Puªapki intuicji. Jerzy Pogonowski. Pobierowo Zakªad Logiki Stosowanej UAM
|
|
- Kacper Gajewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Puªapki intuicji Jerzy Pogonowski Zakªad Logiki Stosowanej UAM Pobierowo 2013 Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
2 Wst p Cel projektu Plan na dzi±: Przykªady zwodniczych intuicji dnia codziennego. Przykªady pomyªek matematyków. Kilka sªów krytyki programu matematyki uciele±nionej. Nie prowadzili±my»adnych bada«empirycznych dotycz cych puªapek intuicji. S dzimy,»e nawet samo wyliczenie takich puªapek mo»e okaza si pomocne w reeksji nad dydaktyk matematyki. W prezentacji wykorzystujemy ilustracje dost pne w sieci. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
3 Wst p Humor zeszytów Rozwi zywanie równa«jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
4 Wst p Humor zeszytów Obliczanie granic Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
5 Wst p Humor zeszytów Geometria Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
6 Wst p Humor zeszytów Czy Pitagoras lubiª blondynki? Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
7 Intuicja matematyczna Intuicja w matematyce Kontekst uzasadniania: dedukcja, algorytmy, obliczenia. Kontekst odkrycia: intuicja, wyobra¹nia, analogia, heurystyki, indukcja, abdukcja,... Davis i Hersh o intuicji matematycznej. Intuicyjne oznacza: przeciwstawienie ±cisªo±ci, wizualne, prawdopodobne, niekompletne, oparte na modelu zycznym. Stanowiska w lozoi matematyki. Intuicja a praktyka badawcza matematyki. Intuicja a empiria. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
8 Standard, wyj tek, patologia Standard Co jest normalne? Kiedy mówimy,»e jakie± obiekty matematyczne dobrze si zachowuj? Postacie normalne, kanoniczne, standardowe. Trudno±ci w okre±laniu modeli zamierzonych teorii. Twierdzenia o klasykacji. Z dokªadno±ci do izomorzmu. Z dokªadno±ci do elementarnej równowa»no±ci. Twierdzenia o reprezentacji. Niezmienniki. Program Kleina. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
9 Standard, wyj tek, patologia Wyj tek Co umyka szuadkowaniu? Klasykacja prostych grup sko«czonych. Grupy sporadyczne. Klasykacja grup Lie. Klasykacja powierzchni. Program Thurstona. Wyj tkowo± wielokomórek foremnych. Wyj tkowo± standardowego modelu arytmetyki. Wyj tkowo± uporz dkowanego w sposób ci gªy ciaªa liczb rzeczywistych. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
10 Standard, wyj tek, patologia Patologia Co utrudnia? Poza intuicje do±wiadczenia potocznego: jeziora Wady, krzywa Knastera, sfera rogata Alexandera, itd. Pragnienie precyzji rodzi potwory: patologiczne krzywe (Peany, Hilberta i inne). Egzotyczne sfery oraz egzotyczna R 4. Potwory oswojone: zbiór Cantora. Patologie klas speªniania. Pragnienie arcybiskupa. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
11 Standard, wyj tek, patologia Patologia Sfera rogata Alexandera Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
12 Standard, wyj tek, patologia Patologia Pragnienie arcybiskupa Powierzchnia P szyjki aszki jest niesko«czona, poniewa»: P > (2π 1 1) = 2π 1 = n n n=1 n=1 Obj to± V szyjki aszki jest jednak sko«czona, poniewa»: V < (π( 1 n )2 1) = π 1 n 2 = π π2 6 n=1 n=1 Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
13 Puªapki intuicji Arytmetyczne Liczy ka»dy potra Która liczba jest wi ksza: 1 czy 0, (9) = 0, ? Dost pno± poznawcza du»ych liczb. = a+c b+d Czy dodawanie a c jest gªupie? b d Dlaczego szkoªa milczy o uªamkach ªa«cuchowych? Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
14 Puªapki intuicji Arytmetyczne Drzewo Sterna-Brocota Wszystkie te uªamki s w postaci nieskracalnej. Ka»da dodatnia liczba wymierna wyst puje w tym drzewie dokªadnie raz. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
15 Puªapki intuicji Arytmetyczne Drzewo Calkina-Wilfa Wszystkie te uªamki s w postaci nieskracalnej. Ka»da dodatnia liczba wymierna wyst puje w tym drzewie dokªadnie raz. b(n) b(n+1) Ka»da dodatnia liczba wymierna jest postaci (n 0), gdzie b(0) = b(1) = 1 oraz: b(2n + 1) = b(n), b(2n + 2) = b(n) + b(n + 1). Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
16 Puªapki intuicji Algebraiczne Uroki symetrii Czy operacja ±redniej arytmetycznej jest ª czna? Dlaczego podobaj nam si prawa ª czno±ci oraz przemienno±ci? Armia Conwaya: nieosi galny poziom piaty. W klasie stoj ªawki, w siedmiu rz dach po cztery ªawki w ka»dym. Ile lat ma nauczycielka? Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
17 Puªapki intuicji Analityczne 1. Uwaga na wzory! 2. Lewituj cy oscypek Caªkowanie przez cz ±ci: u(x)v (x)dx = u(x)v(x) u v(x)dx. Dla u(x) = 1, v(x) = x mamy: 1 1dx = 1 x ( 1 x x x x 2 )xdx, czyli 1 dx = dx. x x Bª dny wniosek: 0 = 1. Poprawny: ln x + C 1 = 1 + ln x + C 2. Dla jakich warto±ci: k ta rozchylenia szyn, k ta wznoszenia si szyn oraz wymiarów podwójnego sto»ka, toczyª on si b dzie (pozornie!) pod gór? Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
18 Puªapki intuicji Geometryczne To przecie» wida! Ziemia opasana sznurkiem. Obroty monet. Trzy ortogonalne walce. Poka»emy,»e Pitagoras nie miaª racji... Jak uciec zboczenicy? Kajfosz: Jezus byª czterowymiarowy! Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
19 Puªapki intuicji Geometryczne Fantazja hydrauliczna Jak bryª tworzy cz ± wspólna trzech ortogonalnych walców? Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
20 Puªapki intuicji Geometryczne Odczytywanie cieni Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
21 Puªapki intuicji Topologiczne Zabawa ksztaªtami Pªasko±wiat. Czwarty wymiar. Orientowalno± powierzchni. Wypeªnianie przestrzeni. Precelek. Torus kanibal. Twierdzenie Smale'a. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
22 Puªapki intuicji Topologiczne Wypeªniacze Wielo±cian z dziur Spl tane okr gi Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
23 Puªapki intuicji Topologiczne Niespodzianka w wymiarach 9 Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
24 Puªapki intuicji Topologiczne Precelek Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
25 Puªapki intuicji Topologiczne Torus kanibal Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
26 Puªapki intuicji Topologiczne Jeszcze raz torus Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
27 Puªapki intuicji Groza niesko«czono±ci Gªosujemy: dojdzie czy nie? Po doskonale elastycznej linie o pocz tkowej dªugo±ci 1 km drepcze mrówka z pr dko±ci 1 cm/sek (wzgl dem liny). Lina rozci ga si z pr dko±ci 1 km/sek. Mrówka startuje z lewego, nieruchomego ko«ca liny. Czy dojdzie w sko«czonym czasie do prawego jej ko«ca? Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
28 Puªapki intuicji Groza niesko«czono±ci Turtles all the way down Ró»nica pomi dzy: dowolnie du»e a niesko«czone. Mrówka na linie i nocne niebo. Czy istnieje szereg najwolniej zbie»ny? Kule Smullyana, hydra, twierdzenia prawdziwe (w modelu standardowym), acz niedowodliwe w arytmetyce. Mucha i PKP. Lampa Thomsona. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
29 Puªapki intuicji Probabilistyczne Intuicyjny statystyk Monty Hall Problem. Okrutne zasady wyboru kandydatek. Prawo Benforda. Kªopoty z niezale»no±ci. Ci gi von Misesa. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
30 Puªapki intuicji Logiczne Paralogizmy i sozmaty Bª dy kwantykacji i negacji. Bª dy modalno±ci. Czy poprawna odpowied¹ na to pytanie brzmi tak? Przepis na nie±miertelno± : Mów zawsze prawd. Wypowiedz (teraz) zdanie: Powtórz to zdanie jutro. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
31 Bª dy profesjonalistów Odrzucone hipotezy Modlitwa te» nie pomo»e... Przykªady faªszywych hipotez: Hipoteza Borsuka. Hipoteza Mertensa. Przykªady zda«nierozstrzygalnych: W ZF: Hipoteza kontinuum. W PA: Con(PA). Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
32 Bª dy profesjonalistów Bª dne dowody Zªe drogi do dobrego celu Ukryte zaªo»enia w Elementach Euklidesa. Hipoteza Keplera (1611) i próby jej udowodnienia. Sztuczki Eulera z szeregami niesko«czonymi. Cauchy (1821) o ci gªo±ci granicy ci gu funkcji punktowo zbie»nych. Twierdzenie Jordana (1887) o krzywej zamkni tej na pªaszczy¹nie. Gorenstein (1983) o klasykacji prostych grup sko«czonych. Twierdzenie o czterech barwach. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
33 Bª dy profesjonalistów Bª dne twierdzenia Nauczki z niepowodze«ampère (1806): funkcja ci gªa jest ró»niczkowalna w wi kszo±ci punktów. Weierstrass (1872): przykªad funkcji ci gªej, która nie jest nigdzie ró»niczkowalna. Little (1885): w zªy i (para Perko) s istotnie ró»ne. Bª d naprawiony przez Perko (1974). Próby udowodnienia pi tego postulatu Euklidesa i rozwój geometrii nieeuklidesowych. Lebesgue twierdziª bª dnie,»e rzuty zbiorów Borelowskich s Borelowskie. Równie» ta pomyªka przyniosªa po»ytki poprawiaj c j Šuzin rozwin ª nowe fragmenty opisowej teorii zbiorów. Próba Fregego aksjomatycznej denicji poj cia liczby rodziªa sprzeczno±. Zauwa»enie tej antynomii doprowadziªo do poprawnego sformuªowania aksjomatu wyró»niania w teorii mnogo±ci. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
34 Bª dy profesjonalistów Zaniechane zaªo»enia Zmiany perspektywy Geometryczne podstawy matematyki greckiej. Wieczna (?) tuªaczka wielko±ci niesko«czenie maªych. Algebra: od rozwi zywania równa«do badania struktur. Arytmetyzacja analizy. Odwrót od intuicji kinematycznych oraz geometrycznych. Odrzucenie aksjomatów ograniczenia w teorii mnogo±ci. Powody rozwa»ania aksjomatów istnienia du»ych liczb kardynalnych w teorii mnogo±ci. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
35 Zmienno± intuicji matematycznych Dynamika intuicji Paradoksy jako regulatory intuicji. Rola programów badawczych. Nowe twierdzenia. Warto±ci estetyczne. Moda matematyczna. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
36 Matematyka uciele±niona Metafory poznawcze Mªotek i gwo¹dzie Paradygmat AI oraz paradygmat metafor poznawczych. Podstawy empiryczne dla twierdze«matematyki uciele±nionej. Podstawowa Metafora Niesko«czono±ci. Jak odró»ni metafor poj ciow od analogii? Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
37 Matematyka uciele±niona Uwagi krytyczne Kaga«ce metafory Bª dy matematyczne w monograi Where mathematics comes from. Jak metaforyzowa dedukcj? Wyzwania dla programu matematyki uciele±nionej: przykªady z teorii mnogo±ci, algebry, topologii, teorii miary, analizy, itd. Czy program matematyki uciele±nionej stwarza zagro»enia dla dydaktyki matematyki? Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
38 Matematyka uciele±niona Uwagi krytyczne Intuicyjny topolog Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
39 Matematyka uciele±niona Spory lozoczne Wyznania wiary Czy ludzka matematyka stanowi caªo± matematyki? Agnostycyzm matematyczny. Matematyka antycypuje odkrycia w zyce. Przej±cie od opisów jako±ciowych do praw ilo±ciowych. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
40 Koniec Plan na jutro: Puªapki intuicji: studia przypadków. Intuicja matematyczna: geneza, dynamika, funkcjonowanie, uwarunkowania, itd. Uprzejmie dzi kuj organizatorom za umo»liwienie mi wygªoszenia tego wykªadu. B d wdzi czny za wszelkie dotycz ce go uwagi krytyczne. Jerzy Pogonowski (MEG) Puªapki intuicji Pobierowo / 40
Matematyczne fantazje kognitywistów
Matematyczne fantazje kognitywistów Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wrocªaw 2013 Jerzy Pogonowski (MEG) Matematyczne fantazje kognitywistów Wrocªaw 2013
Argumenty z intuicji matematycznej
Argumenty z intuicji matematycznej Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl ArgDiaP 2011 Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP 2011
Intuicja Matematyczna
Intuicja Matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Filozofia Matematyki III Jerzy Pogonowski (MEG) Intuicja Matematyczna Filozofia Matematyki III
Matematyka i Humanistki
Matematyka i Humanistki Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 6 grudnia 2014 Jerzy Pogonowski (MEG) Matematyka i Humanistki 6 grudnia 2014 1 / 7 Wst p Cel
Metafory poznawcze w matematyce
Metafory poznawcze w matematyce Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 24.X.2013, Kraków Jerzy Pogonowski (MEG) Metafory poznawcze w matematyce 24.X.2013, Kraków
Intuicja matematyczna
Intuicja matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 22 marca 2011 Jerzy Pogonowski (MEG) Intuicja matematyczna 22 marca 2011 1 / 21 Wstęp Cel projektu
Maªgorzata Murat. Modele matematyczne.
WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia
Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego
Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Zagadki Matematyczne. Jerzy Pogonowski KHL LIX, Zakªad Logiki Stosowanej UAM
Zagadki Matematyczne Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl KHL LIX, 2013 Jerzy Pogonowski (MEG) Zagadki Matematyczne KHL LIX, 2013 1 / 29 Wst p Cel projektu
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci
Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9
Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s
Metodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
Ÿ1 Oznaczenia, poj cia wst pne
Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.
Zbiory ograniczone i kresy zbiorów
Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy
Fraktale i ich zastosowanie
WFAIS UJ w Krakowie 20 listopada 2008 Denicja Wst p Denicja Samopodobie«stwo Wymiar fraktalny Fraktal to obiekt, który speªnia wi kszo± z poni»szych warunków: jest samopodobny; jego wymiar fraktalny jest
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Dokªadna arytmetyka liczb rzeczywistych w j zyku Python
Dokªadna arytmetyka liczb rzeczywistych w j zyku Python Marcin Ciura Zakªad Oprogramowania 28 marca 2007 Marcin Ciura (Zakªad Oprogramowania) Dokªadna arytmetyka liczb rzeczywistych 28 marca 2007 1 / 24
2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
Ekstremalnie fajne równania
Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów
Ekstremalnie maªe zbiory
Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci
Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:
Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci
Urok Zagadek Matematycznych
Urok Zagadek Matematycznych Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Kraków, 24.X.2013 Jerzy Pogonowski (MEG) Urok Zagadek Matematycznych Kraków, 24.X.2013 1
1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie
7: Spis zagadnie«twierdzenie Kuratowskiego Wªasno±ci planarno±ci Twierdzenie Eulera Grafy na innych powierzchniach Poj cie dualno±ci geometrycznej i abstrakcyjnej Graf Planarny Graf planarny to taki graf,
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy
Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Poni»ej podane s przykªadowe pytania Konstrukcja zbioru liczb rzeczywistych Dowód niewymierno±ci liczby 2.
Pytania na egzaminie magisterskim dotycz gªównie zagadnie«zwi zanych z tematem pracy magisterskiej. Nale»y by przygotowanym równie» na pytania sprawdzaj ce podstawow wiedz ze wszystkich zaliczonych wykªadów.
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Obja±nienia intuicyjne w matematyce
Obja±nienia intuicyjne w matematyce Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl Kraków 2019 Jerzy Pogonowski (MEG) Obja±nienia intuicyjne w matematyce Kraków 2019 1 / 14 Wst p
Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,
Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Podstawy matematyki a mechanika kwantowa
Podstawy matematyki a mechanika kwantowa Paweł Klimasara Uniwersytet Śląski 9 maja 2015 Paweł Klimasara (Uniwersytet Śląski) Podstawy matematyki a mechanika kwantowa 9 maja 2015 1 / 12 PLAN PREZENTACJI
Edycja geometrii w Solid Edge ST
Edycja geometrii w Solid Edge ST Artykuł pt.: " Czym jest Technologia Synchroniczna a czym nie jest?" zwracał kilkukrotnie uwagę na fakt, że nie należy mylić pojęć modelowania bezpośredniego i edycji bezpośredniej.
Stereometria (geometria przestrzenna)
Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy
Metody probablistyczne i statystyka stosowana
Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801
KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6
KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.
Podstawy matematyki dla informatyków
Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
http://www-users.mat.umk.pl/~pjedrzej/wstep.html 1 Opis przedmiotu Celem przedmiotu jest wyksztaªcenie u studentów podstaw j zyka matematycznego, wypracowanie podstawowych umiej tno- ±ci przeprowadzania
1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
Przekroje Dedekinda 1
Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2
1. Śmierć programu Hilberta
1 Tytuł: Logiczne i filozoficzne implikacje twierdzenia Gödla Autor: Piotr Kołodziejczyk ; e-mail: pkolodziejczyk@interia.pl Źródło: ; e-mail: mjkasperski@kognitywistyka.net Data: czerwiec 2003 1. Śmierć
O bª dzeniu w matematyce
O bª dzeniu w matematyce Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl www.logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl 14X2015 Jerzy Pogonowski (MEG) O bª
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................
Rachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +
r = x x2 2 + x2 3.
Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Logika matematyczna (16) (JiNoI I)
Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................
Cudowne obiekty patologiczne
Cudowne obiekty patologiczne Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 26 marca 2014 Jerzy Pogonowski (MEG) Cudowne obiekty patologiczne 26 marca 2014 1 / 19 Wst
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa
Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:
Geometria. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Geometria Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Dane s równania postych, w których zawarte s boki trójk ta ABC : 3x 4y + 36 = 0 x y = 0 4x + 3y + 23 = 0 1. Obliczy wspóªrz dne wierzchoªków
c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie
2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona
2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)
Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla
Czy masz wyobra¹ni matematyczn?
Czy masz wyobra¹ni matematyczn? Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl PFK 2016 Jerzy Pogonowski (MEG) Czy masz wyobra¹ni matematyczn? PFK 2016 1 / 18 Cel Wiewiórki i humanizacja
Strategia czy intuicja?
Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),
Obiekty patologiczne w matematyce
Obiekty patologiczne w matematyce Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Kraków, 23.X.2014 Jerzy Pogonowski (MEG) Obiekty patologiczne w matematyce Kraków,
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona
Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci
W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba,
2 Procenty W tej lekcji przypomnimy sobie poj cie procentu i zwi zane z nim podstawowe typy zada«. Prosimy o zapoznanie si z regulaminem na ostatniej stronie. 2.1 Poj cie procentu Procent jest to jedna
OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH
OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH Strona 1 z 9 SPIS ZAJĘĆ WRAZ Z NAZWISKAMI WYKŁADOWCÓW dr hab. Mieczysław Kula Poznaj swój
Wyobra¹nia matematyczna
Wyobra¹nia matematyczna Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl 2017 Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna 2017 1 / 16 Wst p Proste przykªady Czy masz wyobra¹ni matematyczn?
Liczby pierwsze Fermata
Liczby pierwsze Fermata Witold Tomaszewski Instytut Matematyki Politechniki l skiej e-mail: Witold.Tomaszewski@polsl.pl Pierre de Fermat Witold Tomaszewski (Instytut Matematyki Politechniki Liczby l skieje-mail:
OPIS PRZEDMIOTU. Podstawy edukacji matematycznej. Wydzia Pedagogiki i Psychologii
OPIS PRZEDMIOTU Nazwa przedmiotu Kod przedmiotu Wydzia Wydzia Pedagogiki i Psychologii Instytut/Katedra INSTYTUT PEDAGOGIKI, Zak ad Pedagogiki Wczesnoszkolnej i Edukacji Plastycznej Kierunek pedagogika,
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Liczby zmiennoprzecinkowe
Liczby zmiennoprzecinkowe 1 Liczby zmiennoprzecinkowe Najprostszym sposobem reprezentowania liczb rzeczywistych byªaby reprezentacja staªopozycyjna: zakªadamy,»e mamy n bitów na cz ± caªkowit oraz m na
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Konwersje, bª dy przetwarzania numerycznego PWSZ Gªogów, 2009 Dlaczego modelujemy... systematyczne rozwi zywanie problemów, eksperymentalna eksploracja wielu rozwi
Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski
III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych
1 Ró»niczka drugiego rz du i ekstrema
Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 1 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych
Analiza Matematyczna MAT1317
Analiza Matematyczna MAT37 Wydziaª Informatyki i Zarz dzania Listy zada«nr -0 cz ±ciowo na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykªady i zadania, GiS, Wrocªaw 008 M.Gewert,
VI OIG, Etap II konkurs dru»ynowy. 10 III 2012 Dost pna pami : 32 MB.
Pocisk Pocisk o masie 5g wystrzelono z powierzchni ziemi pionowo w gór z szybko±ci pocz tkow v 0. Jak szybko± b dzie miaª pocisk w chwili, gdy dogoni go odgªos wystrzaªu i na jakiej wysoko±ci to nast pi?
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz
Metody bioinformatyki (MBI)
Metody bioinformatyki (MBI) Wykªad 9 - mikromacierze DNA, analiza danych wielowymiarowych Robert Nowak 2016Z Metody bioinformatyki (MBI) 1/42 mikromacierze DNA Metoda badawcza, pozwalaj ca bada obecno±
Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej
Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu)
Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Denicja pochodnej Denicja. Niech : X R, X R oraz U(x 0, r) X dla pewnego r > 0. Ilorazem ró»nicowym unkcji
1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:
ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +
Wyznaczanie krzywej rotacji Galaktyki na podstawie danych z teleskopu RT3
Wyznaczanie krzywej rotacji Galaktyki na podstawie danych z teleskopu RT3 Michaª Litwicki, Michalina Grubecka, Ewelina Obrzud, Tomasz Dziaªa, Maciej Winiarski, Dajana Olech 27 sierpnia 2012 Prowadz cy:
AE i modele zamierzone
AE i modele zamierzone Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 PKK, 3XII2010 Jerzy Pogonowski (MEG) AE i modele zamierzone 4 PKK, 3XII2010 1 / 17 Wstęp Czy
Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.
Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy
x y x y x y x + y x y
Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.
Naukoznawstwo (Etnolingwistyka V)
Naukoznawstwo (Etnolingwistyka V) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 25 listopada 2006 Jerzy Pogonowski (MEG) Naukoznawstwo (Etnolingwistyka V) 25 listopada
Zadania. 4 grudnia k=1
Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy
Teoria grafów i jej zastosowania. 1 / 126
Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2
Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)
Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem
Bash i algorytmy. Elwira Wachowicz. 20 lutego
Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad
Elementy geometrii analitycznej w przestrzeni
Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad