Prawdopodobieństwo geometryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prawdopodobieństwo geometryczne"

Transkrypt

1 Prawdopodobieństwo geometryczne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Uniwersyteckie Koło Matematyczne 23 kwietnia 2009 r. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 1/30

2 Doświadczenia losowe Doświadczenie losowe doświadczenie, którego wyniku nie da się z góry przewidzieć, a jednocześnie dające się powtarzać w tych samych warunkach. Zbiór zdarzeń elementarnych zbiór wszystkich możliwych wyników doświadczenia, oznaczamy go zazwyczaj symbolem Ω. Zdarzenia podzbiory zbioru Ω. Przykład 1. Rzucamy jeden raz monetą. zbiór zdarzeń elementarnych Ω = {Orzeł,Reszka} = {O, R}. przykłady zdarzeń: zdarzenie A wypadł orzeł, tzn. A = {O}, zdarzenie B wypadł orzeł lub wypadła reszka, tzn. B = {O, R}. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 2/30

3 Doświadczenia losowe Doświadczenie losowe doświadczenie, którego wyniku nie da się z góry przewidzieć, a jednocześnie dające się powtarzać w tych samych warunkach. Zbiór zdarzeń elementarnych zbiór wszystkich możliwych wyników doświadczenia, oznaczamy go zazwyczaj symbolem Ω. Zdarzenia podzbiory zbioru Ω. Przykład 1. Rzucamy jeden raz monetą. zbiór zdarzeń elementarnych Ω = {Orzeł,Reszka} = {O, R}. przykłady zdarzeń: zdarzenie A wypadł orzeł, tzn. A = {O}, zdarzenie B wypadł orzeł lub wypadła reszka, tzn. B = {O, R}. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 2/30

4 Doświadczenia losowe Przykład 2. Rzucamy jeden raz kostką do gry. zbiór zdarzeń elementarnych Ω = {1, 2, 3, 4, 5, 6}. przykłady zdarzeń: zdarzenie A wypadła liczba parzysta, tzn. A = {2, 4, 6}, zdarzenie B wypadła liczba mniejsza od trzech, tzn. B = {1, 2}. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 3/30

5 Prawdopodobieństwo Każdemu zdarzeniu A przyporządkowujemy liczbę P(A) [0, 1]. Liczba ta określa szansę, że to zdarzenie zajdzie i nazywamy ją prawdopodobieństwem zajścia zdarzenia A. Inaczej mówiąc określamy pewną funkcję, której dziedziną jest zbiór zdarzeń, a zbiorem wartości przedział [0, 1]. Własności prawdopodobieństwa. Niech A i B będą dowolnymi zdarzeniami P(A) [0, 1], P(Ω) = 1, Jeżeli A B =, to P(A B) = P(A) + P(B). Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 4/30

6 Prawdopodobieństwo Każdemu zdarzeniu A przyporządkowujemy liczbę P(A) [0, 1]. Liczba ta określa szansę, że to zdarzenie zajdzie i nazywamy ją prawdopodobieństwem zajścia zdarzenia A. Inaczej mówiąc określamy pewną funkcję, której dziedziną jest zbiór zdarzeń, a zbiorem wartości przedział [0, 1]. Własności prawdopodobieństwa. Niech A i B będą dowolnymi zdarzeniami P(A) [0, 1], P(Ω) = 1, Jeżeli A B =, to P(A B) = P(A) + P(B). Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 4/30

7 Prawdopodobieństwo Przykład 1. Rzut monetą. Ω = {O, R}. Prawdopodobieństwa zdarzeń elementarnych określamy zazwyczaj następująco P({O}) = 1 2, P({R}) = 1 2. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 5/30

8 Prawdopodobieństwo Przykład 2. Rzut kostką. Ω = {1, 2, 3, 4, 5, 6}. Prawdopodobieństwa zdarzeń elementarnych określamy zazwyczaj następująco P({1}) = P({2}) = = P({6}) = 1 6. Korzystając z tego możemy obliczyć prawdopodobieństwa innych zdarzeń, np. P( wypadnie liczba parzysta ) = P({2, 4, 6}) = = P({2} {4} {6}) = = P({2}) + P({4}) + P({6}) = = = 1 2. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 6/30

9 Klasyczny model prawdopodobieństwa Doświadczenia losowe z przykładów 1 i 2 (rzut monetą i rzut kostką) mają dwie wspólne cechy: Skończony zbiór zdarzeń elementarnych (wyników) Ω = {O, R}, Ω = 2, Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, Prawdopodobieństwa wszystkich zdarzeń elementarnych są równe. Inaczej mówiąc każdy wynik doświadczenia losowego jest jednakowo prawdopodobny. P({O}) = P({R}) = 1 2. P({1}) = P({2}) = = P({6}) = 1 6. Jeżeli doświadczenie losowe posiada te dwie cechy, to prawdopodobieństwo dowolnego zdarzenia A możemy wyznaczyć z wzoru P(A) = A Ω. Jest to tzw. klasyczna definicja prawdopodobieństwa. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 7/30

10 Klasyczny model prawdopodobieństwa Doświadczenia losowe z przykładów 1 i 2 (rzut monetą i rzut kostką) mają dwie wspólne cechy: Skończony zbiór zdarzeń elementarnych (wyników) Ω = {O, R}, Ω = 2, Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, Prawdopodobieństwa wszystkich zdarzeń elementarnych są równe. Inaczej mówiąc każdy wynik doświadczenia losowego jest jednakowo prawdopodobny. P({O}) = P({R}) = 1 2. P({1}) = P({2}) = = P({6}) = 1 6. Jeżeli doświadczenie losowe posiada te dwie cechy, to prawdopodobieństwo dowolnego zdarzenia A możemy wyznaczyć z wzoru P(A) = A Ω. Jest to tzw. klasyczna definicja prawdopodobieństwa. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 7/30

11 Klasyczny model prawdopodobieństwa Doświadczenia losowe z przykładów 1 i 2 (rzut monetą i rzut kostką) mają dwie wspólne cechy: Skończony zbiór zdarzeń elementarnych (wyników) Ω = {O, R}, Ω = 2, Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, Prawdopodobieństwa wszystkich zdarzeń elementarnych są równe. Inaczej mówiąc każdy wynik doświadczenia losowego jest jednakowo prawdopodobny. P({O}) = P({R}) = 1 2. P({1}) = P({2}) = = P({6}) = 1 6. Jeżeli doświadczenie losowe posiada te dwie cechy, to prawdopodobieństwo dowolnego zdarzenia A możemy wyznaczyć z wzoru P(A) = A Ω. Jest to tzw. klasyczna definicja prawdopodobieństwa. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 7/30

12 Klasyczny model prawdopodobieństwa Doświadczenia losowe z przykładów 1 i 2 (rzut monetą i rzut kostką) mają dwie wspólne cechy: Skończony zbiór zdarzeń elementarnych (wyników) Ω = {O, R}, Ω = 2, Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, Prawdopodobieństwa wszystkich zdarzeń elementarnych są równe. Inaczej mówiąc każdy wynik doświadczenia losowego jest jednakowo prawdopodobny. P({O}) = P({R}) = 1 2. P({1}) = P({2}) = = P({6}) = 1 6. Jeżeli doświadczenie losowe posiada te dwie cechy, to prawdopodobieństwo dowolnego zdarzenia A możemy wyznaczyć z wzoru P(A) = A Ω. Jest to tzw. klasyczna definicja prawdopodobieństwa. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 7/30

13 Klasyczny model prawdopodobieństwa Doświadczenia losowe z przykładów 1 i 2 (rzut monetą i rzut kostką) mają dwie wspólne cechy: Skończony zbiór zdarzeń elementarnych (wyników) Ω = {O, R}, Ω = 2, Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, Prawdopodobieństwa wszystkich zdarzeń elementarnych są równe. Inaczej mówiąc każdy wynik doświadczenia losowego jest jednakowo prawdopodobny. P({O}) = P({R}) = 1 2. P({1}) = P({2}) = = P({6}) = 1 6. Jeżeli doświadczenie losowe posiada te dwie cechy, to prawdopodobieństwo dowolnego zdarzenia A możemy wyznaczyć z wzoru P(A) = A Ω. Jest to tzw. klasyczna definicja prawdopodobieństwa. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 7/30

14 Klasyczny model prawdopodobieństwa Doświadczenia losowe z przykładów 1 i 2 (rzut monetą i rzut kostką) mają dwie wspólne cechy: Skończony zbiór zdarzeń elementarnych (wyników) Ω = {O, R}, Ω = 2, Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, Prawdopodobieństwa wszystkich zdarzeń elementarnych są równe. Inaczej mówiąc każdy wynik doświadczenia losowego jest jednakowo prawdopodobny. P({O}) = P({R}) = 1 2. P({1}) = P({2}) = = P({6}) = 1 6. Jeżeli doświadczenie losowe posiada te dwie cechy, to prawdopodobieństwo dowolnego zdarzenia A możemy wyznaczyć z wzoru P(A) = A Ω. Jest to tzw. klasyczna definicja prawdopodobieństwa. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 7/30

15 Klasyczny model prawdopodobieństwa Doświadczenia losowe z przykładów 1 i 2 (rzut monetą i rzut kostką) mają dwie wspólne cechy: Skończony zbiór zdarzeń elementarnych (wyników) Ω = {O, R}, Ω = 2, Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, Prawdopodobieństwa wszystkich zdarzeń elementarnych są równe. Inaczej mówiąc każdy wynik doświadczenia losowego jest jednakowo prawdopodobny. P({O}) = P({R}) = 1 2. P({1}) = P({2}) = = P({6}) = 1 6. Jeżeli doświadczenie losowe posiada te dwie cechy, to prawdopodobieństwo dowolnego zdarzenia A możemy wyznaczyć z wzoru P(A) = A Ω. Jest to tzw. klasyczna definicja prawdopodobieństwa. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 7/30

16 Klasyczny model prawdopodobieństwa Doświadczenia losowe z przykładów 1 i 2 (rzut monetą i rzut kostką) mają dwie wspólne cechy: Skończony zbiór zdarzeń elementarnych (wyników) Ω = {O, R}, Ω = 2, Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, Prawdopodobieństwa wszystkich zdarzeń elementarnych są równe. Inaczej mówiąc każdy wynik doświadczenia losowego jest jednakowo prawdopodobny. P({O}) = P({R}) = 1 2. P({1}) = P({2}) = = P({6}) = 1 6. Jeżeli doświadczenie losowe posiada te dwie cechy, to prawdopodobieństwo dowolnego zdarzenia A możemy wyznaczyć z wzoru P(A) = A Ω. Jest to tzw. klasyczna definicja prawdopodobieństwa. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 7/30

17 Klasyczny model prawdopodobieństwa Przykład 2. Rzut kostką. Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, A wypadła liczba parzysta, A = {2, 4, 6}, A = 3, P(A) = A Ω = 3 6 = 1 2, B wypadła liczba mniejsza od 3, B = {1, 2}, B = 2, P(B) = B Ω = 2 6 = 1 3, Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 8/30

18 Klasyczny model prawdopodobieństwa Przykład 2. Rzut kostką. Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, A wypadła liczba parzysta, A = {2, 4, 6}, A = 3, P(A) = A Ω = 3 6 = 1 2, B wypadła liczba mniejsza od 3, B = {1, 2}, B = 2, P(B) = B Ω = 2 6 = 1 3, Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 8/30

19 Klasyczny model prawdopodobieństwa Przykład 2. Rzut kostką. Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, A wypadła liczba parzysta, A = {2, 4, 6}, A = 3, P(A) = A Ω = 3 6 = 1 2, B wypadła liczba mniejsza od 3, B = {1, 2}, B = 2, P(B) = B Ω = 2 6 = 1 3, Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 8/30

20 Klasyczny model prawdopodobieństwa Przykład 2. Rzut kostką. Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, A wypadła liczba parzysta, A = {2, 4, 6}, A = 3, P(A) = A Ω = 3 6 = 1 2, B wypadła liczba mniejsza od 3, B = {1, 2}, B = 2, P(B) = B Ω = 2 6 = 1 3, Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 8/30

21 Klasyczny model prawdopodobieństwa Przykład 2. Rzut kostką. Ω = {1, 2, 3, 4, 5, 6}, Ω = 6, A wypadła liczba parzysta, A = {2, 4, 6}, A = 3, P(A) = A Ω = 3 6 = 1 2, B wypadła liczba mniejsza od 3, B = {1, 2}, B = 2, P(B) = B Ω = 2 6 = 1 3, Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 8/30

22 Problem Dany jest przedział [0, 1]. Wybieramy z tego przedziału w sposób losowy punkt x. Zakładamy, że prawdopodobieństwa wylosowania dowolnego punktu są równe. Pytania: Jak wygląda zbiór zdarzeń elementarnych? Ile jest zdarzeń elementarnych? Ile wynosi prawdopodobieństwo dowolnego zdarzenia elementarnego? Czy możemy stosować klasyczną definicję prawdopodobieństwa? Jak obliczać prawdopodobieństwa różnych zdarzeń, np. P({x 1 2 }) = P({x > 1 4 }) = P({ 1 2 x < 3 4 }) = P({x = 1 3 }) = Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 9/30

23 Problem Odpowiedzi: Ω = [0, 1] Jest nieskończenie wiele zdarzeń elementarnych, Ω = +, P({x}) = 0 dla dowolnego x [0, 1], Nie możemy stosować klasycznej definicji prawdopodobieństwa. Wynika z tego, że aby określić np. P({x 1 2 }) potrzebna jest inna definicja prawdopodobieństwa. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 10/30

24 Prawdopodobieństwo geometryczne Wiemy, że na podzbiorach R n mamy określone pewne miary. Na R 1 jest to długość, na R 2 pole, a na R 3 objętość. Załóżmy, że Ω jest podzbiorem R n o skończonej mierze. Niech A będzie zdarzeniem (czyli pewnym podzbiorem zbioru Ω). Wówczas P(A) = miara(a) miara(ω). Jest to tzw. geometryczna definicja prawdopodobieństwa. Prawdopodobieństwo zdarzenia A jest proporcjonalne do miary (długości, pola, objętości) tego zbioru. Jeżeli np. zbiór B ma pole dwa razy większe od pola zbioru A, to prawdopodobieństwo, że losowo wybrany punkt trafi do zbioru B jest dwa razy większe niż prawdopodobieństwo, że trafi on do zbioru A. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 11/30

25 Prawdopodobieństwo geometryczne Wiemy, że na podzbiorach R n mamy określone pewne miary. Na R 1 jest to długość, na R 2 pole, a na R 3 objętość. Załóżmy, że Ω jest podzbiorem R n o skończonej mierze. Niech A będzie zdarzeniem (czyli pewnym podzbiorem zbioru Ω). Wówczas P(A) = miara(a) miara(ω). Jest to tzw. geometryczna definicja prawdopodobieństwa. Prawdopodobieństwo zdarzenia A jest proporcjonalne do miary (długości, pola, objętości) tego zbioru. Jeżeli np. zbiór B ma pole dwa razy większe od pola zbioru A, to prawdopodobieństwo, że losowo wybrany punkt trafi do zbioru B jest dwa razy większe niż prawdopodobieństwo, że trafi on do zbioru A. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 11/30

26 Prawdopodobieństwo geometryczne Wiemy, że na podzbiorach R n mamy określone pewne miary. Na R 1 jest to długość, na R 2 pole, a na R 3 objętość. Załóżmy, że Ω jest podzbiorem R n o skończonej mierze. Niech A będzie zdarzeniem (czyli pewnym podzbiorem zbioru Ω). Wówczas P(A) = miara(a) miara(ω). Jest to tzw. geometryczna definicja prawdopodobieństwa. Prawdopodobieństwo zdarzenia A jest proporcjonalne do miary (długości, pola, objętości) tego zbioru. Jeżeli np. zbiór B ma pole dwa razy większe od pola zbioru A, to prawdopodobieństwo, że losowo wybrany punkt trafi do zbioru B jest dwa razy większe niż prawdopodobieństwo, że trafi on do zbioru A. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 11/30

27 Prawdopodobieństwo geometryczne Wiemy, że na podzbiorach R n mamy określone pewne miary. Na R 1 jest to długość, na R 2 pole, a na R 3 objętość. Załóżmy, że Ω jest podzbiorem R n o skończonej mierze. Niech A będzie zdarzeniem (czyli pewnym podzbiorem zbioru Ω). Wówczas P(A) = miara(a) miara(ω). Jest to tzw. geometryczna definicja prawdopodobieństwa. Prawdopodobieństwo zdarzenia A jest proporcjonalne do miary (długości, pola, objętości) tego zbioru. Jeżeli np. zbiór B ma pole dwa razy większe od pola zbioru A, to prawdopodobieństwo, że losowo wybrany punkt trafi do zbioru B jest dwa razy większe niż prawdopodobieństwo, że trafi on do zbioru A. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 11/30

28 Prawdopodobieństwo geometryczne Wiemy, że na podzbiorach R n mamy określone pewne miary. Na R 1 jest to długość, na R 2 pole, a na R 3 objętość. Załóżmy, że Ω jest podzbiorem R n o skończonej mierze. Niech A będzie zdarzeniem (czyli pewnym podzbiorem zbioru Ω). Wówczas P(A) = miara(a) miara(ω). Jest to tzw. geometryczna definicja prawdopodobieństwa. Prawdopodobieństwo zdarzenia A jest proporcjonalne do miary (długości, pola, objętości) tego zbioru. Jeżeli np. zbiór B ma pole dwa razy większe od pola zbioru A, to prawdopodobieństwo, że losowo wybrany punkt trafi do zbioru B jest dwa razy większe niż prawdopodobieństwo, że trafi on do zbioru A. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 11/30

29 Prawdopodobieństwo geometryczne Wiemy, że na podzbiorach R n mamy określone pewne miary. Na R 1 jest to długość, na R 2 pole, a na R 3 objętość. Załóżmy, że Ω jest podzbiorem R n o skończonej mierze. Niech A będzie zdarzeniem (czyli pewnym podzbiorem zbioru Ω). Wówczas P(A) = miara(a) miara(ω). Jest to tzw. geometryczna definicja prawdopodobieństwa. Prawdopodobieństwo zdarzenia A jest proporcjonalne do miary (długości, pola, objętości) tego zbioru. Jeżeli np. zbiór B ma pole dwa razy większe od pola zbioru A, to prawdopodobieństwo, że losowo wybrany punkt trafi do zbioru B jest dwa razy większe niż prawdopodobieństwo, że trafi on do zbioru A. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 11/30

30 Przykład Dany jest przedział [0, 1]. Wybieramy z tego przedziału w sposób losowy punkt x. Zakładamy, że prawdopodobieństwa wylosowania dowolnego punktu są równe. Jakie jest prawdopodobieństwo, że x [0, 1 3 ]? Rozwiązanie: Ω = [0, 1], A = [0, 1 3 ], 1 P(A) = P(x [0, 1 długość(a) 3 ]) = długość(ω) = 3 1 = 1 3. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 12/30

31 Przykład Dany jest przedział [0, 1]. Wybieramy z tego przedziału w sposób losowy punkt x. Zakładamy, że prawdopodobieństwa wylosowania dowolnego punktu są równe. Jakie jest prawdopodobieństwo, że x [0, 1 3 ]? Rozwiązanie: Ω = [0, 1], A = [0, 1 3 ], 1 P(A) = P(x [0, 1 długość(a) 3 ]) = długość(ω) = 3 1 = 1 3. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 12/30

32 Przykład Dany jest przedział [0, 1]. Wybieramy z tego przedziału w sposób losowy punkt x. Zakładamy, że prawdopodobieństwa wylosowania dowolnego punktu są równe. Jakie jest prawdopodobieństwo, że x [0, 1 3 ]? Rozwiązanie: Ω = [0, 1], A = [0, 1 3 ], 1 P(A) = P(x [0, 1 długość(a) 3 ]) = długość(ω) = 3 1 = 1 3. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 12/30

33 Przykład Dany jest przedział [0, 1]. Wybieramy z tego przedziału w sposób losowy punkt x. Zakładamy, że prawdopodobieństwa wylosowania dowolnego punktu są równe. Jakie jest prawdopodobieństwo, że x [0, 1 3 ]? Rozwiązanie: Ω = [0, 1], A = [0, 1 3 ], 1 P(A) = P(x [0, 1 długość(a) 3 ]) = długość(ω) = 3 1 = 1 3. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 12/30

34 Zadanie Wewnątrz koła o promieniu 5 wybrano losowo jeden punkt. Oblicz prawdopodobieństwo, że znajduje się on w odległości mniejszej niż 2 od środka koła. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 13/30

35 Zadanie W koło wpisany jest kwadrat. Oblicz prawdopodobieństwo, że punkt rzucony losowo na koło znajdzie się wewnątrz kwadratu. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 14/30

36 Zadanie W koło wpisany jest kwadrat. Na koło rzucono losowo i niezależnie od siebie dwa punkty. Jakie jest prawdopodobieństwo, że pierwszy z nich znajdzie się w kwadracie, a drugi w górnym odcinku koła. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 15/30

37 Zadanie Pan Kowalski przychodzi codziennie na przystanek w losowo wybranym momencie pomiędzy godziną 9, a 11. Autobus przyjeżdża o każdej pełnej godzinie. Tramwaj przyjeżdża 20 minut po każdej pełnej godzinie. Pan Kowalski zawsze wsiada w to co przyjedzie pierwsze. Jakie jest prawdopodobieństwo, że pojedzie tramwajem? Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 16/30

38 Zadanie Jaś i Małgosia umówili się, że spotkają się w parku pomiędzy godziną 17, a 18. Osoba, która przyjdzie pierwsza ma poczekać na drugą najwyżej 15 minut. Jakie jest prawdopodobieństwo, że Jaś i Małgosia spotkają się? Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 17/30

39 Zadanie Na płaszczyźnie poprowadzono dwie rodziny prostych równoległych, które dzielą ją na prostokąty o bokach 5 cm i 8 cm. Na płaszczyznę rzucono losowo monetę o średnicy 2 cm. Jakie jest prawdopodobieństwo, że nie przetnie ona żadnej z prostych? Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 18/30

40 Zadanie Tarcza strzelecka o promieniu 10 cm podzielona jest na trzy koncentryczne pierścienie o promieniach 2 cm, 6 cm i 10 cm, za trafienie w które zdobywa się odpowiednio 1,2 i 3 punkty. Zakładamy, że strzelec zawsze trafia w tarczę i że robi to w sposób losowy. Jakie jest prawdopodobieństwo zdobycia dwóch punktów w jednym strzale? Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 19/30

41 Igła Buffona Problem. Wyobraźmy sobie planszę z zaznaczonymi na niej równoległymi liniami odległymi od siebie o d. Na planszę upuszczamy igłę o długości l (zakładamy, że l d). Jakie jest prawdopodobieństwo, że igła przetnie jedną z linii? d l Problem ten sformułował w XVIII wieku francuski filozof, przyrodnik i matematyk Georges-Louis Leclerc, Comte de Buffon ( ). Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 20/30

42 Igła Buffona Rozwiązanie. Niech x oznacza odległość środka igły od najbliższej linii, a α kąt ostry między igłą a linią. d l/2 α y x Zauważmy, że x [0, d/2], α [0, π/2] (tzn. α [0, 90 ]), y = l 2 sin(α), igła przetnie linię gdy x y tzn. gdy x l 2 sin(α). Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 21/30

43 Igła Buffona Rozwiązanie. Niech x oznacza odległość środka igły od najbliższej linii, a α kąt ostry między igłą a linią. d l/2 α y x Zauważmy, że x [0, d/2], α [0, π/2] (tzn. α [0, 90 ]), y = l 2 sin(α), igła przetnie linię gdy x y tzn. gdy x l 2 sin(α). Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 21/30

44 Igła Buffona Rozwiązanie. Niech x oznacza odległość środka igły od najbliższej linii, a α kąt ostry między igłą a linią. d l/2 α y x Zauważmy, że x [0, d/2], α [0, π/2] (tzn. α [0, 90 ]), y = l 2 sin(α), igła przetnie linię gdy x y tzn. gdy x l 2 sin(α). Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 21/30

45 Igła Buffona Rozwiązanie. Niech x oznacza odległość środka igły od najbliższej linii, a α kąt ostry między igłą a linią. d l/2 α y x Zauważmy, że x [0, d/2], α [0, π/2] (tzn. α [0, 90 ]), y = l 2 sin(α), igła przetnie linię gdy x y tzn. gdy x l 2 sin(α). Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 21/30

46 Igła Buffona Z poprzednich rozważań wynika, że odpowiednikiem losowego rzutu igły na planszę jest losowy wybór punktu z prostokąta o [0, π/2] [0, d/2]. Jeżeli wylosowany punkt leży pod krzywą x = l/2 sin(α), oznacza to, że igła przecięła linię, a jeżeli nad krzywą to, że jej nie przecięła. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 22/30

47 Igła Buffona Ponieważ wylosowanie dowolnego punktu z prostokąta [0, π/2] [0, d/2] jest jednakowo prawdopodobne, więc P({igła przetnie linię}) = Pole całego prostokąta wynosi oczywiście pole pod krzywą x = l/2 sin(α) pole prostokąta [0, π/2] [0, d/2] π 2 d 2 = πd 4. A jak obliczyć pole pod krzywą x = l/2 sin(α)? Dla znających rachunek całkowy jest oczywiste, że pole to wynosi: Stąd π/2 0 l 2 sin α dα = l 2 ( cos(π/2) ( cos(0))) = l 2 P({igła przetnie linię}) = l/2 (πd)/4 = 2l πd. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 23/30

48 Igła Buffona Ponieważ wylosowanie dowolnego punktu z prostokąta [0, π/2] [0, d/2] jest jednakowo prawdopodobne, więc P({igła przetnie linię}) = Pole całego prostokąta wynosi oczywiście pole pod krzywą x = l/2 sin(α) pole prostokąta [0, π/2] [0, d/2] π 2 d 2 = πd 4. A jak obliczyć pole pod krzywą x = l/2 sin(α)? Dla znających rachunek całkowy jest oczywiste, że pole to wynosi: Stąd π/2 0 l 2 sin α dα = l 2 ( cos(π/2) ( cos(0))) = l 2 P({igła przetnie linię}) = l/2 (πd)/4 = 2l πd. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 23/30

49 Igła Buffona Ponieważ wylosowanie dowolnego punktu z prostokąta [0, π/2] [0, d/2] jest jednakowo prawdopodobne, więc P({igła przetnie linię}) = Pole całego prostokąta wynosi oczywiście pole pod krzywą x = l/2 sin(α) pole prostokąta [0, π/2] [0, d/2] π 2 d 2 = πd 4. A jak obliczyć pole pod krzywą x = l/2 sin(α)? Dla znających rachunek całkowy jest oczywiste, że pole to wynosi: Stąd π/2 0 l 2 sin α dα = l 2 ( cos(π/2) ( cos(0))) = l 2 P({igła przetnie linię}) = l/2 (πd)/4 = 2l πd. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 23/30

50 Igła Buffona Ponieważ wylosowanie dowolnego punktu z prostokąta [0, π/2] [0, d/2] jest jednakowo prawdopodobne, więc P({igła przetnie linię}) = Pole całego prostokąta wynosi oczywiście pole pod krzywą x = l/2 sin(α) pole prostokąta [0, π/2] [0, d/2] π 2 d 2 = πd 4. A jak obliczyć pole pod krzywą x = l/2 sin(α)? Dla znających rachunek całkowy jest oczywiste, że pole to wynosi: Stąd π/2 0 l 2 sin α dα = l 2 ( cos(π/2) ( cos(0))) = l 2 P({igła przetnie linię}) = l/2 (πd)/4 = 2l πd. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 23/30

51 Jak obliczyć pole nie znając rachunku całkowego? Problem. Dana jest funkcja f : [a, b] R +. Jak obliczyć pole figury ograniczonej osią OX prostymi x = a i x = b oraz krzywą y = f (x)? Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 24/30

52 Obliczanie pól metodą Monte Carlo Wybieramy losowo N punktów z prostokąta [a, b] [0, Max] (N duże). r N liczba punktów, które znalazły się wewnątrz obszaru S, tzn. pod wykresem funkcji f (na rysunku zostały oznaczone kolorem czerwonym). Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 25/30

53 Obliczanie pól metodą Monte Carlo r NN określa jaka część punktów trafiła w obszar S. Ponieważ punkty są rozłożone równomiernie na całym prostokącie, więc możemy rozsądnie przyjąć, że obszar S stanowi r N N część obszaru całego prostokąta tzn. Stąd Pole(S) Pole([a, b] [0, Max]) r N N. Pole(S) Pole([a, b] [0, Max]) rn N = Max (b a) rn N Im więcej punktów wylosowaliśmy tym przybliżenie to powinno być dokładniejsze. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 26/30

54 Obliczanie pól metodą Monte Carlo r NN określa jaka część punktów trafiła w obszar S. Ponieważ punkty są rozłożone równomiernie na całym prostokącie, więc możemy rozsądnie przyjąć, że obszar S stanowi r N N część obszaru całego prostokąta tzn. Stąd Pole(S) Pole([a, b] [0, Max]) r N N. Pole(S) Pole([a, b] [0, Max]) rn N = Max (b a) rn N Im więcej punktów wylosowaliśmy tym przybliżenie to powinno być dokładniejsze. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 26/30

55 Obliczanie pól metodą Monte Carlo r NN określa jaka część punktów trafiła w obszar S. Ponieważ punkty są rozłożone równomiernie na całym prostokącie, więc możemy rozsądnie przyjąć, że obszar S stanowi r N N część obszaru całego prostokąta tzn. Stąd Pole(S) Pole([a, b] [0, Max]) r N N. Pole(S) Pole([a, b] [0, Max]) rn N = Max (b a) rn N Im więcej punktów wylosowaliśmy tym przybliżenie to powinno być dokładniejsze. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 26/30

56 Igła Buffona Niech P oznacza prawdopodobieństwo, że igła przetnie jakąś linię. Wiemy już, że P = 2l πd. Przekształcając ten wzór otrzymujemy, że π = 2l Pd. Wynika stąd, że znając długość igły, odległość między liniami i prawdopodobieństwo P możemy wyznaczyć liczbę π. Powtórzmy N razy eksperyment polegający na rzucie igły na planszę. Załóżmy, że igła przecięła którąś z linii r N razy (0 r N N). Wydaje się naturalnym przyjąć, że Stąd P r N N π 2lN r N d. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 27/30

57 Igła Buffona Niech P oznacza prawdopodobieństwo, że igła przetnie jakąś linię. Wiemy już, że P = 2l πd. Przekształcając ten wzór otrzymujemy, że π = 2l Pd. Wynika stąd, że znając długość igły, odległość między liniami i prawdopodobieństwo P możemy wyznaczyć liczbę π. Powtórzmy N razy eksperyment polegający na rzucie igły na planszę. Załóżmy, że igła przecięła którąś z linii r N razy (0 r N N). Wydaje się naturalnym przyjąć, że Stąd P r N N π 2lN r N d. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 27/30

58 Igła Buffona Niech P oznacza prawdopodobieństwo, że igła przetnie jakąś linię. Wiemy już, że P = 2l πd. Przekształcając ten wzór otrzymujemy, że π = 2l Pd. Wynika stąd, że znając długość igły, odległość między liniami i prawdopodobieństwo P możemy wyznaczyć liczbę π. Powtórzmy N razy eksperyment polegający na rzucie igły na planszę. Załóżmy, że igła przecięła którąś z linii r N razy (0 r N N). Wydaje się naturalnym przyjąć, że Stąd P r N N π 2lN r N d. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 27/30

59 Igła Buffona Niech P oznacza prawdopodobieństwo, że igła przetnie jakąś linię. Wiemy już, że P = 2l πd. Przekształcając ten wzór otrzymujemy, że π = 2l Pd. Wynika stąd, że znając długość igły, odległość między liniami i prawdopodobieństwo P możemy wyznaczyć liczbę π. Powtórzmy N razy eksperyment polegający na rzucie igły na planszę. Załóżmy, że igła przecięła którąś z linii r N razy (0 r N N). Wydaje się naturalnym przyjąć, że Stąd P r N N π 2lN r N d. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 27/30

60 Igła Buffona Niech P oznacza prawdopodobieństwo, że igła przetnie jakąś linię. Wiemy już, że P = 2l πd. Przekształcając ten wzór otrzymujemy, że π = 2l Pd. Wynika stąd, że znając długość igły, odległość między liniami i prawdopodobieństwo P możemy wyznaczyć liczbę π. Powtórzmy N razy eksperyment polegający na rzucie igły na planszę. Załóżmy, że igła przecięła którąś z linii r N razy (0 r N N). Wydaje się naturalnym przyjąć, że Stąd P r N N π 2lN r N d. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 27/30

61 Igła Buffona Wynika stąd, że przy odpowiednio dużej liczbie rzutów igłą liczba 2lN r N d będzie dobrym przybliżeniem liczby π. Im większa liczba rzutów tym przybliżenie powinno być lepsze. W 1901 roku włoski matematyk Mario Lazzarini rzucił igłą 3408 razy i otrzymał bardzo dokładne przybliżenie liczby π π 355 3, Błąd występuje dopiero na 7 miejscu po przecinku. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 28/30

62 Igła Buffona Wynika stąd, że przy odpowiednio dużej liczbie rzutów igłą liczba 2lN r N d będzie dobrym przybliżeniem liczby π. Im większa liczba rzutów tym przybliżenie powinno być lepsze. W 1901 roku włoski matematyk Mario Lazzarini rzucił igłą 3408 razy i otrzymał bardzo dokładne przybliżenie liczby π π 355 3, Błąd występuje dopiero na 7 miejscu po przecinku. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 28/30

63 Metody Monte Carlo historia Metodami Monte Carlo nazywamy klasę metod, które do numerycznego rozwiązywania złożonych zagadnień wykorzystują komputerowe generowanie liczb pseudolosowych odpowiadających możliwym parametrom wejściowym badanego układu (opisanego modelem matematycznym). Metody Monte-Carlo stosowane są w różnych dziedzinach np. przy projektowaniu eksperymentów fizycznych (np. doświadczeń z cząstkami elementarnymi), modelowaniu procesów fizycznych (np. powstawania struktur we wszechświecie itp.), wyznaczania cen różnych instrumentów finansowych. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 29/30

64 Metody Monte Carlo historia Idee tej metody przedstawili w latach 40-tych XX wieku naukowcy pracujący w laboratorium w Los Alamos przy projekcie Manhattan Stanisław Ulam, John von Neumann, Enrico Fermi i Nicholas Metropolis. Nazwa pochodzi od słynnego kasyna w Monte Carlo, w którym podobno grywał często wujek Stanisława Ulama. Wielokrotne powtarzanie tych samych eksperymentów losowych można porównać do regularnego uczestnictwa w grach hazardowych. Takie symulacje losowe przeprowadzane były już wcześniej, ale służyły raczej do weryfikacji znanych rezultatów (uzyskanych innymi metodami), a nie do właściwego rozwiązywania problemów. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne 30/30

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rozdział 2.3: Przykłady przestrzeni probabilistycznych. Katarzyna Rybarczyk-Krzywdzińska Przestrzeń probabilistyczna Przestrzeń

Bardziej szczegółowo

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara

Bardziej szczegółowo

Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1 KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

dr Jarosław Kotowicz 29 października Zadania z wykładu 1

dr Jarosław Kotowicz 29 października Zadania z wykładu 1 Rachunek prawdopodobieństwa - ćwiczenia czwarte Schematy rachunku prawdopodobieństwa. Prawdopodobieństwo geometryczne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 29 października 20 Spis

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

( 2) 6 III EDYCJA MIĘDZYSZKOLNEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW SZKÓŁ PONADGIMNAZJALNYCH O PROFILU ZAWODOWYM I TECHNICZNYM.

( 2) 6 III EDYCJA MIĘDZYSZKOLNEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW SZKÓŁ PONADGIMNAZJALNYCH O PROFILU ZAWODOWYM I TECHNICZNYM. GRUPA WIEKOWA I część pierwsza Na rozwiązanie zadań masz godzinę lekcyjną Za kaŝde zadanie moŝesz zdobyć 1 punkt Wyznacz iloraz NWW (35,14) NWD(16,38) Zamień ułamek 0,(27) na ułamek zwykły Płaszcz z ceny

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Nie do końca zaawansowane elementy programowania w pakiecie R. Tomasz Suchocki

Nie do końca zaawansowane elementy programowania w pakiecie R. Tomasz Suchocki Nie do końca zaawansowane elementy programowania w pakiecie R Tomasz Suchocki Plan wykładu Metody Monte Carlo Jak bardzo można przybliżyć liczbę π? Całkowanie numeryczne R w Linuxie Tinn-R Metody Monte

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej liczby

Bardziej szczegółowo

= A. A - liczba elementów zbioru A. Lucjan Kowalski

= A. A - liczba elementów zbioru A. Lucjan Kowalski Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi

Bardziej szczegółowo

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,

Bardziej szczegółowo

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy 2016/2017 Potęgowanie Dla dowolnej liczby dodatniej

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

Matematyka. dla. Egzamin. Czas pracy będzie

Matematyka. dla. Egzamin. Czas pracy będzie Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom podstawowy Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142395 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Które z podanych

Bardziej szczegółowo

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Definicje prawdopodobieństwa 1.1 Częstościowa definicja prawdopodobieństwa 1.1.1 Przykład 1.1.2 Rozwiązanie: 1.1.3 Inne rozwiązanie: 1.1.4 Jeszcze inne

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która

Bardziej szczegółowo

Ilustracja metody MONTE CARLO. obliczania całek podwójnych

Ilustracja metody MONTE CARLO. obliczania całek podwójnych Ilustracja metody MONTE CARLO obliczania całek podwójnych Często jest tak, iż wiemy, że istnieje całka oznaczona z funkcji f jednak nie potrafimy jej analitycznie policzyć. Konieczne jest wtedy zastosowanie

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5

Bardziej szczegółowo

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 4 czerwca 2019

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.

Bardziej szczegółowo

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D. Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) W czasie trwania egzaminu zdający może korzystać z

Bardziej szczegółowo

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3 Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut MATEMATYKA LUTY 04 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane 4 odpowiedzi: A, B,

Bardziej szczegółowo

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.

Bardziej szczegółowo

METODY PROBABILISTYCZNE I STATYSTYKA

METODY PROBABILISTYCZNE I STATYSTYKA Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Pierwiastek równania

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 6.10.2012 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0,1] oraz

Bardziej szczegółowo

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp. Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 3 KWIETNIA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 7 48 jest równa

Bardziej szczegółowo

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 162005 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Na rysunku przedstawiono

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM ROZSZERZONY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 18). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA System rzymski. Powtórzenie i utrwalenie umiejętności z zakresu podstawy

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 7 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( 5 Liczba

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 80866 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przekrój osiowy

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.0. Wstęp Katarzyna Rybarczyk-Krzywdzińska Wstęp Dlaczego prawdopodobieństwo klasyczne nie wystarcza? Jak opisać grę w ruletkę,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 11 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej dodatniej

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 22 KWIETNIA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 2 8 7 3 6 7

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015

LUBELSKA PRÓBA PRZED MATURĄ 2015 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora. Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom rozszerzony Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo