIEJSZY... PROBLEM Przypuśćmy, że mamy rodzinę F składajac a się z 2015 podzbiorów 12-elementowych 1000-elementowego zbioru A. Czy zawsze da się pokolorować elementy zbioru A dwoma kolorami tak, by żaden ze zbiorów z rodziny F nie miał wszystkich elementów pokolorowanych jednym kolorem?
15 ZAMIEŃMY NASZ PROBLEM NA MNIEJSZY... PROBLEM Przypuśćmy, że mamy rodzinę F składajac a się z 2015 zbiorów 12-elementowych 1000-elementowego zbioru A. Czy zawsze da się pokolorować elementy zbiorów z F dwoma kolorami tak, by żaden ze zbiorów z rodziny F nie miał wszystkich elementów pokolorowanych jednym kolorem?
16 ZAMIEŃMY NASZ PROBLEM NA MNIEJSZY... DEFINICJA Niech m = m(n) będzie najmniejsza liczba taka, że dla pewnej rodziny F składajacej się z m zbiorów n-elementowych, która nie da się dobrze pokolorować,
17 ZAMIEŃMY NASZ PROBLEM NA MNIEJSZY... DEFINICJA Niech m = m(n) będzie najmniejsza liczba taka, że dla pewnej rodziny F składajacej się z m zbiorów n-elementowych, która nie da się dobrze pokolorować, tzn. dla każdego kolorowania elementów zbiorów rodziny F dwoma kolorami istnieje zbiór F F, którego wszystkie elementy pokolorowane sa jednym kolorem.
18 ZAMIEŃMY NASZ PROBLEM NA MNIEJSZY... DEFINICJA Niech m = m(n) będzie najmniejsza liczba taka, że dla pewnej rodziny F składajacej się z m zbiorów n-elementowych, która nie da się dobrze pokolorować, tzn. dla każdego kolorowania elementów zbiorów rodziny F dwoma kolorami istnieje zbiór F F, którego wszystkie elementy pokolorowane sa jednym kolorem. Nasz poczatkowy problem jest równoważny pytaniu: m(12) < 2015?
19 m(2) = 3
20 m(2) = 3
21 m(2) = 3 m(2) > 2
22 m(2) = 3 m(2) > 2
23 m(2) = 3 m(2) > 2 m(2) 3
24 m(2) = 3 m(2) > 2 m(2) 3 m(2) = 3
25 m(3) 7
26 m(3) 7
27 m(3) 7
28 m(3) 7
29 m(3) 7
30 m(3) 7
31 m(3) 7
32 m(3) 7
33 REVENONS À NOS MOUTONS PROBLEM Przypuśćmy, że mamy rodzinę F składajac a się z 2015 podzbiorów 12-elementowych 1000-elementowego zbioru A. Czy zawsze da się pokolorować elementy zbioru A dwoma kolorami tak, by żaden ze zbiorów z rodziny F nie miał wszystkich elementów pokolorowanych jednym kolorem?
34 POMYSŁ ERDŐSA Pokolorujmy elementy zbiorów losowo!
35 POMYSŁ ERDŐSA Pokolorujmy elementy zbiorów losowo! Dla każdego z 1000 elementów rzućmy monet a, jeśli wypadnie reszka kolorujemy go na czerwono, jeśli orzeł na niebiesko.
36 POMYSŁ ERDŐSA Pokolorujmy elementy zbiorów losowo! Dla każdego z 1000 elementów rzućmy moneta, jeśli wypadnie reszka kolorujemy go na czerwono, jeśli orzeł na niebiesko. W taki sposób łatwo będzie zobaczyć, że można uniknać zbiorów jednokolorowych!
37 POMYSŁ ERDŐSA Pokolorujmy elementy zbiorów losowo!
38 POMYSŁ ERDŐSA Pokolorujmy elementy zbiorów losowo! Cóż, wyglada to dość podejrzanie...
39 POMYSŁ ERDŐSA Pokolorujmy elementy zbiorów losowo! Cóż, wyglada to dość podejrzanie... Po pierwsze, jeśli mamy pecha, to wszystkie elementy pokolorujemy jednym kolorem.
40 POMYSŁ ERDŐSA Pokolorujmy elementy zbiorów losowo! Cóż, wyglada to dość podejrzanie... Po pierwsze, jeśli mamy pecha, to wszystkie elementy pokolorujemy jednym kolorem. Po drugie mieliśmy uzasadnić, że da się zawsze pokolorować taka rodzinę zbiorów.
41 POMYSŁ ERDŐSA: ROZWINIECIE Pokolorujmy elementy zbiorów losowo
42 POMYSŁ ERDŐSA: ROZWINIECIE Pokolorujmy elementy zbiorów losowo i policzmy ile średnio otrzymamy zbiorów jednokolorowych.
43 POMYSŁ ERDŐSA: ROZWINIECIE Oznaczmy przez ω 1, ω 2,..., ω N wszystkie kolorowania zbioru 1000-elementowego (zauważmy, że N = ).
44 POMYSŁ ERDŐSA: ROZWINIECIE Oznaczmy przez ω 1, ω 2,..., ω N wszystkie kolorowania zbioru 1000-elementowego (zauważmy, że N = ). X(ω i ) - liczba zbiorów jednokolorowych w kolorowaniu ω i.
45 POMYSŁ ERDŐSA: ROZWINIECIE Oznaczmy przez ω 1, ω 2,..., ω N wszystkie kolorowania zbioru 1000-elementowego (zauważmy, że N = ). X(ω i ) - liczba zbiorów jednokolorowych w kolorowaniu ω i. EX = X(ω 1) + X(ω 2 ) + + X(ω N ) N.
46 EX MOŻNA OBLICZYĆ W INNY SPOSÓB... Prawdopodobieństwo ρ, że ustalony zbiór 12-elementowy A jest jednokolorowy jest równe: ρ = Pr(A jest czerwony) + Pr(A jest niebieski) = Pr( ) Pr( ) Pr( ) + Pr( ) Pr( ) Pr( ) = ( 1 ) 12 ( 1 ) 12 1 = + =
47 EX MOŻNA OBLICZYĆ W INNY SPOSÓB... Ponieważ mamy 2015 zbiorów 12-elementowych, więc średnio EX = 2015 ρ = 2015 z nich będzie jednokolorowych =
48 EX MOŻNA OBLICZYĆ W INNY SPOSÓB... Ponieważ mamy 2015 zbiorów 12-elementowych, więc średnio EX = 2015 ρ = 2015 z nich będzie jednokolorowych = Korzystamy tu z liniowości wartości oczekiwanej.
49 PONIEWAŻ EX < 1... Czyli EX = X(ω 1) + X(ω 2 ) + + X(ω N ) N = < 1.
50 PONIEWAŻ EX < 1... Czyli EX = X(ω 1) + X(ω 2 ) + + X(ω N ) N = < 1. Zatem istnieje takie kolorowanie ω, że liczba X(ω) jednokolorowych zbiorów w tym kolorowaniu wynosi 0!
51 OSZACOWANIA NA m(n) TWIERDZENIE ERDŐS 64 2 n 1 m(n)
52 OSZACOWANIA NA m(n) TWIERDZENIE ERDŐS 64 2 n 1 m(n) 2n 2 2 n.
53 OSZACOWANIA NA m(n) TWIERDZENIE ERDŐS 64 2 n 1 m(n) 2n 2 2 n. TWIERDZENIE RADHAKRISHNAN & SRINIVASAN 00 n log n m(n) 2 n 2n 2.
54 LICZBY RAMSEYA DEFINICJA Niech R = R(n) będzie najmniejsza liczba N taka, że dla każdego pokolorowania zbioru par {{i, j} : 1 i < j N} dwoma kolorami zawsze istnieje zbiór S {1, 2,..., N} taki, że S = n i wszystkie pary wewnatrz S sa pokolorowane jednym kolorem.
55 R(3) DEFINICJA R(3) to najmniejsza liczba N taka, że jeśli pokolorujemy wszystkie pary {{i, j} : 1 i < j n} dwoma kolorami, to zawsze znajdziemy zbiór S = {x, y, z} {1, 2,..., N}, w którym wszystkie trzy pary {x, y}, {x, z}, {x, z} sa pokolorowane jednym kolorem.
56 R(3)=6 R(3) > 5
57 R(3)=6 R(3) > 5
58 R(3)=6 R(3) > 5 R(3) 6
59 R(3)=6 R(3) > 5 R(3) 6
60 R(3) = 6 R(3) > 5 R(3) 6
61 R(3) = 6 R(3) > 5 R(3) 6
62 R(3) = 6 R(3) > 5 R(3) 6
63 R(3) = 6 R(3) > 5 R(3) 6
64 R(n) =? R(n) >?!? R(n) 4 n
65 OSZACOWANIA NA R(N) TWIERDZENIE ERDŐS 47 2 n/2 < R(n) 4 n.
66 OSZACOWANIA NA R(N) TWIERDZENIE ERDŐS 47 2 n/2 < R(n) 4 n. Dowód dolnego oszacowania
67 OSZACOWANIA NA R(N) TWIERDZENIE ERDŐS 47 2 n/2 < R(n) 4 n. Dowód dolnego oszacowania Pokoloruj pary {{i, j} : 1 i < j 2 n/2 } rzucajac moneta. Wtedy średnia liczba zbiorów n-elementowych, w których wszystkie pary pokolorowane sa jednym kolorem, jest mniejsza niż 1.
68 OSZACOWANIA NA R(N) TWIERDZENIE ERDŐS 47 2 n/2 < R(n) 4 n.
69 OSZACOWANIA NA R(N) TWIERDZENIE ERDŐS 47 2 n/2 < R(n) 4 n. Mimo, iż wiemy, że R(n) > 2 n/2, nie potrafimy udowodnić, że nie rzucajac moneta! R(n) > n
70 OSZACOWANIA NA R(N) TWIERDZENIE ERDŐS 47 2 n/2 < R(n) 4 n. Mimo, iż wiemy, że R(n) > 2 n/2, nie potrafimy udowodnić, że nie rzucajac moneta! R(n) > n Dlaczego?!?
71 CZY BÓG GRA W KOŚCI?
72 W FIZYCE BÓG GRA W KOŚCI!
73 A W MATEMATYCE I LOGICE?
74 A W MATEMATYCE I LOGICE? ŚW. TOMASZ Z AKWINU Zdecydowanie nie gra!
75 A W MATEMATYCE I LOGICE? ŚW. TOMASZ Z AKWINU Zdecydowanie nie gra! ŚW. AUGUSTYN Może i nie gra, a może i gra...
76 ZDANIE ERDŐSA NA TEN TEOLOGICZNY DYLEMAT
77 LOSOWOŚĆ, PSEUDOLOSOWOŚĆ I INNE OSOBLIWOŚCI Jest wiele przykładów na to, że liczby pierwsze sa, w jakimś sensie, losowo rozłożone wśród pozostałych liczb. Wśród wielu twierdzeń dotyczacych tego dziwnego zjawiska, jest np. wynik Erdősa i Kaca z 1940 roku, w którym pojawia się rozkład normalny. Najsłynniejsza hipoteza dotyczac a losowego rozkładu liczb pierwszych jest hipoteza Riemanna z roku 1859 roku, jeden z siedmiu problemów millenijnych.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Statystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Zmienna losowa i jej
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.4. Momenty zmiennych losowych Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Rzucamy raz kostką Ile wynosi średnia liczba oczek, jaka
3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba
3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z 12.03.2007 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane
Metody probabilistyczne
Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
Matematyka dyskretna. Andrzej Łachwa, UJ, A/10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 8A/10 Zbiory przeliczalne Przyjmujemy, że Zn = {0, 1, 2, 3, n-1} dla n>0 oraz Zn = przy n=0. Zbiór skończony to zbiór bijektywny z
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne
51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.
Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska Przykład 1 Alicja wylosowała jedną kartę z
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Po co nam matematyka? 7 kwietnia 2016 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Empik
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja
Kolorowanie płaszczyzny, prostych i okręgów
Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL?
Statystyka i Rachunek Prawdopodobieństwa (Fizyka i Optyka) Lista zadań Marek Klonowski Wrocław 2015/16 Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? 2. Ile jest ciągów bitowych
Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
Matematyczne kolorowanki. Tomasz Szemberg. Wykład dla studentów IM UP Kraków, 18 maja 2016
Wykład dla studentów IM UP Kraków, 18 maja 2016 Gra wstępna Dany jest prostokąt podzielony na 8 pól. Gracze zamalowują pola na zmianę. Jeden na kolor czerwony, a drugi na kolor niebieski. Gra wstępna Dany
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2
ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć
WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi
Podstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Sortowanie. Tomasz Żak zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska
Tomasz Żak www.im.pwr.wroc.pl/ zak Instytut Matematyki i Informatyki, Politechnika Wrocławska styczeń 2014 Przypuśćmy, że po sprawdzeniu 30 klasówek układamy je w kolejności alfabetycznej autorów. Jak
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Dyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.
Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Uniwersyteckie Koło Matematyczne 23 kwietnia 2009 r. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne
Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia)
Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) 1 Przestrzeń probabilistyczna Zadanie 1 Rzucamy dwiema kostkami do gry. Opisać przestrzeń zdarzeń
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób
Matematyka dyskretna. Andrzej Łachwa, UJ, a/15
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 3a/15 Indukcja matematyczna Zasada Minimum Dowolny niepusty podzbiór S zbioru liczb naturalnych ma w sobie liczbę najmniejszą. Zasada
Doświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)
Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Prawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
Statystyka matematyczna
Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski
WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu
= A. A - liczba elementów zbioru A. Lucjan Kowalski
Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej
Rachunek prawdopodobieństwa dla informatyków
Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.
Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład : Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grządziel 3 maja 203 Doświadczenie losowe Doświadczenie nazywamy losowym, jeśli: może być powtarzane (w zasadzie) w tych samych warunkach;
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.
13 Zastosowania Lematu Szemerédiego
13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{
Wojciech Guzicki. Konferencja SEM(Kolory matematyki) Sielpia, 26 października 2018 r.
1 O KOLOROWANIU Wojciech Guzicki Konferencja SEM(Kolory matematyki) Sielpia, 26 października 2018 r. W. Guzicki: O kolorowaniu 2 KILKA ZADAŃ OLIMPIJSKICH NA DOBRY POCZĄTEK W. Guzicki: O kolorowaniu 3 Zadanie
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola
Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017
Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona