Rachunek prawdopodobieństwa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rachunek prawdopodobieństwa"

Transkrypt

1 Rachunek prawdopodobieństwa Tomasz Górecki Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza

2 Wciągu ćwiczeń zostaną przeprowadzone 2 kolokwia. Na każdym z nichbędziedozdobycia25punktów(5zadańpo5punktówkażde). Dodatkowo przewidziane jest dodatkowe zadanie(trudniejsze), za którebędziemożnauzyskaćjedynie0lub5punktów.od25punktówbędzie zaliczenie ćwiczeń. Osoby, które uzyskają poniżej 30%(poniżej 15 punktów) automatycznie nie uzyskują zaliczenia z przedmiotu. Pozostali(15 24 punktów) mają prawo do poprawki z ćwiczeń. W ciągu wykładów odbędą się 2 egzaminy połówkowe z części teoretycznej. Na każdymdozdobyciabędzie25punktów.składałsięonbędziez5pytań,z czego trzy będą dotyczyły podania definicji, twierdzeń i własności(wraz z przykładami, które nie były omówione na wykładzie). Jedno będzie polegało na przeprowadzeniu dowodu, który był omawiany na wykładzie. Natomiast ostatnie pytanie będzie dotyczyło zastosowania zdobytej wiedzy teoretycznej do problemu jedynie związanego z tematyką wykładu, ale dokładnie nie omówionego. Od 25 punktów egzamin będzie uważany za zaliczony. Ocena końcowa z egzaminu będzie wystawiana na bazie sumy uzyskanych punktów z wykładu oraz ćwiczeń(każda część musi być zaliczona). W sesji egzaminacyjnej odbędzie się jedynie egzamin poprawkowy z części teoretycznej.

3 Billingsley, P.(1987). Prawdopodobieństwo i miara, PWN. Bobrowski, D.(2002). Ciągi losowe, Wydawnictwo UAM. Feller, W.(2006). do rachunku prawdopodobieństwa, t. I, PWN. Feller, W.(2009). do rachunku prawdopodobieństwa, t. II, PWN. Gerstenkorn, T.& Śródka, T.(1973). Kombinatoryka i rachunek prawdopodobieństwa, PWN. Jakubowski, J.& Sztencel, R.(2001). do teorii prawdopodbieństwa, Script.

4 Krzyśko, M.(2000). Wykłady z teorii prawdopodobieństwa, WNT. Kubik, L.(1976). Rachunek prawdopodobieństwa, PWN. Majsnerowska, M.(2009). Wprowadzenie do rachunku prawdopodobieństwa, BTC. Misiewicz, J.(2005). Wykłady z rachunku prawdopodobieństwa z zadaniami, Script. Palka, Z. Ruciński, A.(1998). Wykłady z kombinatoryki, WNT. Ross, S.(2010). A First Course in Probability, Pearson.

5 Rachunek prawdopodobieństwa zajmuje się zdarzeniami losowymi, o których nie możemy z całkowitą pewnością powiedzieć, czy się wydarzą, czy nie. Ta nieprzewidywalność zdarzenia losowego może wynikać bądź z tego, że nasza informacja o jego charakterze i przyczynach jest niewystarczająca, bądź z samej natury zdarzenia. Charakteryzują się one brakiem deterministycznej regularności, ale za to wykazują pewną regularność statystyczną. W eksperymencie losowym można wyróżnić mechanizm losujący oraz zbiór możliwych wyników. Matematycznym modelem eksperymentu losowego jest przestrzeń probabilistyczna. Prawdopodobieństwo jest pojęciem, którego nie można stosować do zjawisk niepowtarzalnych, jednostkowych. Jakie jest prawdopodobieństwo, że na pewnej planecie poza Ziemią powstanie życie? To pytanie nie ma sensu, musielibyśmy mieć materiał statystyczny, wiele planet, na których powstało życie, i takich, na których się ono nie pojawiło.

6 Potocznie prawdopodobieństwo to pojęcie określające nasze oczekiwania co do rezultatu danego zdarzenia, którego wynik zależy wyłącznie od przypadku. Jeśli jakieś mające nastąpić zdarzenie(np. rzut kostką) może przyjąć kilka rezultatów(liczba oczek), to jeden z rezultatów(liczba oczek większa od 1) możemy opisać jako bardziej prawdopodobny od drugiego(liczba oczek równa 1), jeżeli na podstawie pewnej przesłanki(np. poprzednich doświadczeń) nasze oczekiwania co do wystąpienia rezultatu A są większe niż co do wystąpienia rezultatu B. Definicja prawdopodobieństwa w oparciu o subiektywne odczucia jest oczywiście zupełnie nieprzydatna dla celów praktycznych.

7 Pierwsze pytanie probabilistyczne opublikowano w 1477 roku w jednym z komentarzy do Boskiej komedii Dantego. Za pierwszą pracę naukową z tej dziedziny uważana jest książka Cardano Księga gier losowych(łac. Liber de ludo aleae), odnalezionapośmierciautorawroku1576,awydanawroku1663. Dalszy rozwój teorii rachunku prawdopodobieństwa nastąpił w drugiej połowie XVII wieku dzięki pracom Pascala i Fermata (w roku 1654 nawiązali korespondencję na temat tzw. problemu podziału nagrody), którzy pierwsi uzasadnili matematycznie prawidłowości występujące w grach hazardowych. Sformułowane przez nich wstępne założenia i wnioski rozwijało wielu wybitnych teoretyków rachunku prawdopodobieństwa, przede wszystkim Bernoulli, który u schyłku XVII wieku pierwszy sformułował i uzasadnił tzw. prawo wielkich liczb.

8 Już w 1711 de Moivre wprowadził prawdopodobieństwo klasyczne jako odwrotność liczby wszystkich możliwych wyników przy założeniu, że są one równoprawdopodobne. Ta definicja spotkała się natychmiast z zarzutem, że opiera się na błędnym kole. Inną próbę sformułowania definicji prawdopodobieństwa podjął w 1919 roku von Mises. Zaproponował, żeby zdefiniować prawdopodobieństwo jako granicę ciągu częstości n A P(A) = lim n n, gdzie n A toliczbarezultatówsprzyjającychzdarzeniu Apo n próbach. Definicja ta nie mówi jednak nic o warunkach istnienia granicy i dlatego nie spełnia wymogów formalnych. Poza tym dokładne określenie wartości prawdopodobieństwa wymaga przeprowadzenia nieskończonej liczby doświadczeń, co w praktyce jest niemożliwe.

9 Nową definicję prawdopodobieństwa podał w roku 1933 Kołmogorow, który korzystając z teorii miary zaksjomatyzował teorię prawdopodobieństwa. W tym nowoczesnym ujęciu, prawdopodobieństwo, podobnie jak punkt w geometrii, jest obiektem niedefiniowalnym, który spełnia tylko pewne warunki. Rachunek prawdopodobieństwa bada własności miary probabilistycznej.

10 Twierdzenie(Prawo mnożenia) Niech A 1,A 2,...,A n będąskończonymizbiorami.liczbaciągów (a 1,a 2,...,a n ),gdzie a i A i, i =1,2,...,n,wynosi A 1 A 2... A n Twierdzenie(Ogólne prawo mnożenia) Jeśli pewna procedura może być rozbita na n kolejnych kroków, z r 1 wynikamiwpierwszymkroku, r 2 wynikamiwdrugimkroku,..., r n wynikamiwn-tymkroku,towcałejprocedurzemamy r 1 r 2... r n łącznychwyników(uporządkowaneciągiwyników cząstkowych).

11 Twierdzenie(Prawo mnożenia) Niech A 1,A 2,...,A n będąskończonymizbiorami.liczbaciągów (a 1,a 2,...,a n ),gdzie a i A i, i =1,2,...,n,wynosi A 1 A 2... A n Twierdzenie(Ogólne prawo mnożenia) Jeśli pewna procedura może być rozbita na n kolejnych kroków, z r 1 wynikamiwpierwszymkroku, r 2 wynikamiwdrugimkroku,..., r n wynikamiwn-tymkroku,towcałejprocedurzemamy r 1 r 2... r n łącznychwyników(uporządkowaneciągiwyników cząstkowych).

12 Przykład(PM1) Gra Mastermind polega na odgadnięciu tajnego kodu zbudowanego z sześciu kolorów na czterech pozycjach, dzięki informacjom uzyskiwanym w kolejnych krokach. Ile kodów można ułożyć mając do dyspozycji cztery miejsca i sześć kolorów? Przykład(PM2) Ilejest3-literowychciągówzbudowanychliter:a,b,c,d,e,f,w której żadna litera się nie powtarza? Ile spośród tych ciągów zawiera literę e? Ile 3-literowych ciągów złożonych z tych liter, w których litery mogą się powtarzać, zawiera literę e?

13 Przykład(PM1) Gra Mastermind polega na odgadnięciu tajnego kodu zbudowanego z sześciu kolorów na czterech pozycjach, dzięki informacjom uzyskiwanym w kolejnych krokach. Ile kodów można ułożyć mając do dyspozycji cztery miejsca i sześć kolorów? Przykład(PM2) Ilejest3-literowychciągówzbudowanychliter:a,b,c,d,e,f,w której żadna litera się nie powtarza? Ile spośród tych ciągów zawiera literę e? Ile 3-literowych ciągów złożonych z tych liter, w których litery mogą się powtarzać, zawiera literę e?

14 Twierdzenie(Prawo dodawania) Niech A 1,A 2,...,A n będąskończonymizbioramiparami rozłącznymi,tzn. A i A j = dla i j,to n A i = i=1 n A i i=1 Twierdzenie(Zasada bijekcji) Niech A i B będą skończonymi zbiorami. Jeśli istnieje bijekcja f : A B,to A = B.

15 Twierdzenie(Prawo dodawania) Niech A 1,A 2,...,A n będąskończonymizbioramiparami rozłącznymi,tzn. A i A j = dla i j,to n A i = i=1 n A i i=1 Twierdzenie(Zasada bijekcji) Niech A i B będą skończonymi zbiorami. Jeśli istnieje bijekcja f : A B,to A = B.

16 Przykład(PD) Ile dwucyfrowych liczb ma parzysty iloczyn cyfr? Przykład(ZB) Ile podzbiorów ma n-elementowy zbiór?

17 Przykład(PD) Ile dwucyfrowych liczb ma parzysty iloczyn cyfr? Przykład(ZB) Ile podzbiorów ma n-elementowy zbiór?

18 Twierdzenie(Zasada szufladkowa Dirichleta) Niech A, B będą dowolnymi skończonymi zbiorami, przy czym A > B.Wówczasdladowolnejfunkcji f : A B,istnieją elementy a 1,a 2 A, a 1 a 2,dlaktórych f(a 1 ) = f(a 2 ). Jeśli pewną liczbę przedmiotów włożymy do szuflad, a szuflad jest mniej niż przedmiotów, które wkładamy, to w pewnej szufladzie znajdą się co najmniej dwa przedmioty.

19 Przykład(ZSD1) Udowodnić, że w dowolnym zbiorze dziesięciu różnych dwucyfrowych liczb naturalnych istnieją dwa rozłączne podzbiory takie, że sumy liczb obu podzbiorów są równe. Przykład(ZSD2) Niech n będzie ustaloną liczbą naturalną. Spośród liczb 1,2,...,2nwybrano n+1liczb.udowodnić,żewśródwybranych liczb istnieje taka, która jest dzielnikiem co najmniej jednej z pozostałych n liczb.

20 Przykład(ZSD1) Udowodnić, że w dowolnym zbiorze dziesięciu różnych dwucyfrowych liczb naturalnych istnieją dwa rozłączne podzbiory takie, że sumy liczb obu podzbiorów są równe. Przykład(ZSD2) Niech n będzie ustaloną liczbą naturalną. Spośród liczb 1,2,...,2nwybrano n+1liczb.udowodnić,żewśródwybranych liczb istnieje taka, która jest dzielnikiem co najmniej jednej z pozostałych n liczb.

21 Twierdzenie(Zasada włączeń i wyłączeń) Dladowolnychzbiorów A 1,A 2,...,A n n A i = A i i=1 + 1 i n 1 i 1 <i 2 <i 3 n +( 1) k 1 1 i 1 <i 2 n A i1 A i2 + A i1 A i2 A i i 1 <i 2 <...<i k n +( 1) n 1 A 1 A 2... A n A i1 A i2... A ik Zasada włączeń i wyłączeń pozostaje prawdziwa, gdy nasze rozważania przeniesiemy na dowolną przestrzeń z miarą, w szczególności z miarą probabilistyczną.

22 Lemat n ( ) n ( 1) k =0, n 1 k k=0

23 Przykład(ZWW1) Spośród 100 studentów pięćdziesięciu uczy się francuskiego, czterdziestu łaciny, a dwudziestu obu tych języków. Ilu z nich nie uczy się ani francuskiego, ani łaciny? Przykład(ZWW2) W trzydziestoosobowej klasie dwudziestu uczniów uczy się łaciny, czternastu greki, a dziesięciu hebrajskiego. Jeśli żadne dziecko nie uczy się wszystkich trzech języków, a ośmioro nie uczy się żadnego, to ilu uczy się greki i hebrajskiego?

24 Przykład(ZWW1) Spośród 100 studentów pięćdziesięciu uczy się francuskiego, czterdziestu łaciny, a dwudziestu obu tych języków. Ilu z nich nie uczy się ani francuskiego, ani łaciny? Przykład(ZWW2) W trzydziestoosobowej klasie dwudziestu uczniów uczy się łaciny, czternastu greki, a dziesięciu hebrajskiego. Jeśli żadne dziecko nie uczy się wszystkich trzech języków, a ośmioro nie uczy się żadnego, to ilu uczy się greki i hebrajskiego?

25 Przed przystąpieniem do losowania trzeba odpowiedzieć sobie na dwa pytania: I. Czy istotna jest kolejność wylosowanych elementów(ciągi czy zbiory)? II. Czy wylosowane elementy mogą się powtarzać? W zależności od odpowiedzi na te pytania wyróżniamy cztery schematy losowania.

26 Definicja(Wariacje z powtórzeniami(i- TAK, II- TAK)) Wariacją z powtórzeniami k-wyrazową zbioru n-elementowego A nazywa się każdy k-wyrazowy ciąg elementów tego zbioru. V k n = n k Definicja(Wariacjebezpowtórzeń(I-TAK,II-NIE)) Wariacją bez powtórzeń k-wyrazową zbioru n-elementowego A (1 k n)nazywasiękażdy k-wyrazowyciąg króżnych elementów tego zbioru. V k n = n! (n k)!

27 Definicja(Wariacje z powtórzeniami(i- TAK, II- TAK)) Wariacją z powtórzeniami k-wyrazową zbioru n-elementowego A nazywa się każdy k-wyrazowy ciąg elementów tego zbioru. V k n = n k Definicja(Wariacjebezpowtórzeń(I-TAK,II-NIE)) Wariacją bez powtórzeń k-wyrazową zbioru n-elementowego A (1 k n)nazywasiękażdy k-wyrazowyciąg króżnych elementów tego zbioru. V k n = n! (n k)!

28 Definicja(Permutacje bez powtórzeń) Permutacją bez powtórzeń zbioru n-elementowego, nazywamy każdy n-wyrazowy ciąg utworzony z wszystkich elementów tego zbioru(szczególny przypadek wariacji bez powtórzeń dla k = n). P n = n! Definicja(Permutacje z powtórzeniami) Permutacją n-elementową z powtórzeniami zbioru X = {x 1,x 2,x 3,...,x k },wktórej x 1 występuje n 1 razy, x 2 występuje n 2 razyitd.oraz n 1 +n n k = nnazywamykażdy n-wyrazowyciąg,wktórym x i występuje n i razydla i =1,2,...,k. P n 1,n 2,...,n k n = n! n 1! n 2!... n k!

29 Definicja(Permutacje bez powtórzeń) Permutacją bez powtórzeń zbioru n-elementowego, nazywamy każdy n-wyrazowy ciąg utworzony z wszystkich elementów tego zbioru(szczególny przypadek wariacji bez powtórzeń dla k = n). P n = n! Definicja(Permutacje z powtórzeniami) Permutacją n-elementową z powtórzeniami zbioru X = {x 1,x 2,x 3,...,x k },wktórej x 1 występuje n 1 razy, x 2 występuje n 2 razyitd.oraz n 1 +n n k = nnazywamykażdy n-wyrazowyciąg,wktórym x i występuje n i razydla i =1,2,...,k. P n 1,n 2,...,n k n = n! n 1! n 2!... n k!

30 Definicja(Kombinacje bez powtórzeń(i- NIE, II- NIE)) Kombinacją(bez powtórzeń) k-elementową zbioru n-elementowego Anazywasiękażdy k-elementowypodzbiórzbioru A(0 k n). ( ) n Cn k = k Definicja(Kombinacje z powtórzeniami(i- NIE, II- TAK)) k-elementową kombinacją z powtórzeniami zbioru n-elementowego A nazywa się każdy k-elementowy multizbiór(pseudozbiór, kolekcja, zbiór z powtórzeniami) składający się z elementów zbioru A. ( ) n+k 1 C n k = k

31 Definicja(Kombinacje bez powtórzeń(i- NIE, II- NIE)) Kombinacją(bez powtórzeń) k-elementową zbioru n-elementowego Anazywasiękażdy k-elementowypodzbiórzbioru A(0 k n). ( ) n Cn k = k Definicja(Kombinacje z powtórzeniami(i- NIE, II- TAK)) k-elementową kombinacją z powtórzeniami zbioru n-elementowego A nazywa się każdy k-elementowy multizbiór(pseudozbiór, kolekcja, zbiór z powtórzeniami) składający się z elementów zbioru A. ( ) n+k 1 C n k = k

32 Uwaga Kombinacje z powtórzeniami nie przydają się raczej w rachunku prawdopodobieństwa. Służą bowiem do przeliczania obiektów nieoznaczonych(nieistotna kolejność), jak ma to miejsce np. przy rzucie dwoma identycznymi kośćmi do gry. Możliwych rezultatów jest 21, aczkolwiek nie wszystkie są jednakowo prawdopodobne. Stosująctenmodelnależyprzypisaćwynikomtypu {i,i} prawdopodobieństwo 1/36 a pozostałym 1/18. Prościej jest zatem od razu rozważać rzut dwoma różnymi kośćmi(kolejność istotna) z równymi prawdopodobieństwami.

33 Twierdzenie(Wzór Newtona, twierdzenie dwumianowe) Dla dowolnych liczb rzeczywistych a i b oraz dla dowolnej liczby naturalnej n (a+b) n = n k=0 ( ) n a k b n k, k gdzie ( n) k = n! k!(n k)! jestwspółczynnikiemdwumianowym.

34 Twierdzenie(Twierdzenie wielomianowe) Dladowolnychliczbrzeczywistych x 1,x 2,...,x k orazdladowolnej liczby naturalnej n (x 1 +x x k ) n = = n 1 +n n k =n ( n n 1,n 2,...,n k gdzie ( n ) n 1,n 2,...,n k = n! n 1! n 2! n k! jestwspółczynnikiem wielomianowym. ) x n 1 1 xn 2 2 nn k k, Suma jest brana po wszystkich kombinacjach nieujemnych, całkowitychliczb n 1,n 2,...,n k,któresumująsiędo n.

35 Przykład(SW1) Na ile sposobów można otrzymać 13 kart w rozdaniu brydżowym? A ile jest różnych rozdań brydżowych? Przykład(SW2) Grupa składa się z 15 małżeństw. Na ile sposobów można spośród nich wybrać czteroosobową delegację, jeśli w skład delegacji nie może wchodzić żadne małżeństwo?

36 Przykład(SW1) Na ile sposobów można otrzymać 13 kart w rozdaniu brydżowym? A ile jest różnych rozdań brydżowych? Przykład(SW2) Grupa składa się z 15 małżeństw. Na ile sposobów można spośród nich wybrać czteroosobową delegację, jeśli w skład delegacji nie może wchodzić żadne małżeństwo?

37 Przykład(SW3) Nailesposobówmożnapołączyćwpary2nosób? Przykład(SW4) Zebrało się n szachistów, mających do dyspozycji k szachownic (n 2k).Naileróżnychsposobówmożnautworzyć kpar szachistów do rozegrania pierwszej partii?

38 Przykład(SW3) Nailesposobówmożnapołączyćwpary2nosób? Przykład(SW4) Zebrało się n szachistów, mających do dyspozycji k szachownic (n 2k).Naileróżnychsposobówmożnautworzyć kpar szachistów do rozegrania pierwszej partii?

39 Przykład(SW5) Ile rozwiązań całkowitych(całkowitych dodatnich) ma równanie postaci: x 1 +x x n = k? Przykład(SW6) Na ile sposobów można wybrać trzy liczby spośród liczb 1,2,...,30wtensposób,żeichsumajetparzysta?

40 Przykład(SW5) Ile rozwiązań całkowitych(całkowitych dodatnich) ma równanie postaci: x 1 +x x n = k? Przykład(SW6) Na ile sposobów można wybrać trzy liczby spośród liczb 1,2,...,30wtensposób,żeichsumajetparzysta?

41 Przykład(permutacje koralikowe) Szczególnym wariantem permutacji są permutacje koralikowe, gdzie nie jest wyróżniony początek i koniec(np. rozstawienie na okręgu). W takiej sytuacji nie ma znaczenia gdzie znajdują się elementy, ważne jest jedynie z czym sąsiadują. Wyznaczyć liczbę permutacji koralikowych zbioru n-elementowego. Przykład(dowód kombinatoryczny) Wykazać,żedla n 1 n ( ) n k = n 2 n 1. k k=0

42 Przykład(permutacje koralikowe) Szczególnym wariantem permutacji są permutacje koralikowe, gdzie nie jest wyróżniony początek i koniec(np. rozstawienie na okręgu). W takiej sytuacji nie ma znaczenia gdzie znajdują się elementy, ważne jest jedynie z czym sąsiadują. Wyznaczyć liczbę permutacji koralikowych zbioru n-elementowego. Przykład(dowód kombinatoryczny) Wykazać,żedla n 1 n ( ) n k = n 2 n 1. k k=0

Statystyka z elementami rachunku prawdopodobieństwa

Statystyka z elementami rachunku prawdopodobieństwa Statystyka z elementami rachunku prawdopodobieństwa dr hab. Tomasz Górecki tomasz.gorecki@amu.edu.pl Zakład Rachunku Prawdopodobieństwa i Statystyki Matematycznej Wydział Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Wstęp. Kurs w skrócie

Wstęp. Kurs w skrócie Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

KOMBINATORYKA. Problem przydziału prac

KOMBINATORYKA. Problem przydziału prac KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład I, 2.10.2018 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s. B006 strona z materiałami

Bardziej szczegółowo

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład I, 3.10.2017 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s.?? strona z materiałami

Bardziej szczegółowo

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

Kombinatoryka. Reguła dodawania. Reguła dodawania

Kombinatoryka. Reguła dodawania. Reguła dodawania Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich

Bardziej szczegółowo

1.1 Rachunek prawdopodobieństwa

1.1 Rachunek prawdopodobieństwa Spis treści Spis treści 1 Wstęp 1 1.1 Rachunek prawdopodobieństwa.................. 1 1.2 Literatura.............................. 1 1.3 Podstawy.............................. 2 2 Miara prawdopodobieństwa

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015)

KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015) MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ KOMBINATORYKA OBIEKTY KOMBINATORYCZNE TEORIA ZLICZANIA Teoria zliczania

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013

Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013 Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013 Zadanie 1. Dla n naturalnego mamy zdanie: Jeżeli n jest liczbą pierwszą, to n jest równa 2 lub jest liczbą nieparzystą. Możemy je zapisać

Bardziej szczegółowo

Matematyczne Podstawy Kognitywistyki

Matematyczne Podstawy Kognitywistyki Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 1. Wstęp

Rachunek prawdopodobieństwa Rozdział 1. Wstęp Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.1. Prawdopodobieństwo klasyczne Katarzyna Rybarczyk-Krzywdzińska Definicja Zadaliśmy pytanie. Bolek, Lolek i Tola wstąpili do kasyna. Dla każdego z nich

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Prawdopodobieństwo i statystyka Wykład I: Nieco historii

Prawdopodobieństwo i statystyka Wykład I: Nieco historii Prawdopodobieństwo i statystyka Wykład I: Nieco historii 6 października 2015 Prawdopodobieństwo i statystyka Wykład I: Nieco historii Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

KARTA KURSU. Probability theory

KARTA KURSU. Probability theory KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 1. Wstęp

Rachunek prawdopodobieństwa Rozdział 1. Wstęp Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.0. Kilka słów na początek Katarzyna Rybarczyk-Krzywdzińska O czym mowa? Jakiego typu pytania będą nas interesować? Bolek, Lolek i Tola wstąpili do kasyna:

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje

Bardziej szczegółowo

ELEMENTY KOMBINATORYKI

ELEMENTY KOMBINATORYKI ELEMENTY KOMBINATORYKI Kombinatoryka to dział matematyki, który zajmuje się zliczaniem, na ile sposobów może zajść jakieś zjawisko. Powstała dzięki grom hazardowym a dopiero później rozwinęła się w gałąź

Bardziej szczegółowo

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Porada niniejsza traktuje o tzw. elementach kombinatoryki. Często zdarza się, że rozwiązujący zadania z tej dziedziny mają problemy

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA DYSKRETNA Nazwa w języku angielskim DISCRETE MATHEMATICS Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Matematyka dyskretna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska

Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska Kombinatoryka Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Aspekty kombinatoryki Victor Bryant

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,

Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów.

Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów. PERMUTACJE Z1. Oblicz: Z2. Doprowadź do najprostszej postaci wyrażenia: Z3. Sprawdź czy prawdziwa jest równość: Dana równość jest prawdziwa. Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Rachunek prawdopodobieństwa Probability theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3 Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15 Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Wprowadzenie do kombinatoryki

Wprowadzenie do kombinatoryki Wprowadzenie do kombinatoryki http://www.matemaks.pl/kombinatoryka.html Kombinatoryka jest działem matematyki, który pomaga odpowiedzieć na pytania typu: "ile jest możliwych wyników w rzucie monetą?",

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują):

2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują): OPISU MODUŁU KSZTAŁCENIA (SYLABUS) I. Informacje ogólne 1) Nazwa modułu : MATEMATYCZNE PODSTAWY KOGNITYWISTYKI 2) Kod modułu : 08-KODL-MPK 3) Rodzaj modułu : OBOWIĄZKOWY 4) Kierunek studiów: KOGNITYWISTYKA

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu

Bardziej szczegółowo

KARTA PRZEDMIOTU. Forma prowadzenia zajęć. Odniesienie do efektów dla kierunku studiów K1A_W02

KARTA PRZEDMIOTU. Forma prowadzenia zajęć. Odniesienie do efektów dla kierunku studiów K1A_W02 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20182019 4. Forma

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia)

Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) 1 Przestrzeń probabilistyczna Zadanie 1 Rzucamy dwiema kostkami do gry. Opisać przestrzeń zdarzeń

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa Rachunek prawdopodobieństwa i kombinatoryka Spis treści Rachunek prawdopodobieństwa Podstawowe pojęcia rachunku prawdopodobieństwa Liczba wyników doświadczenia losowego. Reguła mnożenia i reguła dodawania

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 4 część I 2 Kombinatoryka Wariacje z powtórzeniami Permutacje Wariacje bez powtórzeń Kombinacje Łączenie

Bardziej szczegółowo

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Typy zadań kombinatorycznych:

Typy zadań kombinatorycznych: Typy zadań kombinatorycznych: I. Ustawianie wszystkich elementów zbioru w pewnej kolejności Przestawieniem nazywamy ustawienie elementów danego zbioru w pewnej kolejności. Liczba przestawień określa na

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

KOMBINATORYKA (A) Szczegółowy plan wykładu

KOMBINATORYKA (A) Szczegółowy plan wykładu Szczegółowy plan wykładu 1. Podstawowe narzędzia kombinatoryki 1.1. Zbiory i działania na zbiorach (przypomnienie i uzupełnienie), 1.2. Równania rekurencyjne (m.in. nieporządki, ciąg Fibonacciego), 1.3.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka Wykład I: Przestrzeń probabilistyczna

Prawdopodobieństwo i statystyka Wykład I: Przestrzeń probabilistyczna 9 października 2018 Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie egzaminu ustnego z treści wykładu. Literatura J. Jakubowski i R. Sztencel, Wstęp do teorii prawdopodobieństwa.

Bardziej szczegółowo

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30. Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne

Bardziej szczegółowo

KOMBINATORYKA I P-WO CZ.1 PODSTAWA

KOMBINATORYKA I P-WO CZ.1 PODSTAWA KOMBINATORYKA I P-WO CZ.1 PODSTAWA ZADANIE 1 (1 PKT) Pan Jakub ma marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i

Bardziej szczegółowo

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki

Bardziej szczegółowo

Biostatystyka, # 2 /Weterynaria I/

Biostatystyka, # 2 /Weterynaria I/ Biostatystyka, # 2 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20152016 4. Forma

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Matematyka dyskretna dla informatyków ZADANIA

Matematyka dyskretna dla informatyków ZADANIA Matematyka dyskretna dla informatyków ZADANIA Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 Spis treści 1 Metody dowodzenia

Bardziej szczegółowo

Elementy kombinatoryki

Elementy kombinatoryki Elementy kombinatoryki Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 04 (Wykłady z matematyki dyskretnej) Elementy kombinatoryki 04 1 / 59 Permutacje Definicja. Permutacja

Bardziej szczegółowo

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15 Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 6/10 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe

Bardziej szczegółowo