Argumenty z intuicji matematycznej
|
|
- Władysława Kaczor
- 8 lat temu
- Przeglądów:
Transkrypt
1 Argumenty z intuicji matematycznej Jerzy Pogonowski Zakład Logiki Stosowanej UAM pogon@amu.edu.pl ArgDiaP 2011 Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
2 Wstęp Intuicja i dowód w matematyce Dwa filary matematyki: intuicja matematyczna dedukcja. Dwa sposoby posługiwania się intuicją matematyczną: Globalnie. Dla rozwijania nowych teorii. Lokalnie. Dla wspomagania rozumienia dowodów i konstrukcji. Humanistka to ktoś, kto nie rozumie matematyki. Przy założeniu bożej ingerencji w matematyczność Przyrody, Bóg nie może być więc Humanistką. Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
3 Czym jest intuicja matematyczna? W stronę definicji Obywatele, filozofowie, matematycy o intuicji Intuicja: definicje słownikowe oraz encyklopedyczne. Intuicja matematyczna: wypowiedzi matematyków. Trudności klasycznych stanowisk w filozofii matematyki związane z definicją terminu intuicja matematyczna. Kto miałby ustalać czym jest intuicja matematyczna? Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
4 Czym jest intuicja matematyczna? W stronę definicji Czy masz wyobraźnię hydrauliczną? Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
5 Czym jest intuicja matematyczna? W stronę definicji Co jest częścią wspólną 3 ortogonalnych walców? Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
6 Czym jest intuicja matematyczna? W stronę definicji Widzisz to? Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
7 Czym jest intuicja matematyczna? Paradoksy i zmienność intuicji I nie opuszczę cię aż do śmierci Trzy klasyczne przykłady: niewymierność, aksjomat wyróżniania, rozumienie pojęcia nieskończoności. Dwie twarze Paradoksu Skolema. Przykłady zmienności intuicji: algebra, analiza, geometria, logika. Intuicja a uogólnianie oraz analogie. O co kłócą się matematycy? Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
8 Czym jest intuicja matematyczna? Standard, patologia, wyjątek Teratologia potworów All animals are equal but... Sfera rogata Alexandera i twierdzenie Jordana-Schönfliessa Zbiory niemierzalne: kapitulacja intuicji potocznych Obiekty fraktalne: nowa intuicja wymiaru? Struktury niearchimedesowe. Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
9 Czym jest intuicja matematyczna? Standard, patologia, wyjątek Sfera rogata Alexandera Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
10 Przykłady matematyczne Teoria liczb Bliźniacze liczby pierwsze Hipoteza: istnieje nieskończenie wiele bliźniaczych liczb pierwszych. x 1 Li(x) = ln t x ln x π(x) = Li(x) + O( x ln x), gdzie 2 k=1 k! (ln x) k, π(x) to liczba liczb pierwszych x, a O jest symbolem Landaua. Przypuszczamy, że szansa iż (x, x + 2) jest parą bliźniaczych liczb pierwszych jest taka, jak szansa uzyskania orła przy dwóch rzutach monetą. Szansa, iż wybrana losowo liczba x z przedziału od 0 do n będzie liczbą pierwszą równa jest około 1 ln n. Szansa, że zarówno x, jak 1 i x + 2 będą pierwsze jest równa około. Tak więc, będzie około (ln n) 2 n par bliźniaczych liczb pierwszych między 0 a n. (ln n) 2 Ponieważ lim n n (ln n) 2 =, więc daje to, jak piszą Davis i Hersh (Świat matematyki, Wydawnictwo Naukowe PWN, Warszawa 1994, 190), ilościową wersję przypuszczenia o parach liczb pierwszych. Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
11 Przykłady matematyczne Teoria liczb Hipoteza Riemanna Funkcja ζ Riemanna: ζ(z) = n z. Hipoteza Riemanna głosi, że n=1 wszystkie (nietrywialne) zera tej funkcji leżą na prostej o równaniu Re(z) = 1 2. [W argumentacji niżej pomijamy pewne kroki.] Funkcja Möbiusa µ(x) = 0, gdy x dzieli się przez kwadrat liczby pierwszej, µ(x) = 1 (odp. ( 1)), gdy rozkład x ma parzystą (odp. nieparzystą) liczbę różnych czynników. HR jest równoważna temu, że µ(y) rośnie nie szybciej niż x 1 2 +ε, przy x, ε > 0. Prawdopodobieństwo, że µ(x) 0 jest równe: = 6 π. Wartość oczekiwana funkcji µ wynosi 0. 2 Przy losowym wyborze N liczb ich suma z prawdopodobieństwem 1 rośnie nie szybciej niż N 1 2 +ε przy N zmierzającej do nieskończoności. Daje to zatem prawdziwość z prawdopodobieństwem 1 HR, przy intuicyjnym przekonaniu, że tablica wartości funkcji µ jest losowa (Davis, Hersh 1994, ). y x Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
12 Przykłady matematyczne Oszustwa, iluzje, błędy, impotencja wyobraźni Jeszcze o wyobraźni hydraulicznej Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
13 Przykłady matematyczne Oszustwa, iluzje, błędy, impotencja wyobraźni Zwodnicze niby-intuicje Iluzje optyczne A teraz narysujemy zbiór Vitalego... Monty Hall Problem Ciągi von Misesa Brakujący dolar Wszystkie konie są tej samej maści Pitagoras błądził Aporie związane z kontinuum geometrycznym Wypełnianie przestrzeni Cztery drzewa Czterowymiarowy Jezus Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
14 Teoria mnogości Intuicje w aksjomatach i poza nimi Mów prawdę, całą prawdę i tylko prawdę Cantor: Widzę to, ale temu nie wierzę. Czy zbiory to przepaście? Niezupełność i nierozstrzygalność teorii mnogości ZF. Jaka jest prawdziwa wartość mocy kontinuum? Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
15 Teoria mnogości Aksjomaty ograniczenia Reglamentacje ontologiczne Aksjomat ograniczenia Fraenkla Aksjomat konstruowalności Gödla Krytyka aksjomatów ograniczenia Metoda modeli wewnętrznych i metoda wymuszania Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
16 Teoria mnogości Nowe aksjomaty Duże liczby kardynalne Postulaty Zermela Program Gödla Hierarchia interpretowalności Konsekwencje aksjomatów istnienia dużych liczb kardynalnych Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
17 Teoria mnogości Nowe aksjomaty Intuicje komplementarne? Aksjomat determinacji Starość czy druga młodość teorii mnogości? Czy potrzebna jest jedność matematyki? Horror infiniti Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
18 Źródła intuicji matematycznej Uposażenie poznawcze Eksperymenty myślowe: rozumne kleksy, struktury nieprzemienne, matematyka Braci Mniejszych Tajemnica skuteczności matematyki Inspiracje z innych nauk Kulturowe uwarunkowania matematyki Życie matematyczne dzikich Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
19 Źródła intuicji matematycznej Geometrie rozumnych kleksów Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
20 Źródła intuicji matematycznej Dydaktyka Stadia rozwoju intelektualnego Trudności w uczeniu się matematyki Jak układać programy nauczania matematyki? Poziomy intuicji matematycznej Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
21 Koniec Pytania bez odpowiedzi W literaturze przedmiotu nie ma definitywnej odpowiedzi na pytanie czym jest intuicja matematyczna. Z całą pewnością nie można jednak redukować działalności matematyków do przeprowadzania wyłącznie dedukcji. Odczyt stanowi mały fragment przygotowywanego tekstu o intuicji matematycznej, uwzględniającego przykłady matematyczne, ustalenia historyczne, komentarze filozoficzne. Odczyt był sponsorowany przez Polsko-Japońską Wyższą Szkołę Technik Komputerowych w Warszawie, za co niniejszym uprzejmie sponsorowi dziękuję. Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP / 21
Intuicja matematyczna
Intuicja matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 22 marca 2011 Jerzy Pogonowski (MEG) Intuicja matematyczna 22 marca 2011 1 / 21 Wstęp Cel projektu
Intuicja Matematyczna
Intuicja Matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Filozofia Matematyki III Jerzy Pogonowski (MEG) Intuicja Matematyczna Filozofia Matematyki III
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
AE i modele zamierzone
AE i modele zamierzone Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 PKK, 3XII2010 Jerzy Pogonowski (MEG) AE i modele zamierzone 4 PKK, 3XII2010 1 / 17 Wstęp Czy
Twierdzenia Gödla. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM
Twierdzenia Gödla Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Twierdzenia Gödla Funkcje rekurencyjne 1 / 21 Wprowadzenie
Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie
Rozmieszczenie liczb pierwszych Wprowadzamy funkcję π(x) def = p x 1, liczbę liczb pierwszych nie przekraczających x. Łatwo sprawdzić: π(12) = 5 (2, 3, 5, 7, 11); π(17) = 7 (2, 3, 5, 7, 11, 13, 17). Jeszcze
Paradoksy log o i g czne czn i inne 4 marca 2010
Paradoksy logiczne i inne 4 marca 2010 Paradoks Twierdzenie niezgodne z powszechnie przyjętym mniemaniem, rozumowanie, którego elementy są pozornie oczywiste, ale wskutek zawartego w nim błędu logicznego
Wstęp do Matematyki (1)
Wstęp do Matematyki (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Wstęp do Matematyki (1) Wprowadzenie 1 / 41 Wprowadzenie
Rekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Funkcje rekurencyjne
Funkcje rekurencyjne Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Funkcje rekurencyjne Funkcje rekurencyjne 1 / 34 Wprowadzenie
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Semiotyka logiczna. Jerzy Pogonowski. Dodatek 4. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl
Semiotyka logiczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Dodatek 4 Jerzy Pogonowski (MEG) Semiotyka logiczna Dodatek 4 1 / 17 Wprowadzenie Plan na dziś Plan
Intuicja matematyczna kilka uwag. Mathematical intuition a few remarks
INVESTIGATIONES LINGUISTICAE VOL. XXIII, 2011 c INSTITUTE OF LINGUISTICS ADAM MICKIEWICZ UNIVERSITY AL. NIEPODLEGŁOŚCI 4, 60-874 POZNAŃ POLAND Intuicja matematyczna kilka uwag Mathematical intuition a
Informacje ogólne. Językoznawstwo i nauka o informacji
Informacje ogólne 1. Nazwa Logika matematyczna 2. Kod LOGMAT 3. Rodzaj obowiązkowy 4. Kierunek i specjalność studiów Językoznawstwo i nauka o informacji 5. Poziom studiów I 6. Rok studiów I 7. Semestr
Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne
Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
Twierdzenie o liczbach pierwszych i hipoteza Riemanna
o liczbach pierwszych i hipoteza Riemanna Artur Ulikowski Politechnika Gdańska 10 marca 2009 o liczbach pierwszych Legendre, badając rozkład liczb pierwszych, postawił następującą hipotezę: Niech π(x)
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Informacje ogólne. Wstęp do współczesnej semantyki. Lingwistyka komputerowa
Informacje ogólne 1. Nazwa Wstęp do współczesnej semantyki 2. Kod WWS 3. Rodzaj obowiązkowy 4. Kierunek i specjalność studiów Lingwistyka komputerowa 5. Poziom studiów I 6. Rok studiów III 7. Semestr V
Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń
Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:
Zasady krytycznego myślenia (1)
Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium
Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA
Załącznik nr 11 do Uchwały nr 236 Rady WMiI z dnia 31 marca 2015 roku Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA Profil kształcenia: ogólnoakademicki Forma studiów: stacjonarne Forma kształcenia/poziom
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2
ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji
Logika, teoria zbiorów i wartość bezwzględna
Logika, teoria zbiorów i wartość bezwzględna Zadanie 1 Które z podanych wyrażeń są zdaniami logicznymi? a) Na Księżycu żyją istoty rozumne. b) Janek idzie do szkoły. c)wroku2000wpolscebędzie 50mln.mieszkańców.
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()
Matematyka jest logiką nieskończonego
Matematyka jest logiką nieskończonego Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wrocław, 27 VI 2008 Jerzy Pogonowski (MEG) Matematyka jest logiką nieskończonego
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rozdział 2.3: Przykłady przestrzeni probabilistycznych. Katarzyna Rybarczyk-Krzywdzińska Przestrzeń probabilistyczna Przestrzeń
KARTA KURSU. Probability theory
KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele
Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) 1. Informacje ogólne koordynator modułu Tomasz
Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach
Maszyny Turinga. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM
Maszyny Turinga Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Maszyny Turinga Funkcje rekurencyjne 1 / 29 Wprowadzenie
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
ZALICZENIE WYKŁADU: 26.I.2017
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 6.I.017 KOGNITYWISTYKA UAM, 016 017 Imię i nazwisko:............. POGROMCY HYDR LERNEJSKICH 1. Pokaż, że nie jest prawem rachunku zbiorów: (A C)
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Paradoksy a Intuicja
Paradoksy a Intuicja Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 IV 2008 Jerzy Pogonowski (MEG) Paradoksy a Intuicja 7 IV 2008 1 / 30 Plan na dziś Co myślisz,
Wykład 2. Prawdopodobieństwo i elementy kombinatoryki
Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak
KARTA KURSU (realizowanego w module specjalności) MATEMATYKA Studia I stopnia niestacjonarne
KARTA KURSU (realizowanego w module specjalności) MATEMATYKA Studia I stopnia niestacjonarne (specjalność nauczycielska) Nazwa Nazwa w j. ang. Matematyka szkolna a matematyka wyższa School Mathematics
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
Dydaktyka matematyki III-IV etap edukacyjny (wykłady)
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 4 Wprowadzanie i definiowanie matematycznych pojęć (cd.) Matematyczne rozumowania na poziomach SP i licealnym Semestr zimowy 2018/2019 Jakie
Semiotyka logiczna (1)
Semiotyka logiczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Semiotyka logiczna (1) Wprowadzenie 1 / 14 Plan wykładu: semestr
PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie
Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY DATA: 26 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
ZAGADNIENIA NA KOLOKWIA
ZAGADNIENIA NA KOLOKWIA RACJONALIZM XVII WIEKU [COPLESTON] A. KARTEZJUSZ: 1. metoda matematyczna i) cel metody ii) 4 reguły iii) na czym polega matematyczność metody 2. wątpienie metodyczne i) cel wątpienia
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019 Zasada trzech etapów (jeszcze raz) Trzy etapy, enaktywny, ikoniczny
Rachunek Prawdopodobieństwa Anna Janicka
Rachunek Prawdopodobieństwa Anna Janicka wykład I, 2.10.2018 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s. B006 strona z materiałami
Kierunek: Matematyka, rok I specjalność: Analiza danych
Kierunek: Matematyka, rok I specjalność: Analiza danych Przedmiot Kierunek Semestr Podstawy ekonomii M 1 Podstawy prawne M 1 Metody uczenia się i studiowania M 1 Wstęp do logiki i teorii mnogości M 1 45
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Logika Matematyczna 16 17
Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24
Chen Prime Liczby pierwsze Chena
Chen Prime Liczby pierwsze Chena Chen Jingrun Data urodzenia: 22 maj 1933 Data śmierci: 19 marzec 1996 Pochodzi z wielodzietnej rodziny z Fuzhou, Fujian, Chiny. W 1953 roku skończył wydział matematyki
Wykład ze Wstępu do Logiki i Teorii Mnogości
Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.
Literatura:. Jerzy Greń, Statystyka matematyczna. Modele i zadania.. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.. J. Koronacki, J. Mielniczuk, Statystyka dla
KARTA KURSU (realizowanego w module specjalności) MATEMATYKA Studia I stopnia stacjonarne
Załącznik nr 7 do Zarządzenia Nr. KARTA KURSU (realizowanego w module specjalności) MATEMATYKA Studia I stopnia stacjonarne (specjalność nauczycielska) Nazwa Nazwa w j. ang. Matematyka szkolna a matematyka
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
KARTA KURSU. Elementy statystyki matematycznej. Mathematical statistics
KARTA KURSU Nazwa Nazwa w j. ang. Elementy statystyki matematycznej Mathematical statistics Kod Punktacja ECTS* 5 Koordynator Dr Ireneusz Krech Zespół dydaktyczny: Dr Ireneusz Krech Dr Grażyna Krech Opis
Rok akademicki: 2017/2018 Kod: HKL s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Logika Rok akademicki: 2017/2018 Kod: HKL-1-221-s Punkty ECTS: 4 Wydział: Humanistyczny Kierunek: Kulturoznawstwo Specjalność: Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Zmienna losowa i jej
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Leonhard Euler ur. 15 kwietnia 1707 w Bazylei zm. 18 września 1783 w Petersburgu uważany za jednego z najbardziej produktywnych matematyków w historii
Leonhard Euler Leonhard Euler ur. 15 kwietnia 1707 w Bazylei zm. 18 września 1783 w Petersburgu uważany za jednego z najbardziej produktywnych matematyków w historii Dzieciństwo i młodość przeprowadzka
Instytut Matematyczny. Uniwersytetu Wrocławskiego TEST KWALIFIKACYJNY. 1 października 2007 r.
Instytut Matematyczny Uniwersytetu Wrocławskiego TEST KWALIFIKACYJNY 1 października 2007 r. Nazwisko Imię Numer Indeksu 201 Wersja testu A 1 października 2007 r. 1. a. T N b. T N c. T N d. T N 2. a. T
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie
http://www-users.mat.umk.pl/~pjedrzej/wstep.html 1 Opis przedmiotu Celem przedmiotu jest wykształcenie u studentów podstaw języka matematycznego, wypracowanie podstawowych umiejętności przeprowadzania
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Maªgorzata Murat. Modele matematyczne.
WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia
o. prof. Dr hab. Piotr Liszka CMF
o. prof. Dr hab. Piotr Liszka CMF 51-611 Wrocław, ul. Wieniawskiego 38 www.piotr-liszka.strefa.pl + Aksjomat wyboru Źródłem zastrzeżeń pod adresem aksjomatu wyboru są nie tylko jego paradoksalne konsekwencje,
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
L.O. św. Marii Magdaleny w Poznaniu, O POŻYTKACH PŁYN ACYCH Z RZUCANIA MONETA. Tomasz Łuczak
L.O. św. Marii Magdaleny w Poznaniu, 27.11.2015 O POŻYTKACH PŁYN ACYCH Z RZUCANIA MONETA Tomasz Łuczak NA POCZATEK DOBRA WIADOMOŚĆ! Dzięki naszym o hojnym sponsorom: Poznańskiej Fundacji Matematycznej
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni
FRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30 7. TYP
Matematyka dyskretna
Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych
MATEMATYKA PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA
MATEMATYKA PLAN STUDIÓ STACJONARNYCH DRUGIEGO STOPNIA semestr: 1 05.1- -810 Pracownia dydaktyki matematyki * 30 30 3 S-D 11.1- -810 Analiza matematyczna 1 30 30 60 4 P1 11.1- -810 Równania różniczkowe
Definicje nieskończoności
Definicje nieskończoności Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Definicje nieskończoności Funkcje rekurencyjne
Twierdzenie Pitagorasa
Imię Nazwisko: Paweł Rogaliński Nr indeksu: 123456 Grupa: wtorek 7:30 Data: 10-10-2012 Twierdzenie Pitagorasa Tekst artykułu jest skrótem artykułu Twierdzenie Pitagorasa zamieszczonego w polskiej edycji
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie
OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA DLA KIERUNKU STUDIÓW. Efekty kształcenia dla kierunku studiów Matematyka
OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA DLA KIERUNKU STUDIÓW Nazwa wydziału: Wydział Matematyki i Informatyki Nazwa kierunku studiów: Matematyka Obszar w zakresie: nauki ścisłe Dziedzina : matematyka Dyscyplina
RACHUNEK PRAWDOPODOBIE STWA
Jerzy Ombach RACHUNEK PRAWDOPODOBIE STWA WSPOMAGANY KOMPUTEROWO DLA STUDENTÓW MATEMATYKI STOSOWANEJ Wydawnictwo Uniwersytetu Jagielloƒskiego Seria Matematyka Książka finansowana przez Wydział Matematyki
WIEDZA. X1A_W04 X1A_W05 zna podstawowe modele zjawisk przyrodniczych opisywanych przez równania różniczkowe
Załącznik nr 1 do uchwały Nr 32/2016 Senatu UWr z dnia 24 lutego 2016 r. Nazwa wydziału: Wydział Matematyki i Informatyki Nazwa kierunku studiów: matematyka Obszar w zakresie: nauk ścisłych Dziedzina nauki:
MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
KARTA KURSU. Kod Punktacja ECTS* 7
KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 7 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny: Dr hab. prof.
Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat) 1. Informacje ogólne koordynator
Liczby pierwsze na straży tajemnic
Liczby pierwsze na straży tajemnic Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby rzadzą światem Ile włosów na głowie? Dowód z wiedzą zerową Reszty kwadratowe Dzielenie sekretu Ile włosów
Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki
Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +
ALFRED TARSKI. Życie i logika Kalendarium. Joanna Golińska-Pilarek. Marian Srebrny.
ALFRED TARSKI Życie i logika Kalendarium Joanna Golińska-Pilarek j.golinska@uw.edu.pl Marian Srebrny marians@ipipan.waw.pl KRAKÓW 28 maja 2009 Początek 14 stycznia 1901 rok Miejsce: Warszawa Rodzice: Róża
POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN. Z MATEMATYKI. kl. I
POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN Ocenę niedostateczna Z MATEMATYKI. kl. I Ocenę tę otrzymuje uczeń, który nie opanował podstawowych wiadomości i umiejętności wynikających z programu nauczania oraz:
Juwenilia logiczne Romana Suszki
Juwenilia logiczne Romana Suszki Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 12 maja 2009 Jerzy Pogonowski (MEG) Juwenilia logiczne Romana Suszki 12 maja 2009 1