WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO BIFILARNEGO TORU WIELKOPRĄDOWEGO. CZĘŚĆ I OBSZAR ZEWNĘTRZNY EKRANU

Wielkość: px
Rozpocząć pokaz od strony:

Download "WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO BIFILARNEGO TORU WIELKOPRĄDOWEGO. CZĘŚĆ I OBSZAR ZEWNĘTRZNY EKRANU"

Transkrypt

1 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Egieerig 013 Dariusz KUSIAK* Zygmut PIĄTEK* Tomasz SZCZEGIELNIAK* WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO BIFILARNEGO TORU WIELKOPRĄDOWEGO. CZĘŚĆ I OBSZAR ZEWNĘTRZNY EKRANU W artykule wykazao, jak a całkowite pole magetycze ekraowaej bifilarej liii dwuprodowej w ekraie i jego otoczeiu ma wpływ grubość ściaki ekrau. Wypadkowe pole magetycze w tego typu torze wielkoprądowym ma dwie składowe o różych amplitudach i fazach początkowych. W kosekwecji pole to jest polem eliptyczym. Opisu tego dokoao wzorami dla względych wartości pola i parametrów uwzględiających częstotliwość, koduktywość i wymiary poprzecze ekrau. Uwzględioo przy tym także zjawisko askórkowości oraz wewętrze i ętrze zjawiska zbliżeia. Część I opisuje pole magetycze w obszarze ętrzym ekrau. 1. WPROWADZENIE Układ dwóch prodów we wspólej prodzącej osłoie (rysuek 1) stosoway jest jako ekraowaa bifilara liia trasmisyja [1]. W procesach techologiczych istotą wartością jest ajwiększa wartość atężeia pola magetyczego. Wartości emitowae przez takie tory są duże awet w warukach zamioowych []. W przypadku pola eliptyczego za wartość tę ależy przyjmować długość H a dłuższej półosi elipsy [3]: H max H Θ, t) H H a 1 t ( 0, T ) Przekroczeie przez te pola pewych dopuszczalych wartości prowadzić może do ieprawidłowego fukcjoowaia urządzeń elektryczych, admierego agraia się kostrukcji stalowych, degradacji środowiska aturalego i może także stwarzać zagrożeia dla człowieka [4]. W artykule pokazao, jak wygląda całkowite pole magetycze w obszarze ętrzym i wewętrzym oraz w ekraie dwubieguowego bifilarego toru wielkoprądowego, gdy zmieiaa będzie grubość ściaki ekrau o koduktywości, promieiu wewętrzym R 3 i ętrzym R 4 (rys. 1). * Politechika Częstochowska. (1)

2 80 Dariusz Kusiak, Zygmut Piątek, Tomasz Szczegieliak y y y H er H eθ X R 1 r XZ r r XY Θ R 1 Z γ 1 Y x R d I I 1 d 1 R x γ R 4 e μ 0 R 3 Rys. 1. Dwuprodowy ekraoway tor wielkoprądowy z prądami I = I 1 = I. CAŁKOWITE POLE MAGNETYCZNE W OBSZARZE ZEWNĘTRZNYM EKRANU W przypadku ekraowaej bifilarej liii (I = I 1 = I) z izolowaą osłoą pole magetycze w obszarze ętrzym ekrau określoe jest wzorem [5] H H 1 H () Wprowadzoo względą grubość ekrau R3 R przy czym 0 1 (3) zmieą względą R 4 4 r i parametr d R 3, to wzory a składowe względe pola magetyczego H 1 w obszarze ętrzym ekrau ( r R4 ) dwuprodowego ekraowaego toru wielkoprądowego mają postać [5]: 1 s h1 r (, si Θ (4) d oraz 1 1 s h1 Θ (, cos Θ d (5)

3 Wpływ grubości ekrau a całkowite pole magetycze Część I 81 Θ zaś składowe względe pola H ) mają postać oraz gdzie oraz 1 s h r (, 1 si Θ (6) d s h Θ (, 1 cos Θ d (7) s I j ) K ( j ) I ( j ) K ( j ) (8) ( d I j ) K ( j ) I ( j ) K ( j ) (9) ( W powyższych wzorach I ( j ), K ( j ), I ( j ), K ( j ) są zmodyfikowaymi fukcjami Bessela odpowiedio pierwszego i drugiego 1 rodzaju, rzędu -1 oraz +1, a kr4 dla k [6]. 3. WPŁYW ZMIANY GRUBOŚCI EKRANU NA POLE MAGNETYCZNE W OBSZARZE ZEWNĘTRZNYM EKRANU Rozkład składowych względych tego pola dla różych wartości parametru przedstawiamy a rysukach, 3, 4 i 5. Rys.. Rozkład względych wartości modułu składowej promieiowej całkowitego pola magetyczego w obszarze ętrzym ekrau liii bifilarej

4 8 Dariusz Kusiak, Zygmut Piątek, Tomasz Szczegieliak Rys. 3. Rozkład względych wartości argumetu składowej promieiowej całkowitego pola magetyczego w obszarze ętrzym ekrau liii bifilarej Rys. 4. Rozkład względych wartości modułu składowej styczej całkowitego pola magetyczego w obszarze ętrzym ekrau liii bifilarej Rys. 5. Rozkład względych wartości argumetu składowej styczej całkowitego pola magetyczego w obszarze ętrzym ekrau liii bifilarej

5 Wpływ grubości ekrau a całkowite pole magetycze Część I 83 Rozkład modułu całkowitego pola magetyczego w obszarze ętrzym ekrau dla różych wartości parametru w fukcji kąta Θ przedstawiamy a rysuku 6. Rys. 6. Rozkład względej wielkości modułu całkowitego pola magetyczego w obszarze ętrzym ekrau dla różych wartości parametru 4. WNIOSKI Wprowadzeie parametrów β, α oraz λ i zmieej względej ξ dla ekrau, umożliwia przedstawieie otrzymaych wzorów a zespoloe składowe i moduły atężeia pola magetyczego ekraowaego dwuprodowego toru wielkoprądowego w postaciach ogólych, iezależych od kokretych wartości koduktywości, wymiarów poprzeczych i wzajemego położeia prodów i osłoy oraz częstotliwości prądów fazowych. Umożliwia to rówież ogólą aalizę i wizualizację modułów i argumetów tego pola w postaci wykresów jako fukcji zmieych względych, kąta Θ lub wyżej wymieioych parametrów dla ustaloych wartości zmieej lub ustaloych wartości odpowiedich parametrów (rys., 3, 4 i 5). Otrzymae rozwiązaia są wyrażoe przez szeregi ze zmodyfikowaymi fukcjami Bessela i uwzględiają zjawisko askórkowości oraz wewętrze i ętrze zjawiska zbliżeia. Są oe waże w zakresie częstotliwości pozwalającej a pomiięcie prądów przesuięcia. Z przedstawioego rozkładu całkowitego pola magetyczego w obszarze ętrzym ekrau

6 84 Dariusz Kusiak, Zygmut Piątek, Tomasz Szczegieliak w dwuprodowym osłoiętym torze wielkoprądowym wyika, że w miarę wzrostu grubości ściaki ekrau (miejsza wartość parametru ) pole magetycze staje się coraz bardziej ierówomiere. Poadto, jeśli zwroty prądów są przeciwe, obserwujemy wtedy charakterystycze zjawisko wciągaia pola magetyczego do środka układu dwuprodowego (rys. 6). LITERATURA [1] Nawrowski R.: Tory wielkoprądowe izolowae powietrzem lub SF 6, Wyd. Pol. Pozańskiej, Pozań [] Jabłoński P.: Approximate BEM Aalysis of a Thi Electromagetic Shield of Variable Thickess, Przegląd Elektrotechiczy, ISSN , R. 88, Nr 3a/01, ss [3] Piątek Z., Kusiak D., Szczegieliak T: Eliptycze pole magetycze w torach wielkoprądowych, Przegląd Elektrotechiczy, ISSN , R. 86 NR 4/010, s [4] Piątek Z.: Modelowaie liii, kabli i torów wielkoprądowych, Seria Moografie r 130, Wyd. Pol. Częst., Czestochowa 007. [5] Kusiak D.: Pole magetycze dwu i trójbieguowych torów wielkoprądowych, Rozprawa doktorska, Pol. Częst., Wydz. El., Częstochowa 008. [6] Mc Lachla N.W.: Fukcje Bessela dla iżyierów, PWN, Warsaw Praca ta jest fiasowaa przez Narodowe Cetrum Nauki jako projekt badawczy N N THE IMPACT OF THE SCREEN THICKNESS ON THE TOTAL MAGNETIC FIELD OF A TWO-CONDUCTOR BIFILAR HIGH-CURRENT BUSDUCT. PART I THE EXTERNAL AREA OF THE SCREEN I the paper show the impact of the scree thickess o the total magetic field of a two-coductor bifilar busduct i the scree ad its immediate viciity. The resultat magetic field i the high-curret busduct of this type has two compoets of differet amplitudes ad iitial phases. As a cosequece this field is elliptical. This pheomeo has bee described with the formulas relevat to the relative values of the field ad the parameters allowig the frequecy, coductivity, ad the cross-sectio dimesios of scree. Ito accout was take ski, iteral ad exteral proximity effects. Part I describes of magetic field i the exteral area of the scree.

WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO BIFILARNEGO TORU WIELKOPRĄDOWEGO. CZĘŚĆ II EKRAN I OBSZAR WEWNĘTRZNY EKRANU

WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO BIFILARNEGO TORU WIELKOPRĄDOWEGO. CZĘŚĆ II EKRAN I OBSZAR WEWNĘTRZNY EKRANU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 2013 Dariusz KUSIAK* Zygmunt PIĄTEK* Tomasz SZCZEGIELNIAK* WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO

Bardziej szczegółowo

ZNACZENIE WPŁYWU ODLEGŁOŚCI MIĘDZY PRZEWODAMI NA POLE MAGNETYCZNE TRÓJFAZOWEGO JEDNOBIEGUNOWEGO EKRANOWANEGO PŁASKIEGO TORU WIELKOPRĄDOWEGO

ZNACZENIE WPŁYWU ODLEGŁOŚCI MIĘDZY PRZEWODAMI NA POLE MAGNETYCZNE TRÓJFAZOWEGO JEDNOBIEGUNOWEGO EKRANOWANEGO PŁASKIEGO TORU WIELKOPRĄDOWEGO P OZNAN UNIVERSIT Y OF TECHNOLOGY ACADEMIC JOURNALS No 93 Electrical Egieerig 018 DOI 10.1008/j.1897-0737.018.93.0010 Dariusz KUSIAK * ZNACZENIE WPŁYWU ODLEGŁOŚCI MIĘDZY PRZEWODAMI NA POLE MAGNETYCZNE

Bardziej szczegółowo

WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA TEMPERATURĘ PRZEWODU RUROWEGO

WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA TEMPERATURĘ PRZEWODU RUROWEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 89 Electrical Engineering 7 DOI.8/j.897-737.7.89.6 Tomasz SZCZEGIELNIAK* WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA TEMPERATURĘ PRZEWODU RUROWEGO Projektowanie

Bardziej szczegółowo

POLE MAGNETYCZNE WOKÓŁ EKRANOWANYCH TRÓJFAZOWYCH TORÓW WIELKOPRĄDOWYCH

POLE MAGNETYCZNE WOKÓŁ EKRANOWANYCH TRÓJFAZOWYCH TORÓW WIELKOPRĄDOWYCH POZNAN UNVE RSTY OF TE CNOLOGY ACADE MC JOURNALS No 85 Electrical Egieerig 01 Tomasz SZCZEGELNAK* Dariusz KUSAK* Zygmut PĄTEK* POLE MAGNETYCZNE WOKÓŁ EKRANOWANYC TRÓJFAZOWYC TORÓW WELKOPRĄDOWYC Pole magetycze

Bardziej szczegółowo

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI UKŁADU DEMAGNETYZACYJNEGO

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI UKŁADU DEMAGNETYZACYJNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrical Engineering 2015 Mirosław WOŁOSZYN* Kazimierz JAKUBIUK* Mateusz FLIS* ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI

Bardziej szczegółowo

Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi

Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy

Bardziej szczegółowo

Podpis prowadzącego SPRAWOZDANIE

Podpis prowadzącego SPRAWOZDANIE Imię i nazwisko.. Grupa. Data. Podpis prowadzącego. SPRAWOZDANIE LABORATORIUM POFA/POFAT - ĆWICZENIE NR 1 Zadanie nr 1 (plik strip.pro,nazwa ośrodka wypełniającego prowadnicę - "airlossy") Rozważamy przypadek

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 016 Krzysztof KRÓL* NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU W artykule zaprezentowano

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Seweryn MAZURKIEWICZ* Janusz WALCZAK* ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU W artykule rozpatrzono problem

Bardziej szczegółowo

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY

Bardziej szczegółowo

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Electrical Engineering 05 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH

Bardziej szczegółowo

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO WEWNĄTRZ OBIEKTU FERROMAGNETYCZNEGO

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO WEWNĄTRZ OBIEKTU FERROMAGNETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 2013 Adam MŁYŃSKI* ANALIZA ROZKŁADU POLA MAGNETYCZNEGO WEWNĄTRZ OBIEKTU FERROMAGNETYCZNEGO W artykule przedstawione zostały

Bardziej szczegółowo

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 Damian BURZYŃSKI* Leszek KASPRZYK* APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA

Bardziej szczegółowo

Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.

Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek. FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x

Bardziej szczegółowo

WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA IMPEDANCJĘ WEJŚCIOWĄ KABLA WSPÓŁOSIOWEGO W STANIE JAŁOWYM Z MIEJSCOWYM OSŁABIENIEM IZOLACJI

WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA IMPEDANCJĘ WEJŚCIOWĄ KABLA WSPÓŁOSIOWEGO W STANIE JAŁOWYM Z MIEJSCOWYM OSŁABIENIEM IZOLACJI PONAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Electrical Engineering 212 Aneta BUGAJSKA* WPŁYW JAWISKA NASKÓRKOWOŚCI NA IMPEDANCJĘ WEJŚCIOWĄ KABLA WSPÓŁOSIOWEGO W STANIE JAŁOWYM MIEJSCOWYM

Bardziej szczegółowo

Punktowe procesy niejednorodne

Punktowe procesy niejednorodne Modelowaie i Aaliza Daych Przestrzeych Wykład 5 Adrzej Leśiak Katedra Geoiformatyki i Iformatyki Stosowaej Akademia Góriczo-Huticza w Krakowie Puktowe procesy iejedorode Jak wcześiej wspomiao, dla procesów

Bardziej szczegółowo

KOAKSJALNY MAGNETOKUMULACYJNY GENERATOR PRĄDU

KOAKSJALNY MAGNETOKUMULACYJNY GENERATOR PRĄDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 2016 Mirosław WOŁOSZYN* Kazimierz JAKUBIUK* Paweł ZIMNY* KOAKSJALNY MAGNETOKUMULACYJNY GENERATOR PRĄDU W pracy przedstawiono

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE,

POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, -- EXCEL Wykresy. Kolumę A, B wypełić serią daych: miesiąc, średia temperatura.

Bardziej szczegółowo

WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI W UKŁADZIE FOC Z SILNIKIEM INDUKCYJNYM NA PRĘDKOŚĆ OBROTOWĄ

WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI W UKŁADZIE FOC Z SILNIKIEM INDUKCYJNYM NA PRĘDKOŚĆ OBROTOWĄ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 Wiktor HUDY* Kazimierz JARACZ* WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

ZESTAW BEZPRZEWODOWYCH CZUJNIKÓW MAGNETYCZNYCH DO DETEKCJI I IDENTYFIKACJI POJAZDÓW FERROMAGNETYCZNYCH

ZESTAW BEZPRZEWODOWYCH CZUJNIKÓW MAGNETYCZNYCH DO DETEKCJI I IDENTYFIKACJI POJAZDÓW FERROMAGNETYCZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 2013 Kazimierz JAKUBIUK* Mirosław WOŁOSZYN* ZESTAW BEZPRZEWODOWYCH CZUJNIKÓW MAGNETYCZNYCH DO DETEKCJI I IDENTYFIKACJI

Bardziej szczegółowo

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Michał KRYSTKOWIAK* Dominik MATECKI* MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski

Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a

Bardziej szczegółowo

WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA IMPEDANCJĘ WEJŚCIOWĄ KABLA WSPÓŁOSIOWEGO W STANIE JAŁOWYM I W STANIE ZWARCIA

WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA IMPEDANCJĘ WEJŚCIOWĄ KABLA WSPÓŁOSIOWEGO W STANIE JAŁOWYM I W STANIE ZWARCIA Aneta BUGAJSKA WPŁYW ZJAWISKA NASKÓKOWOŚCI NA IMPEDANCJĘ WEJŚCIOWĄ KABLA WSPÓŁOSIOWEGO W STANIE JAŁOWYM I W STANIE ZWACIA STESZCZENIE W artykule przedstawiono wpływ zjawiska naskórkowości na impedancję

Bardziej szczegółowo

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną

Bardziej szczegółowo

Prace Naukowe Instytutu Maszyn i Napędów Elektrycznych Nr 44 Politechniki Wrocławskiej Nr 44

Prace Naukowe Instytutu Maszyn i Napędów Elektrycznych Nr 44 Politechniki Wrocławskiej Nr 44 Prace aukowe Instytutu Maszyn i apędów Elektrycznych r 44 Politechniki Wrocławskiej r 44 tudia i Materiały r 19 1996 Ludwik ATAL*, Jan ZAWILAK* elektrotechnika, maszyny elektryczne, silniki synchroniczne,

Bardziej szczegółowo

ANALIZA GĘSTOŚCI PRĄDÓW W NIEOSŁONIĘTYM TRÓJFAZOWYM TORZE WIELKOPRĄDOWYM

ANALIZA GĘSTOŚCI PRĄDÓW W NIEOSŁONIĘTYM TRÓJFAZOWYM TORZE WIELKOPRĄDOWYM POZNAN UNVE STY OF TE CHNOLOGY ACADE MC OUNALS No 77 Electical Egieeig 04 Tomasz SZCZEGELNAK* Zygmut PĄTEK* Daiusz KUSAK* ANALZA GĘSTOŚC PĄDÓW W NEOSŁONĘTYM TÓFAZOWYM TOZE WELKOPĄDOWYM Pzy optymalym poektowaiu

Bardziej szczegółowo

ZASTOSOWANIE PAKIETU FLUX2D DO ANALIZY POLA ELEKTROMAGNETYCZNEGO I TEMPERATURY W NAGRZEWNICY INDUKCYJNEJ DO WSADÓW PŁASKICH

ZASTOSOWANIE PAKIETU FLUX2D DO ANALIZY POLA ELEKTROMAGNETYCZNEGO I TEMPERATURY W NAGRZEWNICY INDUKCYJNEJ DO WSADÓW PŁASKICH Tomasz SZCZEGIELNIAK Zygmunt PIĄTEK ZASTOSOWANIE PAKIETU FLUX2D DO ANALIZY POLA ELEKTROMAGNETYCZNEGO I TEMPERATURY W NAGRZEWNICY INDUKCYJNEJ DO WSADÓW PŁASKICH STRESZCZENIE Praca zawiera wyniki symulacji

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

DETEKCJA OBIEKTU FERROMAGNETYCZNEGO Z ZASTOSOWANIEM MAGNETOMETRÓW SKALARNYCH

DETEKCJA OBIEKTU FERROMAGNETYCZNEGO Z ZASTOSOWANIEM MAGNETOMETRÓW SKALARNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 2013 Kazimierz JAKUBIUK* Mirosław WOŁOSZYN* DETEKCJA OBIEKTU FERROMAGNETYCZNEGO Z ZASTOSOWANIEM MAGNETOMETRÓW SKALARNYCH

Bardziej szczegółowo

= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC

= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc

Bardziej szczegółowo

WYKORZYSTANIE WYKRESÓW CZTEROPOLOWYCH W BADANIACH SPOŁECZNO-EKONOMICZNYCH 1

WYKORZYSTANIE WYKRESÓW CZTEROPOLOWYCH W BADANIACH SPOŁECZNO-EKONOMICZNYCH 1 Agieszka Staimir Uiwersytet Ekoomiczy we Wrocławiu WYKORZYSTANIE WYKRESÓW CZTEROPOLOWYCH W BADANIACH SPOŁECZNO-EKONOMICZNYCH 1 Wprowadzeie W badaiach społeczo-ekoomiczych bardzo często występują zmiee

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.

Bardziej szczegółowo

CHARAKTERYSTYCZNE CECHY KRZYWYCH OBCIĄŻENIA ODBIORCÓW ZALICZANYCH DO GOSPODARSTW DOMOWYCH

CHARAKTERYSTYCZNE CECHY KRZYWYCH OBCIĄŻENIA ODBIORCÓW ZALICZANYCH DO GOSPODARSTW DOMOWYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Ryszard FRĄCKOWIAK* Tomasz GAŁAN** CHARAKTERYSTYCZNE CECHY KRZYWYCH OBCIĄŻENIA ODBIORCÓW ZALICZANYCH DO GOSPODARSTW

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) MATRIAŁY POMOCNICZ DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MDYCYNI (wyłączie do celów dydaktyczych zakaz rozpowszechiaia) 4. Drgaia brył prętów, membra i płyt. ****************************************************************

Bardziej szczegółowo

Styk montażowy. Rozwiązania konstrukcyjnego połączenia

Styk montażowy. Rozwiązania konstrukcyjnego połączenia Styk motażowy Rozwiązaia kostrukcyjego połączeia Z uwagi a przyjęcie schematu statyczego połączeie ależy tak kształtować, aby te połączeie przeosiło momet zgiający oraz siłę poprzeczą. Jako styk motażowy,

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3) VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)

Bardziej szczegółowo

PORÓWNANIE PROGRAMÓW MAXWELL ORAZ FEMM DO SYMULACJI ROZKŁADU NATĘŻENIA POLA ELEKTRYCZNEGO

PORÓWNANIE PROGRAMÓW MAXWELL ORAZ FEMM DO SYMULACJI ROZKŁADU NATĘŻENIA POLA ELEKTRYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Grzegorz MALINOWSKI* Krzysztof SIODŁA* PORÓWNANIE PROGRAMÓW MAXWELL ORAZ FEMM DO SYMULACJI ROZKŁADU NATĘŻENIA POLA

Bardziej szczegółowo

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Piotr FRĄCZAK* SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

"Liczby rządzą światem." Pitagoras

Liczby rządzą światem. Pitagoras "Liczby rządzą światem." Pitagoras Def. Liczbą zespoloą azywamy liczbę postaci z= x +yi, gdzie x, y є oraz i = -1. Zbiór liczb zespoloych ozaczamy przez ={ x + yi: x, y є } Ozaczeia x= Re z częśd rzeczywista

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo

ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH W WYBRANYCH NIESYMETRYCZNYCH UKŁADACH POŁĄCZEŃ

ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH W WYBRANYCH NIESYMETRYCZNYCH UKŁADACH POŁĄCZEŃ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 7 Electrical Engineering 01 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

FILTR RC SYGNAŁÓW PRĄDOWYCH W UKŁADACH KONDYCJONOWANIA SYSTEMÓW POMIAROWYCH

FILTR RC SYGNAŁÓW PRĄDOWYCH W UKŁADACH KONDYCJONOWANIA SYSTEMÓW POMIAROWYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 91 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.91.0009 Dariusz PROKOP* FILTR RC SYGNAŁÓW PRĄDOWYCH W UKŁADACH KONDYCJONOWANIA SYSTEMÓW

Bardziej szczegółowo

WARUNKI ZWARCIOWE W ROZDZIELNI SPOWODOWANE ZAKŁÓCENIAMI NA RÓŻNYCH ELEMENTACH SIECI ELEKTROENERGETYCZNEJ

WARUNKI ZWARCIOWE W ROZDZIELNI SPOWODOWANE ZAKŁÓCENIAMI NA RÓŻNYCH ELEMENTACH SIECI ELEKTROENERGETYCZNEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Piotr PIECHOCKI* Ryszard FRĄCKOWIAK** WARUNKI ZWARCIOWE W ROZDZIELNI SPOWODOWANE ZAKŁÓCENIAMI NA RÓŻNYCH ELEMENTACH

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ ELEKTRYKA 014 Zeszyt 1 (9) Rok LX Krzysztof SZTYMELSKI, Marian PASKO Politechnika Śląska w Gliwicach MATEMATYCZNY MODEL PĘTLI ISTEREZY MAGNETYCZNEJ Streszczenie. W artykule został zaprezentowany matematyczny

Bardziej szczegółowo

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 72 Electrical Engineering 2012

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 72 Electrical Engineering 2012 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 72 Electrical Engineering 2012 Wiktor HUDY* Kazimierz JARACZ* ANALIZA WYNIKÓW SYMULACJI EWOLUCYJNEJ OPTYMALIZACJI PARAMETRYCZNEJ UKŁADU STEROWANIA

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

1. Połączenia spawane

1. Połączenia spawane 1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia

Bardziej szczegółowo

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Podstawowe rozkłady zmiennych losowych typu dyskretnego Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

2.1. Studium przypadku 1

2.1. Studium przypadku 1 Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

PROJEKT STANOWISKA LABORATORYJNEGO DO WIZUALIZACJI PRZEBIEGÓW SIŁY ELEKTROMOTORYCZNEJ TRANSFORMACJI

PROJEKT STANOWISKA LABORATORYJNEGO DO WIZUALIZACJI PRZEBIEGÓW SIŁY ELEKTROMOTORYCZNEJ TRANSFORMACJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 77 Electrical Engineering 2014 Milena KURZAWA* Rafał M. WOJCIECHOWSKI* PROJEKT STANOWISKA LABORATORYJNEGO DO WIZUALIZACJI PRZEBIEGÓW SIŁY ELEKTROMOTORYCZNEJ

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

WARTOŚCI CZASU TRWANIA ZWARCIA PODCZAS ZAKŁÓCEŃ W ROZDZIELNIACH NAJWYŻSZYCH NAPIĘĆ W ŚWIETLE BADAŃ SYMULACYJNYCH

WARTOŚCI CZASU TRWANIA ZWARCIA PODCZAS ZAKŁÓCEŃ W ROZDZIELNIACH NAJWYŻSZYCH NAPIĘĆ W ŚWIETLE BADAŃ SYMULACYJNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Ryszard FRĄCKOWIAK* Piotr PIECHOCKI** WARTOŚCI CZASU TRWANIA ZWARCIA PODCZAS ZAKŁÓCEŃ W ROZDZIELNIACH NAJWYŻSZYCH

Bardziej szczegółowo

Analiza matematyczna dla informatyków 4 Zajęcia 5

Analiza matematyczna dla informatyków 4 Zajęcia 5 Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie

Bardziej szczegółowo

16 Przedziały ufności

16 Przedziały ufności 16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

TEORETYCZNA OCENA WPŁYWU SZCZELINY POWIETRZNEJ NA WARTOŚCI IMPEDANCJI WEJŚCIOWEJ UKŁADU WZBUDNIK WEWNĘTRZNY WSAD RUROWY

TEORETYCZNA OCENA WPŁYWU SZCZELINY POWIETRZNEJ NA WARTOŚCI IMPEDANCJI WEJŚCIOWEJ UKŁADU WZBUDNIK WEWNĘTRZNY WSAD RUROWY ELEKTRYKA 2012 Zeszyt 3-4 (223-224) Rok LVIII Joanna KOLAŃSKA-PŁUSKA Instytut Układów Elektromechanicznych i Elektroniki Przemysłowej, Politechnika Opolska TEORETYCZNA OCENA WPŁYWU SZCZELINY POWIETRZNEJ

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

INTERAKCJA OBCIĄŻEŃ W UKŁADZIE DWÓCH SZYB O RÓŻNYCH SZTYWNOŚCIACH POŁĄCZONYCH SZCZELNĄ WARSTWĄ GAZOWĄ

INTERAKCJA OBCIĄŻEŃ W UKŁADZIE DWÓCH SZYB O RÓŻNYCH SZTYWNOŚCIACH POŁĄCZONYCH SZCZELNĄ WARSTWĄ GAZOWĄ Budownictwo 16 Zbigniew Respondek INTERAKCJA OBCIĄŻEŃ W UKŁADZIE DWÓCH SZYB O RÓŻNYCH SZTYWNOŚCIACH POŁĄCZONYCH SZCZELNĄ WARSTWĄ GAZOWĄ W elemencie złożonym z dwóch szklanych płyt połączonych szczelną

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v v L Jeżeli na dodatni ładunek q poruszający

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM W artykule przedstawiono badania przeprowadzone na modelu

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

BADANIA SYMULACYJNE PROSTOWNIKA PÓŁSTEROWANEGO

BADANIA SYMULACYJNE PROSTOWNIKA PÓŁSTEROWANEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Mikołaj KSIĄŻKIEWICZ* BADANIA SYMULACYJNE PROSTOWNIKA W pracy przedstawiono wyniki badań symulacyjnych prostownika

Bardziej szczegółowo

Projekt silnika bezszczotkowego z magnesami trwałymi

Projekt silnika bezszczotkowego z magnesami trwałymi Projekt silnika bezszczotkowego z magnesami trwałymi dr inż. Michał Michna michna@pg.gda.pl 01-10-16 1. Dane znamionowe moc znamionowa P n : 10kW napięcie znamionowe U n : 400V prędkość znamionowa n n

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Wyk lad 2 W lasności cia la liczb zespolonych

Wyk lad 2 W lasności cia la liczb zespolonych Wyk lad W lasości cia la liczb zespoloych 1 Modu l, sprz eżeie, cz eść rzeczywista i cz eść urojoa Niech a, b bed a liczbami rzeczywistymi i iech z = a bi. (1) Przypomijmy, że liczba sprzeżo a do z jest

Bardziej szczegółowo

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/

Bardziej szczegółowo

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767 Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo