PODZIAŁ DANYCH NA KLASY
|
|
- Stanisława Rogowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 PODZIAŁ DANYCH NA KLASY Definicja Dana jest macierz danych X. Podziałem P macierzy na las(lasyfiacją) nazywamy przyporządowanieindesomwierszymacierzyrozłącznychzbiorówi 1,I,...,I,taich, Ŝe j1 I j 1,,...,n.WierszX i naleŝydoj-tejlasy,jeślii I j.niechn j #I j. Wtedy j1 n j n Wiersze macierzy danych moŝna przestawiać. Dla prostoty uporządujmy je ta, Ŝe pierwszychn 1 wierszyzajmąelementynaleŝącedopierwszejlasy,olejnychn wierszyzajmąelementynaleŝącedodrugiejlasy,...,ostatnichn wierszyzajmą elementy naleŝące do -tej lasy: X 1 X X... X gdzie X j T T X n1 n...n j1 1 T T,X n1 n...n j1,...,x n1 n...n j1 n j jestpodmacierząwymiarun j p,zawierającądane,naleŝącedoj-tejlasy. Oznaczmyprzezg j środecięŝościj-tejlasy:g j gx j,orazprzezg PXmacierz środów cięŝości las podziału; g 1 n 1 G PX g n... g n Lemat 1 gg PX p j g j gx g, j1 p j n j n gg PX 1 n G PX T 1 n 1 n g 1 n 1 g n... g n 1 n 1 n n j g j, j1 g 1 n j1 X i 1 n n j g j ii j j1 1
2 Twierdzenie 1[Huygensa dla podziału] JX p j JX j JG PX j1 J WP J MP FuncjeJ WPi J MPnazywająsiębezwładnościąwewnątrzlasową(J WP)i bezwładnościąmiędzylasową(j MP)podziałuP. JX 1 n n i1 Teza wynia z toŝsamości: X i g 1 n j1 ii j X i g 1 n X i g j g j g X i g j,g j g j1 ii j ii j X i g j,g j g ii j X i g j,g j g 0,g j g 0, ii j X i g j n j JX j, 1 n j1 ii j g j g JG PX. Wniose 1 J MP p j g j g j1 Zadaniem naszym będzie dobry podział(lasyfiacja) danych X na las. MoŜliwe są dwa sposoby doonania taiego podziału: lasyfiacjaznauczycielem,zwanadysryminacją, lasyfiacjabeznauczyciela(grupowanie,analizasupień) Klasyfiacja z nauczycielem słada się z dwóch faz: uczenia i dysryminacji. W fazie uczenia zadany jest podział na las(podział wzorcowy). Na jego podstawie wytwarza się funcję dysryminacyjną. Funcja dysryminacyjna przypisuje aŝdemu nowemu wetorowi numer lasy do tórej on naleŝy. Dobra funcja dysryminacyjna ustala to przyporządowanie z moŝliwie najmniejszym błędem. Przyładem lasyfiacji z nauczycielem jest diagnostya medyczna. W fazie uczenia wypracowuje się metody diagnozy na podstawie znanych przypadów róŝnych chorób (podział wzorcowy). Learz stosując swoją wiedzę(funcję dysryminacyjną) stara się postawić dobrą diagnozę(ustala przyporządowanie objawów do choroby z moŝliwie najmniejszym błędem) W lasyfiacji bez nauczyciela nie mamy podziału wzorcowego. W tym przypadu naleŝy wytworzyć lasy ta, aby elementy naleŝące do jednej lasy były do siebie podobne, a elementy z róŝnych las były ja najbardziej do siebie niepodobne. Przyładem lasyfiacji bez nauczyciela jest lasyfiacja, zaproponowana przez Linneusza( ), w tórej do jednej lasy przypisał zwierzęta o podobnej
3 budowie zewnętrznej. Grupowanie W lasyfiacji bez nauczyciela elementy naleŝące do jednej lasy mają być do siebie podobne, a elementy z róŝnych las- ja najbardziej do siebie niepodobne. MiarąpodobieństwawlasiejmoŜebyćbezwładnośćtejlasyJX j.immniejsza ta liczba, tym bardziej podobne do siebie są elementy lasy. Podział P jest dobry gdy średnia bezwładność we wszystich lasach jest mała, czyli gdy bezwładność wewnątrzlasowaj WPjestmała. Miarą niepodobieństwa(odległości) między lasami moŝe być bezwładność międzylasowaj MP.ImonawięszatymbardziejodległesąodsiebieśrodicięŜości las. Dobregrupowanietotaie,gdziebezwładnośćJ WPjestmałaaJ MP-duŜa.Z twierdzenia 1 wynia, Ŝe te waruni są równowaŝne. Przyład 1 Porównajmy dwa podziały zbioru X PodziałP:I 1 1,,I 3,,5,6. gx 1 T 1.5,1.5,JX , gx T 3.75,3.0,JX , J WP PodziałQ:I 1 5,6,I 1,,3,. gx 1 T.5,.5,JX , gx T.5,.5,JX , J WQ PodziałPjestlepszyodpodziałuQ,gdyŜJ WP J WQ. Podziały P i Q moŝna porównać, obliczając bezwładność międzylasową(jest ona prostsza do obliczenia): Dla podziału P gx T 3,.5 J MP 6 gx 1 gx 6 gx gx Dla podziału Q 3
4 J MP 6 gx 1 gx 6 gx gx PodziałPjestlepszyodpodziałuQ,gdyŜJ MP J MQ Sprawdzając wszystie 63 moŝliwe podziały na dwie lasy moŝna wyznaczyć najlepszypodział. W ogólnym przypadu wybór najlepszego podziału przez sprawdzanie wszystich moŝliwych przypadów wymaga gigantycznej liczby obliczeń. Jeden z moŝliwych sposobów, pozwalających uzysać dobry, ale nie zawsze optymalny podział jest algorytm pochłaniajacy, wyorzystujący podział na omóri Woronoja. Definicja PodziałdanychXnaomóriWoronojaocentrachc 1,c,...,c jestrozbiciemxnalasy I 1,I,...,I : I j i:x i c j X i c r,r 1,,...,,i I 1,I,...I j1 Komóri Woronoja sładają się z puntów najbliŝszych centrom. Punty leŝące w tej samej odległości od ilu centrów naleŝą do omóri o najniŝszym numerze(umowa). Twierdzenie NiechPbędziepodziałemWoronojanaomóriocentrachc 1,c,...,c.NiechQ będziepodziałemworonojanaomóriocentrachgx 1,gX,...,gX.PodziałQ jestniegorszyodpodziałup. Dowód NiechPbędziepodziałemnalasyI 1,I,...,I,Qpodziałemnalasy L 1,L,...,L,Y r podmacierząxowierszach,tórychnumerynaleŝądol r. Oznaczmy Mamy: J WP 1 n j1 n j #X j,m r #Y r n j JX j 1 n n j d X j,gx j n j j1 1 n X i gx j j1 ii j Ostatnią sumę, dla ustalonego j, moŝna zapisać: ii j X i gx j r1 ii j L r X i gx j X i gx j ii j L j r1 r1 ii rlj r jx i gx j ii j L r r jx i gx j r1 ii rlj r1 r jx i gx j ii j L r r jx i gx j m j d Y j,gx j m j r j X i gx j X i gx j r1 ii j L r ii rlj
5 Ale z twierdzenia Huygensa-Pitagorasa d Y j,gy j m j d Y r,gx j m j Stąd X i gx j m j d Y j,gy j mj ii j Sumując po wszystich j otrzymamy J WP J WQ 1 n j1 r1 r j X i gx j X i gx j ii j L r ii rlj r j X i gx j X i gx j r1 ii j L r ii rlj Korzystając z symetrii indesów j i r moŝna zapisać: j1 j1 j1 r j X i gx j X i gx j r1 ii j L r ii rlj r j X i gx j X i gx r r1 ii j L r ii j Lr r1 ii j L r r j X i gx j X i gx r gdyi I j L r towierszx i zostanieprzeniesionyzlasyjwpodzialepdolasyrw podziale Q, co oznacza Ŝe Wyniaztego,Ŝe awięc j1 r1 coończydowód. lemattw3przyład X i gx r X i gx j ii j L r r j X i gx j X i gx r 0 J WP J WQ 5
Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki
Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o
( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia
Algebra liniowa z geometrią analityczną
WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór
Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci
Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie
σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
Metody probabilistyczne Rozwiązania zadań
Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi
Grupowanie sekwencji czasowych
BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 3, 006 Grupowanie sewencji czasowych Tomasz PAŁYS Załad Automatyi, Instytut Teleinformatyi i Automatyi WAT, ul. Kalisiego, 00-908 Warszawa STRESZCZENIE: W artyule
MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH
MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa
Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne
Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez
7. Klasyfikacja skończenie generowanych grup przemiennych
32 7 Klasyfiacja sończenie generowanych grup przemiennych W tym rozdziale zajmiemy sie sończenie generowanymi grupami przemiennymi Zgodnie z tradycja be dziemy sie pos lugiwać zapisem addytywnym Dzia lanie
13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE
Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym
Programowanie wielocelowe lub wielokryterialne
Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe
PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE
PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś
Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:
Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,
wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W
Programowanie wielocelowe lub wielokryterialne
Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe.
Optymalizacja harmonogramów budowlanych - problem szeregowania zadań
Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze
Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...
Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1
Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
jest scharakteryzowane przez: wektor maksymalnych żądań (ang. claims), T oznaczający maksymalne żądanie zasobowe zadania P j
Systemy operacyjne Zaleszczenie Zaleszczenie Rozważmy system sładający się z n procesów (zadań) P 1,P 2,...,P n współdzielący s zasobów nieprzywłaszczalnych tzn. zasobów, tórych zwolnienie może nastąpić
Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna
Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba
Optymalizacja harmonogramów budowlanych - problem szeregowania zadań
Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów
ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego:
ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1 Wykład 3 3. Otymalizacja z ograniczeniami Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia otymalizacyjnego: g i HxL 0, i = 1, 2,..., m (3.1)
wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz
Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną
Indukcja matematyczna
Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,
Ćwiczenie nr 1: Wahadło fizyczne
Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel
LZNK. Rozkªad QR. Metoda Householdera
Rozdziaª 10 LZNK. Rozªad QR. Metoda Householdera W tym rozdziale zajmiemy si liniowym zadaniem najmniejszych wadratów (LZNK). Dla danej macierzy A wymiaru M N i wetora b wymiaru M chcemy znale¹ wetor x
A. Cel ćwiczenia. B. Część teoretyczna
A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów
jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery
Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:
Restauracja a poprawa jakości obrazów
Restauracja obrazów Zadaniem metod restauracji obrazu jest taie jego przeształcenie aby zmniejszyć (usunąć) znieształcenia obrazu powstające przy jego rejestracji. Suteczność metod restauracji obrazu zależy
Ą Ń Ę Ę Ą Ę Ć ź Ż Ż Ą ń Ź Ż Ż ń ń Ź Ą Ń Ą Ą Ę ń ź Ę Ę Ż Ć Ą ź Ą Ę ń ź Ę ń ń Ą Ż Ę ń Ą ń ń Ę Ę Ę Ź ń Ę ń ń ń ń Ź Ę Ś ź Ą Ń ń Ż Ź Ę Ź ń ń ń Ę Ę ń Ż Ą ń ńń Ś ń ń Ż Ż Ę Ż Ń Ę Ą Ń Ł ń ń ń ń ń ń ń ń Ś Ź Ę Ś
Ł ŚĆ ń Ś Ł Ź Ć Ł Ą ńń ć Ż Ą Ł Ś ń Ł ć Ś ń ć ć ć Ó Ż ć ć Ą Ś ć Ś ć Ń Ś ć Ś ć Ś Ć Ś Ż Ś Ś Ż Ś Ó ń ć ć Ź Ł ć ć ć ń ń ć ć Ą ć ć ć Ź ć ć ć ć ć ć Ó Ź Ó Ł Ł Ń ć ć Ź Ą ć ć ń ć Ą ć ć ć Ł Ź Ź Ź Ż Ł Ż Ł Ż ć ń ć Ą
Wybrane rozkłady zmiennych losowych i ich charakterystyki
Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych
Podstawy rachunku prawdopodobieństwa (przypomnienie)
. Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy
3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja
Teoria automatów i języków formalnych. Określenie relacji
Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego
i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =
Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH
DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH Instrucja do laboratorium z cyfrowego przetwarzania sygnałów Ćwiczenie 5 Wybrane właściwości Dysretnej Transformacji Fouriera Przemysław Korohoda, KE, AGH Zawartość
(U.3) Podstawy formalizmu mechaniki kwantowej
3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p,
Zadanie 1. Sprawdzić, czy formuła φa ) ) = 3 a 2 zadaje funcjonał liniowy na l p dla p [1, ] i na c, jeśli ta, to czy zadaje funcjonał ciągły, i jeśli ta, policzyć normę. Dowód. Sprawdzam liniowość: φλa
ANALIZA WIELOKRYTERIALNA
ANALIZA WIELOKRYTERIALNA Dział Badań Operacyjnych zajmujący się oceną możliwych wariantów (decyzji) w przypadu gdy występuje więcej niż jedno ryterium oceny D zbiór rozwiązań (decyzji) dopuszczalnych x
Informatyka medyczna
Informatya medyczna Wczytywanie pliu: Wczytujemy cały pli do pamięci operacyjnej według specyfiacji: agłówe RIFF FMT opcjonalne inne bloi DATA azwa pola Wielość w bajtach Opis chunid Test ASCII RIFF -
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.
Metody numeryczne Paweł Zieliński p. 1/19 Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza bazę przestrzeni liniowej Π n. Dowód. Lemat 2. Dowolny wielomian Q j stopnia j niższego od k jest prostopadły
Matematyka Dyskretna - zagadnienia
Matematya Dysretna - zagadnienia dr hab. Szymon Żebersi opracował: Miołaj Pietre Semestr letni 206/207 - strona internetowa Zasada inducji matematycznej. Zbiory sończone, podstawowe tożsamości 2. Zasada
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12
A4: Filtry aktywne rzędu II i IV
A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1
BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 18, 2003 Algoryt wyznaczania rotności diagnostycznej strutury opiniowania diagnostycznego typu PMC 1 Artur ARCIUCH Załad Systeów Koputerowych, Instytut Teleinforatyi
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
KINEMATYKA ROLKOWYCH PRZEKŁADNI TOCZNYCH KINEMATICS OF THE ROLLER SCREW
Dr inŝ. Stanisław Warchoł, email: warchols@prz.edu.pl Katedra Konstrucji Maszyn, Politechnia Rzeszowsa KINEMATYKA ROLKOWYCH PRZEKŁADNI TOCZNYCH Streszczenie: W artyule zaprezentowano rozłady prędości i
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Wyznaczanie rozmiaro w przeszko d i szczelin za pomocą s wiatła laserowego
Ćwiczenie v.x3.1.16 Wyznaczanie rozmiaro w przeszo d i szczelin za pomocą s wiatła laserowego 1 Wstęp teoretyczny Wyznaczanie rozmiarów szczelin i przeszód za pomocą światła oparte jest o zjawisa dyfracji
4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)
256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne
Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Charakterystyka oprogramowania obiektowego
Charakterystyka oprogramowania obiektowego 1. Definicja systemu informatycznego 2. Model procesu wytwarzania oprogramowania - model cyklu Ŝycia oprogramowania 3. Wymagania 4. Problemy z podejściem nieobiektowym
jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.
Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych
mgr Anna Bernaciak Wyższa Szkoła Logistyki Badania operacyjne II Zagadnienie komiwojażera Zadanie 1 Rozwiązanie zadania 1. Krok i to minimalny
mgr nna ernaciak adania operacyjne II Zadanie 1 Pan Jan Tomkowski znany poznański mechanik ma naprawić uszkodzony sprzęt należący do osób zamieszkujących różne podpoznańskie miejscowości (,, i ), a następnie
LUBELSKA PRÓBA PRZED MATURĄ
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest
Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2
Wrocław 00 STATECZNOŚĆ STATYKA - projet zadanie . Treść zadania Dla ray o scheacie statyczny ja na rysunu poniżej należy : - Sprawdzić czy uład jest statycznie niezienny - Wyznaczyć siły osiowe w prętach
Definicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 6 ułady dysretne o wielu stopniach swobody Poniższe
ZASADY WYZNACZANIA BEZPIECZNYCH ODSTĘPÓW IZOLACYJNYCH WEDŁUG NORMY PN-EN 62305
ZASADY WYZNACZANIA BEZPIECZNYCH ODSTĘPÓW IZOLACYJNYCH WEDŁUG NORMY PN-EN 62305 Henry Boryń Politechnia Gdańsa ODSTĘPY IZOLACYJNE BEZPIECZNE Zadania bezpiecznego odstępu izolacyjnego to: ochrona przed bezpośrednim
det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...
Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Uczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2017/2018 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW II ROKU STUDIÓW
PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2017/2018 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW II ROKU STUDIÓW 1. NAZWA PRZEDMIOTU: Podstawy badania przedmiotowego 2.
P(T) = P(T M) = P(T A) = P(T L) = P(T S) = P(T L M) = P(T L A) = P(T S M) = P(T S A) =
Przyład (obrona orętów USA przed ataami lotnictwa japońsiego) Możliwe dwie wyluczające się tatyi: M = manewr A = artyleria przeciwlotnicza Departament Marynari Wojennej na podstawie danych z wojny na Pacyfiu
Zasada indukcji matematycznej
Sławomir Jemielity Zasada inducji matematycznej Są różne sformułowania tej zasady, mniej lub bardziej abstracyjne My będziemy się posługiwać taą: Niech T(n) oznacza twierdzenie dotyczące liczby naturalnej
4. Weryfikacja modelu
4. Weryfiacja modelu Wyznaczenie wetora parametrów struturalnych uładu ończy etap estymacji. Kolejnym etapem jest etap weryfiacji modelu. Przeprowadza się ją w dwóch ujęciach: merytorycznym i statystycznym.