Mathematica jest bardzo zaawansowanym narz dziem do tworzenia 2D and 3D grafiki. W pewnym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mathematica jest bardzo zaawansowanym narz dziem do tworzenia 2D and 3D grafiki. W pewnym"

Transkrypt

1 . Grafika Mathematica jest bardzo zaawansowanym narz dziem do tworzenia D and D grafiki. W pewnym sensie jest to najprostsza a w innym najbardziej skomplikowana cz tego skryptu. Jest ona prosta bo wszystkie instrukcje i cechy mo na znale w Documentation Center. Jednak e, dosy skomplikowanym zadaniem jest znalezienie potrzebnych cech w rod setek podobnych. Poni ej podajemy tyko przy ady najcz ciej u ywanych cech graficznych. Wszystkie poni sze ilustracje zosta y stworzone w Mathematice 7. We wcze niejszych wersji Mathematiki niektóre z nich nie b d dzia a lub b d dzia a inaczej. Wi kszo obrazków t umaczy si sama a z pytaniami o sposób u ywania ró nych funkcji graficznych odsy amy czytelnika do dokumentacji. PlotASinAx E, 8x,, <, PlotRange 8,.<E

2 z<, 8z, - Π, Π<, 8t,, Π<, PlotRange 88, <, 8, <, 8, <<D PlotAx -. x +. x - 7, 8x, -, <, PlotRange AllE - - -

3 <, D, PlotLabel "circle"d circle <, D, AspectRatio, PlotLabel "ellipse"d ellipse

4 <, D, Axes AutomaticD Π Π PlotBSin@xD, 8x,, Π<, Ticks ::,, Π,, Π>, Automatic>F. Π - -. Π Π Π

5 8x,, Π<, AxesStyle D, Plot@Sin@xD, 8x,, Π<, Frame TrueD PlotBLog@xD + SinBx + Sin@xDF, 8x,, <, GridLines AutomaticF - 6 8

6 6 data = Table@Sin@xD + Random@Real, 8-.,.<D, 8x,, Π,.<D 8.876,.87,.6,.689, 6, 769,.6989, 6,.689,.77,.89788,.989,.98,.86898,.,.9796,.77,.79,.67,.996,.88,.8887,.87,.7899,.69, 778, 7,.986,.,.69,.8, -.776, -.976, -., , -.678, , -.6, , -.78, , , , , -.866, -.979, -.987, -.96, -.966, -.997, -.86, -.97, -.998, , , -.788, -.7, -.76, , -.97, -., -.76, - 787< ListPlot@dataD ListLinePlot@dataD. - -.

7 zd, zd, zd<, 8z, -, 6<, PlotStyle PlotD@Sin@x yd, 8x,, Π<, 8y,, Π<, PlotPoints D

8 yd, 8x,, Π<, 8y,, Π<, PlotPoints D

9 9 ViewPoint -> 8.,.,.<D z y x PlotDA ã-hx-l -Hy-L, 8x, -, <, 8y, -, <, PlotRange -> All, AxesLabel -> 8"x", "y", "z"<e z x y

10 ViewVertical 8,, <D y - x - - z Plot@Sin@xD, 8x,, Π<, Background GrayLevel@DD Quit@D PolyhedronData@"Dodecahedron"D ListPlotD@Table@Mod@y, xd, 8x,, <, 8y,, <DD plot = Plot@Sin@xD, 8x, - Pi, Π<, PlotStyle RedD; plot = Plot@Sin@ xd, 8x, - Pi, Π<, PlotStyle GreenD; plot = Graphics@8Yellow, Circle@8, <, D<D;

11 plot, plot, AspectRatio AutomaticD vertices = 88, - <, 8, <, 8, <, 8-, <, 8, - <<; p = Graphics@8RGBColor@,, D, Polygon@verticesD<D; l = Graphics@8Thickness@.D, RGBColor@,, D, Line@verticesD<D; Show@p, ld p = Plot@Sin@xD, 8x,, Π<D p = Plot@Sin@ xd, 8x,, Π<D; GraphicsGrid@88p, p<<d GraphicsGrid@88p<, 8p<<D RandomReal@8, <, 8, <D Graphics@Line@RandomReal@8, <, 8, <DDD Graphics@ 8Hue@.77D, Rectangle@8, <, 8, <D, Hue@.7D, Rectangle@8, <, 8, <D<D GraphicsD@ 8Cuboid@8,, <D, Cuboid@8,, <D, Cuboid@8,, <D, Cuboid@8,, <D<D GraphicsB:Circle@8, <, D, Circle@8, <, 8, <D, CircleB:, - >,, :, >F>, AspectRatio -> Automatic, Axes -> AutomaticF InscribedCircleData@pA : 8_, _<, pb : 8_, _<, pc : 8_, _<D := ModuleB 8AB, BC, AC, a, b, c, s, pp, pq, AP, BQ, p, q, ps, qs, pqs, incenter, inradius<, AB = pb - pa; BC = pc - pb; AC = pc - pa; a = BC.BC ; b = AC.AC ; c = AB.AB ; AP.AB AP.AC AP = pb + p BC - pa; BQ = pa + q AC - pb; ps = SolveB ==, pf@@, DD; c b BQ.BC BQ.H- ABL qs = SolveB ==, qf@@, DD; pp = pb + p BC.ps; a c pq = pa + q AC.qs; pqs = Solve@pA + p HpP - pal == pb + q HpQ - pbl, 8p, q<d@@dd; incenter = pa + p HpP - pal.pqs; s = Ha + b + cl; inradius =, H shs - al Hs - bl Hs - cll; 8incenter, inradius<f InscribedCircle@pA : 8_, _<, pb : 8_, _<, pc : 8_, _<D := Graphics@ 8Line@8pA, pb, pc, pa<d, Circle@Sequence InscribedCircleData@pA, pb, pcdd<, AspectRatio -> Automatic, PlotRange -> All, Frame -> TrueD InscribedCircle@8.8, 6.8<, 8.,.<, 86.,.<D

12 D, <, 8, <D<, D, <, D<, D, <,, 8, <D<<, AspectRatio Automatic, Axes AutomaticD 8-, <, 8-, <D, 8, <, 8, <D, 8, <, 8, - <D, Text@"Below", 8, - <, 8, <D, 8PointSize@.7D, RGBColor@,, D, Point@8, <D<<, PlotRange AllD ListPlot@Table@8x, EulerPhi@xD<, 8x, <D, PlotStyle PointSize@.DD Graphics@8Dashing@8,.<D, Circle@8, <, D<, AspectRatio AutomaticD PlayASinAt E, 8t,, <E Animate[Plot[Sin[n x], {x,, Pi}, Axes -> False], {n,,, }] g = ParametricPlotD[ {x, Cos[t] Sin[x], Sin[t] Sin[x]}, {x, -Pi, Pi}, {t,, Pi}, Axes -> False, Boxed -> False] Quit@D Graphics[{Arrow[{{, },{, }}], Hue[], Arrow[{{.7,.},{.,.7}}]}] Plot[Sin[x], {x,, Pi}, Epilog -> {Arrow[{{,.}, {Pi/, }}], Text["Here", {,.}, {, -}]} ] ContourPlot[x^ + y^ ==, {x, -, },{y,-,}] ContourPlot[{(x^ + y^)^ == (x^ - y^), (x^ + y^)^ == x y}, {x,-,},{y,-,} ] RegionPlotA Hx + yl + y, 8x, -, <, 8y, -, < E RegionPlotDB x + y + z í x + y z, 8x, -, <, 8y, -, <, 8z, -, <F VectorPlot@8Sin@xD, Cos@yD<, 8x,, Pi<, 8y,, Pi<D RevolutionPlotD[ Sin[x], {x,, Pi}] RevolutionPlotD[{. Sin[u], u^}, {u,, Pi/}, BoxRatios -> {,, }] RevolutionPlotD[x^, {x,, }, RevolutionAxis -> {,, }] FinancialData@"GE", "Price"D DateListLogPlot@FinancialData@"^DJI", AllD, Joined True, Filling BottomD Plot@Table@BesselJ@n, xd, 8n, <D, 8x,, <, Filling Axis, Evaluated -> TrueD

13 xd + yd, 8x,, <, 8y,, <, ContourLabels Automatic, ColorFunction "Pastel"D 8Cos@vD +. ud +. vd, u, +. ud +. vd<, 8u, - Π, Π<, 8v, - Π, Π<, PlotPoints, PlotStyle 8Orange, Specularity@White, D<, Axes None, Mesh NoneD Graphics@8LightGray, Disk@D, Inset@Plot@Tan@xD, 8x, -, <DD<D Graphics@8Circle@D, Inset@X ^ + Y ^, 8, <D<D solution = NDSolve@8x ''@td + x@td ^ Sin@tD, x@d x '@D <, x, 8t,, <D ParametricPlot@8x@tD, x '@td<. solution, 8t,, <D Block@8f = Cos@x + I yd<, ParametricPlot@Evaluate@8Re@fD, Im@fD<D, 8x, - Pi, Pi<, 8y, -, <DD

Plotki. Wstęp. Wybrane wbudowane funkcje graficzne:

Plotki. Wstęp. Wybrane wbudowane funkcje graficzne: Plotki Wstęp Wybrane wbudowane funkcje graficzne: funkcja Plot@y, 8x, x min, x max

Bardziej szczegółowo

Kurs komputerowy S - Mathematica - cz. 2

Kurs komputerowy S - Mathematica - cz. 2 OBLICZENIA SYMBOLICZNE, Karolina MikulskaRuminska Kurs komputerowy S Mathematica cz. zmienna = wartosc Set[zmienna,wartosc] x = 7 7 x = x ^ x = 5 5 x Inaczej.. y = y ^ y y = 5 y 5 5 y = 0 y 0 000 KursS_cz.nb

Bardziej szczegółowo

Kurs komputerowy S - Mathematica - cz. 3 Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}]

Kurs komputerowy S - Mathematica - cz. 3 Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}] OBLICZENIA NUMERYCZNE, Karolina Mikulska-Ruminska Kurs komputerowy S - Mathematica - cz. Suma i iloczyn elementow ciagu NSum[wyr, {zm, w_pocz, w_konc}], NProduct[wyr, {zm, w_pocz, w_konc}]? *Sum* System`

Bardziej szczegółowo

Wprowadzanie wyrazen w Mathematice

Wprowadzanie wyrazen w Mathematice 1 z 52 2006-11-12 14:07 Wprowadzanie wyrazen w Mathematice Greckie litery Greckie litery jako nazwy zmiennych In[1]:= Expand[(α + β)^3] Out[1]= In[2]:= Out[2]= Expand[(\[Alpha] + \[Beta])^3] In[3]:= Out[3]=

Bardziej szczegółowo

Mathematica od zera. Paulina Suchanek, IFT Wroclaw. Factor x 2 2 x 1. Series Log 1 x, x, 0, 5. 1. Wprowadzenie. Start. Struktura notatnika

Mathematica od zera. Paulina Suchanek, IFT Wroclaw. Factor x 2 2 x 1. Series Log 1 x, x, 0, 5. 1. Wprowadzenie. Start. Struktura notatnika Mathematica od zera Paulina Suchanek, IFT Wroclaw 1. Wprowadzenie Start Struktura notatnika Notatnik edytujemy uzywajac opcji z zakladki Format. Strukture rozdzialow wprowadzamy wybierajac opcje z okienka

Bardziej szczegółowo

Mathematica (1) Organizacja Mathematica Notebooks. Style dokumentów

Mathematica (1) Organizacja Mathematica Notebooks. Style dokumentów Mathematica (1) Organizacja Mathematica Notebooks Dokument Mathematica zorganizowany jest w tzw. komórki. KaŜda komórka zawiera materiał określonego rodzaju: tekst, grafikę, dane wejściowe, dane wyjściowe

Bardziej szczegółowo

Witam! Czym jest Mathematica?

Witam! Czym jest Mathematica? Witam! Nazywam się Jacek Golak Pracuję w Zakładzie Fizyki Jądrowej Instytutu Fizyki UJ Moja dziedzina to teoretyczna fizyka jądrowa Numer pokoju: B2-32 e-mail: jacek.golak@uj.edu.pl strona WWW: http://users.uj.edu.pl/~golak/zestawynof.html

Bardziej szczegółowo

Witam Państwa na wykładzie dotyczącym narzędzi obliczeniowych fizyki!

Witam Państwa na wykładzie dotyczącym narzędzi obliczeniowych fizyki! Witam Państwa na wykładzie dotyczącym narzędzi obliczeniowych fizyki! Nazywam się Jacek Golak Pracuję w Zespole Zakładów Fizyki Jądrowej Instytutu Fizyki UJ i jestem kierownikiem Zakładu Teorii Układów

Bardziej szczegółowo

Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle

Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle na podstawie materiałów wolfram.com Równania różniczkowe: Równanie

Bardziej szczegółowo

wiczenia (z przyk adami i cz ciowymi rozwi zaniami)

wiczenia (z przyk adami i cz ciowymi rozwi zaniami) wiczenia (z przyk adami i cz ciowymi rozwi zaniami) 1. Narysuj wykresy funkcji z x 2 y 2, z 2 x 2 y 9 w R 3. Narysuj linie x 1 2 t, y 1 2 t, z 2 t. Poka wszystkie wykresy na jednym obrazku. Rozwi zanie

Bardziej szczegółowo

Zadanie1. (* parametryzacja okręgu r'= x',y',0 *) xp = R * Cos fp ; yp = R * Sin fp ; vecrp = xp, yp, 0 ; vecr = r * Cos f, r * Sin f, z ;

Zadanie1. (* parametryzacja okręgu r'= x',y',0 *) xp = R * Cos fp ; yp = R * Sin fp ; vecrp = xp, yp, 0 ; vecr = r * Cos f, r * Sin f, z ; Zadanie1 (* parametryzacja okręgu r'= x',y',0 *) Z ogólnego twierdzenia o rozwiązaniach równania Laplace a wynika, że potencjał elektryczny nie może mieć w tym punkcie ekstremum lokalnego. Warto się jednak

Bardziej szczegółowo

Wykład 6. Prawo Hooke a. Robert Hooke

Wykład 6. Prawo Hooke a. Robert Hooke Wykład 6 Równania różniczkowe, funkcje DSolve oraz NDSolve. Wykres fazowy. Prawo Hooke a, drgania sprężyn. Ruch z oporem powietrza. In[1]:= ClearAll["Global`*"] wyczyść wszystko Prawo Hooke a Robert Hooke

Bardziej szczegółowo

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i) (3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

= 1, = = + 1D, + 2D<,

= 1, = = + 1D, + 2D<, 'Przypadkowe bladzenie' jako przyklad prostego problemu, ktory moze byc pierwszym zadaniem, dla studiujacych 'Mathematica', zwiazanychm z rozwiazaniem 'rzeczywistego' problemu. Rozwazmy ruch jednowymiarowy

Bardziej szczegółowo

123456 782923456 6 22336 46466 6 6 6 783863658386 6 6 6 6 4!"! 468983#84636434$4636 6 6 6 %&6 '5626 ()68'546 6 6 &6 6 82845469234548*+6 %6 6 6 %6 '56268'546"'844$$6 %6 6 6 %&6 '5626 ()68'546,6 6 6 6 -*386

Bardziej szczegółowo

Liczby zespolone to (uporządkowane) pary liczb rzeczywistych, dla których dodawanie i mnożenie jest określone wzorami:

Liczby zespolone to (uporządkowane) pary liczb rzeczywistych, dla których dodawanie i mnożenie jest określone wzorami: Przytaczając definicję liczb zespolonych, wyznacznika, wypowiedź twierdzenia Cramera oraz Kroneckera-Capelliego, korzystałem z I tomu wykładów Prof. Andrzeja Staruszkiewicza dla fizyków: ALGEBRA I GEOMETRIA,

Bardziej szczegółowo

n 2 1. lim n 3 sin 2. lim k 2 + n 2 3. lim 8 k n + 2 k + 5 n 2 Oblicz granice n lim n 2 3 π + log(8) x π + log(64) lim sin sin lim

n 2 1. lim n 3 sin 2. lim k 2 + n 2 3. lim 8 k n + 2 k + 5 n 2 Oblicz granice n lim n 2 3 π + log(8) x π + log(64) lim sin sin lim . Oblicz graice. k= k 3 + 3. 3. si k= k + 8 k + k + 5 k= k= k 3 + 3 9 3 π + log(8) 3 k= k 3 + 3 k= k 3 + 3 k= 3 + k 3 Itegrate, {,, } 3 + 8 3 π + log(64) k 3 k= k= si si k + k + k + - LimitSum π 4 k +

Bardziej szczegółowo

Wstęp do chemii kwantowej - laboratorium. Zadania

Wstęp do chemii kwantowej - laboratorium. Zadania Wstęp do chemii kwantowej - laboratorium. Zadania 2 października 2012 1 Wstęp Używanie maximy jako kalkulatora Zadanie 1 1. Oblicz 2+2*2 2. Oblicz 18769 3. Oblicz 2 10 4. Oblicz 7/8 i 7.0/8.0 5. Oblicz

Bardziej szczegółowo

.<=->./?-> 0 A " #($" $' $ "./ F / % 6789 G HIJKLMNO 2 #$ ab]^[ #$ P 6 c_`ab b ]^FG&H+ IJ K LMNO P$QR SU^I T T+ UV? cwxky N ` ]^ Z[\]^ _

.<=->./?-> 0 A  #($ $' $ ./ F / % 6789 G HIJKLMNO 2 #$ ab]^[ #$ P 6 c_`ab b ]^FG&H+ IJ K LMNO P$QR SU^I T T+ UV? cwxky N ` ]^ Z[\]^ _ F / % 6789 G HIJKLMNO 2 #$ ab]^[ #$ P 6 c_`ab b ]^FG&H+ IJ K LMNO P$QR SU^I T T+ UV? cwxky N ` ]^ Z[\]^ _` a/r c9 bc ) &HSU]^ IJ S P. ) # P IJ c _`ab]^ ]^ +c T N _`ab]^ \(c a cg QRS _`ab ]^ + ^I )T U/

Bardziej szczegółowo

Kurs Komputerowy S System Symboliczny Mathematica

Kurs Komputerowy S System Symboliczny Mathematica Kurs Komputerowy S System Symboliczny Mathematica Obliczenia numeryczne Dokladnosc i precyzja Precision[wartosc] SetPrecision[wartosc, precyzja] Accuracy[wartosc] SetAccuracy[wartosc, dokladnosc] MachinePrecision

Bardziej szczegółowo

M P A P S - 50 X 100

M P A P S - 50 X 100 ul. Hauke Bosaka 15, 25-217 Kielce; e-mail: marketing@obreiup.com.pl MP seria Jak zamawiać? M P A P S - 50 X 100 M: Marani A: Dwustronnego działania (typ podstawowy) S: Magnes na tłoku Średnica x Skok

Bardziej szczegółowo

1 Wizualizacja danych - wykresy 2D

1 Wizualizacja danych - wykresy 2D 1 Wizualizacja danych - wykresy 2D Funkcje sterujące tworzeniem wykresów plot(x,y, KSL ) tworzy wykres 2D wraz z specyfikatorem lini K - kolor, S - symbol, L - linia figure(nr) subplot(m,n,active) hold

Bardziej szczegółowo

Stałe = Infinity, π = Pi, E = e, Deg = π/180

Stałe = Infinity, π = Pi, E = e, Deg = π/180 ( Notatki, w opracowaniu M. Szurka do Seminarium Modelowanie matematyczne : wersja 25 października 2004) De computer is niet de steen, maar de slijpsteen der wijzen. Komputer nie jest kamieniem filozoficznym,

Bardziej szczegółowo

Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki

Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 22.05.2013 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony www.mathematica.pl

Bardziej szczegółowo

pobrano z (A1) Czas GRUDZIE

pobrano z  (A1) Czas GRUDZIE EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

Liczby i działania na liczbach

Liczby i działania na liczbach Na tym wykładzie chciałbym przekonać Państwa, że Mathematica może być pomocna w studiowaniu analizy matematycznej. Liczby i działania na liczbach (* liczby całkowite *) Element[-, Integers] należy do zbiór

Bardziej szczegółowo

Szkielet skryptu z AM II - wersja 2 października 2015

Szkielet skryptu z AM II - wersja 2 października 2015 Szkielet skryptu z AM II - wersja października 015 Sławomir Kolasiński, Michał Jóźwikowski października 015 1 Wstęp W niniejszym dodatku chcielibyśmy zaprezentować Czytelnikowi zestaw sytuacji, w których

Bardziej szczegółowo

(naci nij SHIFT + ENTER po ustawieniu kursora w dowolnym miejscu w komórce zawieraj cej formu )

(naci nij SHIFT + ENTER po ustawieniu kursora w dowolnym miejscu w komórce zawieraj cej formu ) 1. Podstawowe Zasady 1. Przegl d funkcjonalno ci. Mathematica jako kalkulator. Praktycznie wszyskie potrzebne informacje o Mathematice mo na uzyska z Centrum Dokumentacji (aby do niego dotrze nale y nacisn

Bardziej szczegółowo

Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania).

Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania). Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania). W momencie gdy jesteś studentem lub świeżym absolwentem to znajdujesz się w dobrym momencie, aby rozpocząć planowanie swojej ścieżki

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Pobrno ze strony www.sqlmedi.pl Modele odpowiedzi do rkusz Próbnej Mtury z OPERONEM Mtemtyk Poziom rozszerzony Listopd 9 W kluczu sà prezentowne przyk dowe prwid owe odpowiedzi. Nle y równie uznç odpowiedzi

Bardziej szczegółowo

REDUKTORY ŒLIMAKOWE PRZEK ADNIE ŒLIMAKOWE NMRV 050 NRV 050 NMRV 090 NRV 090 NRV 030/040 NRV 040/090

REDUKTORY ŒLIMAKOWE PRZEK ADNIE ŒLIMAKOWE NMRV 050 NRV 050 NMRV 090 NRV 090 NRV 030/040 NRV 040/090 REDUKTORY ŒLIMAKOWE PRZEK ADNIE ŒLIMAKOWE 0 NRV 0 00 NRV 00 NRV 0/0 NRV 0/00 2 NRV PRZY CZA DO SILNIKA IEC Oferowane reduktory musz¹ byæ zespolone z silnikami za pomoc¹ ko³nierzy adaptacyjnych odpowiadaj¹cych

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

n p 2 i = R 2 (8.1) i=1

n p 2 i = R 2 (8.1) i=1 8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

I Konkurencja: Webmaster to ja! bran a elektrycznoelektroniczna/administracyjno-usługowa

I Konkurencja: Webmaster to ja! bran a elektrycznoelektroniczna/administracyjno-usługowa Zał cznik nr 1 do Regulaminu I Konkurencja: Webmaster to ja! bran a elektrycznoelektroniczna/administracyjno-usługowa Miejsce: Zespół Szkół Technicznych im. Ignacego Mo cickiego w Tarnowie, ul. Kwiatkowskiego

Bardziej szczegółowo

#$%&"!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$

#$%&!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$ M NM O *+ 62-3B6 8 -C 6-B7 6 * *+5 2 B9 A: 6:!"#$% '!"#$%' ()* +,-. $/0(1()*$ +,!' + -.+ -/ (* +,!' + - / +,!'0!" $(1 234.56789: $(1 ;. *; ' +,!' 1 $% )# ?@ABCDE!6 9: $(1 FGH IJ!" $/0(1 IJKL

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4 ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu

Bardziej szczegółowo

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy 2016/2017 Potęgowanie Dla dowolnej liczby dodatniej

Bardziej szczegółowo

Finansowanie inwestycji w OZE - PO Infrastruktura i Środowisko

Finansowanie inwestycji w OZE - PO Infrastruktura i Środowisko Finansowanie inwestycji w OZE - PO Infrastruktura i Środowisko Dofinansowanie projektów związanych z inwestycjami w OZE w ramach Polskich Narodowych Strategicznych Ram Odniesienia na lata 2007 2013 moŝe

Bardziej szczegółowo

Raport, został przygotowany na podstawie 42 wypełnionych przez uczestników kursu ankiet ewaluacyjnych przeprowadzonych w dniach:

Raport, został przygotowany na podstawie 42 wypełnionych przez uczestników kursu ankiet ewaluacyjnych przeprowadzonych w dniach: Raport z analizy ankiet ewaluacyjnych kursu Gender Mainstreaming przeprowadzonego w dniach : 15-16.10.2009r., 22-23.10.2009r., 24 25.10.2009r., 05-06.11.2009r. w Wydziale Nauk Społecznych WSP TWP w Warszawie

Bardziej szczegółowo

Zbigniew Krzysiak. Projektowanie 2D w programie AutoCAD

Zbigniew Krzysiak. Projektowanie 2D w programie AutoCAD Zbigniew Krzysiak Projektowanie 2D w programie AutoCAD Recenzenci Dr hab. inż. Józef Drewniak, prof. ATH w Bielsku-Białej Dr inż. Kamil Sybilski Projekt okładki Andrzej Leśkiewicz Redakcja Krzysztof Janus

Bardziej szczegółowo

SzeregFouriera-Legendre a

SzeregFouriera-Legendre a SzeregFouriera-Legendre a Szereg Fouriera-Legendre a : n=0 P n (t) f n Współczynniki f n = Pn (t) f (t) dt - Pn (t) 2 dt - = 2 n + Pn 2 - (t) f (t) dt Pn - (t) 2 dt = 2 2 n + Zadanie Policz kwadrat normy

Bardziej szczegółowo

Mathematica - organizacja. czyli sztuka obliczeń symbolicznych. Możliwości. Mathematica do czego można ją użyć. Możliwości, cd. Mathematica publikacje

Mathematica - organizacja. czyli sztuka obliczeń symbolicznych. Możliwości. Mathematica do czego można ją użyć. Możliwości, cd. Mathematica publikacje czyli sztuka obliczeń symbolicznych Mathematica - organizacja Dokument Mathematica zorganizowany jest w tzw. komórki. Ręczne zerowanie zmiennych Clear[variables] (* czyści wartości zmiennych*) x=. (* to

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

DANE MAKROEKONOMICZNE (TraderTeam.pl: Rafa Jaworski, Marek Matuszek) Lekcja V

DANE MAKROEKONOMICZNE (TraderTeam.pl: Rafa Jaworski, Marek Matuszek) Lekcja V DANE MAKROEKONOMICZNE (TraderTeam.pl: Rafa Jaworski, Marek Matuszek) Lekcja V Inflacja (CPI, PPI) Wszelkie prawa zastrze one. Kopiowanie i rozpowszechnianie ca ci lub fragmentu niniejszej publikacji w

Bardziej szczegółowo

Sin[Pi / 4] Log[2, 1024] Prime[10]

Sin[Pi / 4] Log[2, 1024] Prime[10] In[1]:= (* WSTĘP DO PAKIETU MATHEMATICA *) (* autorzy: Łukasz Płociniczak,Marek Teuerle*) (* Składnia: nazwy funkcji z wielkiej litery a argumenty w kwadratowych nawiasach. Wywołujemy wartość SHIFT+ENTER

Bardziej szczegółowo

Główne wyniki badania

Główne wyniki badania 1 Nota metodologiczna Badanie Opinia publiczna na temat ubezpieczeń przeprowadzono w Centrum badania Opinii Społecznej na zlecenie Urzędu Ochrony Konkurencji i Konsumentów w dniach od 13 do 17 maja 2004

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematyka Poziom rozszerzony Listopad 0 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź Wskazówki do rozwiązania.

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

Korekta jako formacja cenowa

Korekta jako formacja cenowa Korekta jako formacja cenowa Agenda Co to jest korekta i jej cechy Korekta a klasyczne formacje cenowe Korekta w teorii fal Geometria Czas - jako narzędzie Przykłady Korekta To ruch ceny na danym instrumencie

Bardziej szczegółowo

Mathematica jako narz dzie badawcze Cz ± pi ta. Fraktale

Mathematica jako narz dzie badawcze Cz ± pi ta. Fraktale Mathematica jako narz dzie badawcze Cz ± pi ta. Fraktale Czy koªa s pi kne? Mo»na udowodni wiele teorii na ich temat, wiele ich cech jest interesuj cych, ale»eby koªo miaªo by pi kne? Jest nudne, wsz dzie

Bardziej szczegółowo

Optyka geometryczna i falowa

Optyka geometryczna i falowa Pojęcie podstawowe: promień świetlny. Optyka geometryczna i alowa Podstawowa obserwacja: jeżeli promień świetlny pada na granicę dwóch ośrodków to: ulega odbiciu na powierzchni granicznej za!amaniu przy

Bardziej szczegółowo

Przekształcenia wykresów funkcji

Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Jerzy Rutkowski Teoria Niech f : R R będzie dowolną funkcją i niech liczby a, k R spełniają warunki: a > 0 i k 0 Związek między funkcją

Bardziej szczegółowo

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna

Bardziej szczegółowo

O SPIRALI ARCHIMEDESA I JEJ INTERPRETACJI PRZYRODNICZEJ ILUSTRUJĄCEJ BUDOWĘ PAJĘCZYN

O SPIRALI ARCHIMEDESA I JEJ INTERPRETACJI PRZYRODNICZEJ ILUSTRUJĄCEJ BUDOWĘ PAJĘCZYN Polska Problemy Nauk Stosowanych, 016, Tom 4, s. 19 4 Szczecin dr Grzegorz Paweł SKORNY, dr Andrzej Antoni CZAJKOWSKI, mgr Jakub ŚLEDZIOWSKI Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie, Wydział Transportu

Bardziej szczegółowo

Korzy ci wynikaj ce ze standaryzacji procesów w organizacjach publicznych a zarz dzanie jako ci

Korzy ci wynikaj ce ze standaryzacji procesów w organizacjach publicznych a zarz dzanie jako ci Roman Batko Korzy ci wynikaj ce ze standaryzacji procesów w organizacjach publicznych a zarz dzanie jako ci Uniwersytet Jagiello ski wypracowanie i upowszechnienie najbardziej skutecznej i efektywnej dobrej

Bardziej szczegółowo

Postrzeganie reklamy zewnętrznej - badania

Postrzeganie reklamy zewnętrznej - badania Według opublikowanych na początku tej dekady badań Demoskopu, zdecydowana większość respondentów (74%) przyznaje, że w miejscowości, w której mieszkają znajdują się nośniki reklamy zewnętrznej (specjalne,

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Równia pochyła jest przykładem maszyny prostej. Jej konstrukcja składa się z płaskiej powierzchni nachylonej pod kątem

Bardziej szczegółowo

POSTANOWIENIE. SSN Henryk Pietrzkowski (przewodniczący) SSN Anna Kozłowska SSN Dariusz Zawistowski (sprawozdawca)

POSTANOWIENIE. SSN Henryk Pietrzkowski (przewodniczący) SSN Anna Kozłowska SSN Dariusz Zawistowski (sprawozdawca) Sygn. akt II CSK 35/13 POSTANOWIENIE Sąd Najwyższy w składzie: Dnia 30 października 2013 r. SSN Henryk Pietrzkowski (przewodniczący) SSN Anna Kozłowska SSN Dariusz Zawistowski (sprawozdawca) w sprawie

Bardziej szczegółowo

Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci

Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci Twierdzenie o redukcji: Każdy układ wektorów równoważny jest układowi złożonemu ze sumy o początku w dowolnym punkcie

Bardziej szczegółowo

Kratownice Wieża Eiffel a

Kratownice Wieża Eiffel a Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,

Bardziej szczegółowo

DANE MAKROEKONOMICZNE (TraderTeam.pl: Rafa Jaworski, Marek Matuszek) Lekcja IV

DANE MAKROEKONOMICZNE (TraderTeam.pl: Rafa Jaworski, Marek Matuszek) Lekcja IV DANE MAKROEKONOMICZNE (TraderTeam.pl: Rafa Jaworski, Marek Matuszek) Lekcja IV Stopa procentowa Wszelkie prawa zastrze one. Kopiowanie i rozpowszechnianie ca ci lub fragmentu niniejszej publikacji w jakiejkolwiek

Bardziej szczegółowo

Zamiana sumowania po stanach jednocząstkowych na całkowanie

Zamiana sumowania po stanach jednocząstkowych na całkowanie TiFS, Ćwiczenia nr 11 Zamiana sumowania po stanach jednocząstkowych na całkowanie Gęstość stanów kwantowych na osi energii f (E) określa liczbę stanów N(E) w określonym przedziale energii de: f (E) de

Bardziej szczegółowo

MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i

MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i MATEMATYKA EiT (studia drugiego stopnia, drugi semestr) ) Wyznaczyć Re z; Im z; jzj ; z dla z = ( + i)(3 i), ( + i)( i) + (3 5i), (+i) 3 i, i44 i 45 i 46 +3i, 47 (cos 33 + i sin 33 ), ( + p 3 i)7, (i )

Bardziej szczegółowo

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Instrukcja instalacji programu Plantator oraz transferu pliku danych z/do PC kolektor danych PT-20

Instrukcja instalacji programu Plantator oraz transferu pliku danych z/do PC kolektor danych PT-20 BEXLAB RYSZARD MATUSZYK UL. BRZOZOWA 14 05-311 DĘBE WIELKIE TEL. KOM. 512-019-590 Instrukcja instalacji programu Plantator oraz transferu pliku danych z/do PC kolektor danych PT-20 http://bexlab.pl BEXLAB

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas

Bardziej szczegółowo

Podstawy analizy matematycznej II

Podstawy analizy matematycznej II Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań

Bardziej szczegółowo

Jakub Dzionek, Zygmunt Kalinowski Nowe logo i nowy system identyfikacji Muzeum Pierwszych Piastów na Lednicy. Studia Lednickie 12, 199-202

Jakub Dzionek, Zygmunt Kalinowski Nowe logo i nowy system identyfikacji Muzeum Pierwszych Piastów na Lednicy. Studia Lednickie 12, 199-202 Jakub Dzionek, Zygmunt Kalinowski Nowe logo i nowy system identyfikacji Muzeum Pierwszych Piastów na Lednicy Studia Lednickie 12, 199-202 2013 Jakub Dzionek, Zygmunt Kalinowski Muzeum Pierwszych Piastów

Bardziej szczegółowo

OFERTA UPOMINKÓW Z OKAZJI DNIA KOBIET

OFERTA UPOMINKÓW Z OKAZJI DNIA KOBIET OFERTA UPOMINKÓW Z OKAZJI DNIA KOBIET 2011 Kwiaty w puszce Puszki zawierające nasiona lub cebulki roślin wraz ze specjalnie spreparowanymi składnikami gwarantującymi optymalne warunki wzrostu, przeobrażają

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta

2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta 2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta Pieniężny Pomiar Korzyści z Handlu Możesz kupić tyle benzyny ile chcesz, po cenie 2zł za litr. Jaka jest najwyższa cena, jaką zapłacisz za 1 litr benzyny?

Bardziej szczegółowo

Marii. Skłodowskiej-Curie. Ekspozycja-warsztaty Lekcje

Marii. Skłodowskiej-Curie. Ekspozycja-warsztaty Lekcje Epyj-y Lj M.--.-v.f L M 2011 j- Epyj-y p L M NR (b M) p Mé, Uy P-D, Uy. P M j- Uy P 11 Oy. y yp M j- phą ąż Lj M j- Ib hv, yj p E EDP 2003. Zję M j- ą ć Mé. L M 386, v Dv L 92290 hây-mby - FRANJA (33)

Bardziej szczegółowo

Przekształcenia wykresów funkcji

Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Jerzy Rutkowski Teoria Niech f : R R będzie dowolną funkcją i niech liczby a, k R spełniają warunki: a > 0 i k 0. Związek między funkcją

Bardziej szczegółowo

Zadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3

Zadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3 Zadania zamknięte ZADANIE 1 (1 PKT) Równanie x2 3x+2 = 0 ma: x 2 4 A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki ZADANIE 2 (1 PKT) Liczba b jest 3 razy większa od liczby a. Wtedy

Bardziej szczegółowo

Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą

Bardziej szczegółowo

Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć

Bardziej szczegółowo

Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć

Bardziej szczegółowo

Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę

Bardziej szczegółowo

Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę

Bardziej szczegółowo

Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć

Bardziej szczegółowo

ć ź ć ź ć ć Ź ć ć ć ć ź ć ć ź ć ć Ź Ł ć ć ć Ż ć Ż ć ć Ź ź Ć Ą Ź Ż Ż Ź Ż Ć Ł Ł Ź Ź ź Ą ź Ą Ć Ź Ł Ź ć Ź ćź Ź Ź Ą Ź ć Ź ć Ł ć Ł ć ć Ł ć Ą ć ć ć ź ź ć ć ć ć ź ć ć ć ź ć ć ć ć ć ć ć ć Ł Ź ć ź ć Ą ć ć Ą Ć

Bardziej szczegółowo

Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą

Bardziej szczegółowo

Poniżej instrukcja użytkowania platformy

Poniżej instrukcja użytkowania platformy Adres dostępowy: http://online.inter-edukacja.wsns.pl/ Poniżej instrukcja użytkowania platformy WYŻSZA SZKOŁA NAUK SPOŁECZNYCH z siedzibą w Lublinie SZKOLENIA PRZEZ INTERNET Instrukcja użytkowania platformy

Bardziej szczegółowo

Raport zrównoważonego rozwoju Kompanii Piwowarskiej 2012

Raport zrównoważonego rozwoju Kompanii Piwowarskiej 2012 Raport zrównoważonego rozwoju Kompanii Piwowarskiej 2012 Raport obejmuje dane za rok finansowy F12 (12 miesięcy od 1 kwietnia 2011 r. do 31 marca 2012 r.), chyba że w treści wskazano inaczej. Raport został

Bardziej szczegółowo