METODY REKONSTRUKCJI POWIERZCHNI Z INTERFEROGRAMU ŚWIATŁA BIAŁEGO BAZUJĄCE NA TRANSFORMACIE HILBERTA
|
|
- Dagmara Mazurek
- 8 lat temu
- Przeglądów:
Transkrypt
1 ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 292, Elektrotechnika 34 RUTJEE, z. 34 (4/2015), październik-grudzień 2015, s Anna KHOMA 1 Eberhard MANSKE 2 METODY REKONSTRUKCJI POWIERZCHNI Z INTERFEROGRAMU ŚWIATŁA BIAŁEGO BAZUJĄCE NA TRANSFORMACIE HILBERTA W pracy zaprezentowano oparte na transformacie Hilberta metody rekonstrukcji profilu powierzchni nieliniowej na podstawie interferogramu światła białego. Zbadano dokładność tych metod na przykładzie rekonstrukcji powierzchni kulistej. Badania obejmowały rekonstrukcję powierzchni na podstawie modelu matematycznego interferogramu oraz oszacowanie błędu rekonstrukcji profilu. Największą dokładność uzyskano dla metody estymacji chwilowej fazy interferogramu. Słowa kluczowe: interferogram światła białego, profil powierzchni nieliniowych, transformata Hilberta, błąd rekonstrukcji profilu 1. Wprowadzenie Interferometria światła białego (Wight Light Interferometry - WLI) jest wykorzystywana w nauce i technice w wielu zagadnieniach, między innymi do rekonstrukcji topologii lub profilu powierzchni. Do zalet tej technologii należą: brak kontaktu z badanym obiektem, wysoka rozdzielczość, możliwość kontroli powierzchni o charakterze schodkowym [1, 2]. W porównaniu z konwencjonalną interferometrią monochromatyczną obróbka interferogramu światła białego w celu rekonstrukcji topologii powierzchni jest bardziej skomplikowana. Wynika to z wpływu obwiedni na sygnał natężenia światła. Obecnie opracowano szereg metod rekonstrukcji, jednak metody te nie są skuteczne na przykład przy nieliniowym kształcie powierzchni. W niniejszej pracy zaprezentowano metody rekonstrukcji bazujące na transformacie Hilberta oraz zbadano dokładność rekonstrukcji profilu powierzchni nieliniowych tymi metodami. 1 Autor do korespondencji: Anna Khoma, Uniwersytet Narodowy Politechnika Lwowska, Ukraina, avkhoma@gmail.com 2 Eberhard Manske, Ilmenau University of Technology, Germany, eberhard.manske@tuilmenau.de
2 72 A. Khoma, E. Manske 2. Model matematyczny interferogramu światła białego i zagadnienie rekonstrukcji profilu powierzchni Interferometry są optycznymi przyrządami wykorzystującymi interferencję do pomiaru wielkości geometrycznych różnych obiektów. Nowoczesne interferometry światła białego, na przykład Talysurf CCI 6000, zapewniają pomiary w osi pionowej z rozdzielczością poniżej 1 Å [2]. Niski poziom korelacji fal światła białego powoduje zanik intensywności prążków na krawędziach obrazu. Taka osobliwość interferogramu WLI z jednej strony jest jego zaletą, pozwalającą na jednoznaczną rekonstrukcję złożonych powierzchni o charakterze schodkowym (w odróżnieniu od monochromatycznej koherentnej interferometrii), z drugiej strony zanik intensywności prążków utrudnia analizę interferogramu [1]. Model matematyczny interferogramu światła białego z wyeliminowaną składową stałą można podać w postaci wyrażenia [1]: I 2 2 ( ) 4 λ T 4π, (1) = E( T ) C T = I M exp cos T 4 λ0 λ0 gdzie: λ 0 i Δλ środkowa długość fali i zakres długości fal dla źródła światła białego; I M amplituda natężenia światła; T optyczna różnica drogi. Model interferogramu łączy optyczna różnica drogi T promieni odbitych od badanej i referencyjnej powierzchni z natężeniem pikseli I w każdym punkcie (x,y) interferogramu. Zagadnienie rekonstrukcji polega na wyznaczeniu z równania nieliniowego (1) parametru T, występującego jako argument jednocześnie w funkcjach: obwiedni E(T) o kształcie funkcji Gaussa oraz fali nośnej C(T) w postaci funkcji cosinus. 3. Sygnał analityczny oraz transformata Hilberta Z punktu widzenia teorii sygnałów interferogram światła białego jest sygnałem wąskopasmowym, skupionym wokół częstotliwości określanej środkową długością fali źródła światła ω 0 =4π/ λ 0. Do analizy takich sygnałów można wykorzystać reprezentację w postaci [3]: S A (n)=a(n) exp[j Ф(n)], (2) która pozwala na rozszerzenie pojęć amplitudy A(n) i fazy Ф(n) na sygnały nieharmoniczne.
3 Metody rekonstrukcji powierzchni 73 Kluczem do syntezy sygnału analitycznego jest transformata Hilberta, która dla dowolnego sygnału rzeczywistego s(n) umożliwia utworzenie części urojonej s Q (n): S A (n)=s(n)+j s Q (n). (3) W praktyce wykonać transformatę Hilberta można tylko w przybliżeniu [3]. Na przykład w pakiecie MATLAB do utworzenia sygnału analitycznego służy funkcja 'hilbert', która realizuje następujące operacje: wyznaczenie FFT dla badanego sygnału, wyzerowanie widma w zakresie ujemnych częstotliwości i wykonanie odwrotnej FFT. W niniejszym artykule zaprezentowano metody rekonstrukcji profilu powierzchni z interferogramu światła białego, bazujące na transformacie Hilberta. 4. Opis stosowanych metod rekonstrukcji profilu Bazując na transformacie Hilberta można wyznaczyć część urojoną sygnału intensywności dla każdej jego n-tej próbki: I Q (n) = H{ I(n) }, (4) a zatem wyliczyć obwiednię interferogramu. W praktyce cześć urojoną sygnału analitycznego określa się z ograniczoną dokładnością, co wpływa na dokładność wyznaczania obwiedni amplitudowej. Estymator obwiedni amplitudowej sygnału wyznacza się wg wzoru: ~ E 1 / 2 [ ] 2 2 ( n) I ( n) + I ( n) =. (5) Q Dysponując estymatorem obwiedni można wyznaczyć profil powierzchni: Trec ( n) = 2 ~ 1 / 2 λ0 E ( n) ln 2 λ I M. (6) Kolejna metoda rekonstrukcji sprowadza się do wyeliminowania wpływu obwiedni w modelu (1) drogą normalizacji interferogramu I n 4 = ~ ( ) λπ T n I Norm ( n) cos E( n) 0 ( ), (7) co umożliwia wyznaczenie wartości wielkości T z argumentu funkcji cosinus:
4 74 A. Khoma, E. Manske Trec λ = Norm. (8) 4 π ( n) 0 arccos[ I ( n) ] Stosując transformatę Hilberta można również wyznaczyć estymator fazy: i obliczyć parametr ~ IQ( n) Φ I( n) T rec ( n ) = arctg, (9) ~ [ ] λ. (10) 4 π 0 ( n) = Φ( n) 5. Badanie dokładności metod rekonstrukcji profilu Badania dokładności rekonstrukcji zostały przeprowadzone dla powierzchni kulistej, która stanowi model membrany czujnika w pomiarach ciśnienia. Najpierw na podstawie modelu (1) syntezowano interferogram, a później stosowano opisane metody do rekonstrukcji profilu. Źródłem błędów oprócz niedokładności transformaty Hilberta jest niestabilność częstotliwości nośnej interferogramu dla powierzchni nieliniowych. Dokładność rekonstrukcji była oszacowana błędem średniokwadratowym: σ = N N [ Trec ( n) T ( n) ] n= 1 { max [ T ( n) ] min [ T ( n) ]} %, (11) gdzie T rec (n) i T(n) wysokość profilu rekonstruowanej i symulowanej powierzchni w n-tym punkcie; N liczba próbek interferogramu w jednej linii. W tabeli 1 podano maksymalne wartości błędu rekonstrukcji centralnej linii interferogramu powierzchni kulistej różnymi metodami. Tabela 1. Błędy rekonstrukcji profilu powierzchni kulistej Table 1. Reconstruction errors of spherical surface profile Błąd rekonstrukcji profilu Metoda rekonstrukcji powierzchni Estymacja obwiedni Normalizacja obwiedni Estymacja fazy σ, % 8,5 0,24 0,11
5 Metody rekonstrukcji powierzchni Wnioski W pracy przedstawiono metody rekonstrukcji profilu powierzchni z interferogramu światła białego, bazujące na transformacie Hilberta. Błąd estymacji obwiedni interferogramu jest duży i bezpośrednio przekłada się na dokładność rekonstrukcji powierzchni metodą estymacji obwiedni. Większą dokładność zapewnia metoda normalizacji, która też wykorzystuje estymator obwiedni, ale jedynie w celu eliminacji wpływu obwiedni amplitudowej na wyznaczanie wartości wielkości T. Dodatkową poprawę dokładności zapewnia metoda estymacji fazy interferogramu. Jednak pozorna łatwość tej metody w praktyce stwarza pewne trudności obliczeniowe, spowodowane niejednoznacznością funkcji arcus tangens w parzystych i nieparzystych ćwiartkach oraz jej okresowością. Literatura [1] Seiffert T.: Schnelle Signalvorverarbeitung in der Weißlichtinterferometrie durch nichtlineare Signalaufnahme, in DGaO-Proceedings, [2] Cincio, R., Kacalak, W., Łukianowicz, C.: System Talysurf CCI 6000 methodic of analysis surface feature with using TalyMap Platinium. PAK, 2008, Nr 4, [3] Smith S.W.: Digital signal processing. A practical guide for engineers and scientists, Esliver Science, (2003). METHODS OF SURFACE RECONSTRUCTION FROM THE WHITE LIGHT INTERFEROGRAM BASED ON HILBERT TRANSFORM S u m m a r y The paper presents methods for nonlinear surface profile reconstruction from the white light interferogram based on Hilbert transform. The accuracy of these methods was analyzed on the example of a spherical surface reconstruction. The method investigation included surface and interferogram synthesis based on the mathematical model and estimation the profile reconstruction error. The method of estimating the instantaneous phase of the interferogram showed the greatest accuracy. Keywords: white light interferogram, nonlinear surface profile, Hilbert transform, reconstruction error DOI: /re Tekst złożono w redakcji: październik 2015 Przyjęto do druku: grudzień 2015
6
7
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Badania elementów i zespołów maszyn laboratorium (MMM4035L)
Badania elementów i zespołów maszyn laboratorium (MMM4035L) Ćwiczenie 23. Zastosowanie elektronicznej interferometrii obrazów plamkowych (ESPI) do badania elementów maszyn. Opracowanie: Ewelina Świątek-Najwer
Transformacje i funkcje statystyczne
Generacja okien: win = window(@fwin,n); Generacja okien gui: wintool; Rodzaje niektórych okien: @bartlett - Bartletta. @blackman - Blackmana. @chebwin - Czebyszewa. @gausswin - gausowskie. @hamming - Hamminga.
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
ANALIZA PORÓWNAWCZA METOD POMIARU IMPEDANCJI PĘTLI ZWARCIOWEJ PRZY ZASTOSOWANIU PRZETWORNIKÓW ANALOGOWYCH
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 54 Politechniki Wrocławskiej Nr 54 Studia i Materiały Nr 23 2003 Andrzej STAFINIAK * metody pomiarowe,impedancje pętli zwarciowej impedancja
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 27 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko Wiesław Kosek Waldemar Popiński Seminarium Sekcji Dynamiki Ziemi Komitetu Geodezji PAN
MICRON3D skaner do zastosowań specjalnych. MICRON3D scanner for special applications
Mgr inż. Dariusz Jasiński dj@smarttech3d.com SMARTTECH Sp. z o.o. MICRON3D skaner do zastosowań specjalnych W niniejszym artykule zaprezentowany został nowy skaner 3D firmy Smarttech, w którym do pomiaru
Zastosowanie deflektometrii do pomiarów kształtu 3D. Katarzyna Goplańska
Zastosowanie deflektometrii do pomiarów kształtu 3D Plan prezentacji Metody pomiaru kształtu Deflektometria Zasada działania Stereo-deflektometria Kalibracja Zalety Zastosowania Przykład Podsumowanie Metody
Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Różne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona
Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia
Laboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela
ĆWICZENIE 3 Dwuekspozycyjny hologram Fresnela 1. Wprowadzenie Holografia umożliwia zapis pełnej informacji o obiekcie, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Zaawansowane algorytmy DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych
Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji
Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Zastosowanie zobrazowań SAR w ochronie środowiska. wykład IV
Zastosowanie zobrazowań SAR w ochronie środowiska wykład IV Zastosowanie obrazów SAR Satelitarna interferometria radarowa Najczęściej wykorzystywane metody przetwarzania obrazów SAR: InSAR (Interferometry
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 26 V 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Ćwiczenie 12. Wprowadzenie teoretyczne
Ćwiczenie 12 Hologram cyfrowy. I. Wstęp Wprowadzenie teoretyczne Ze względu na sposób zapisu i odtworzenia, hologramy można podzielić na trzy grupy: klasyczne, syntetyczne i cyfrowe. Hologramy klasyczny
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
AiR_CPS_1/3 Cyfrowe przetwarzanie sygnałów Digital Signal Processing
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Metoda największej wiarygodności
Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Algorytmy detekcji częstotliwości podstawowej
Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe
PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Wpływ kwantowania na dokładność estymacji momentów sygnałów o rozkładach normalnych
Wpływ kwantowania na dokładność estymacji momentów sygnałów o rozkładach normalnych Elżbieta Kawecka Jadwiga Lal-Jadziak * Przedstawiono twierdzenia Widrowa i warunki odtwarzalności dla kwantowania w zastosowaniu
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM
Sieci i instalacje z tworzyw sztucznych 2005 Wojciech BŁAŻEJEWSKI*, Paweł GĄSIOR*, Anna SANKOWSKA** *Instytut Materiałoznawstwa i Mechaniki Technicznej, Politechnika Wrocławska **Wydział Elektroniki, Fotoniki
uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.
HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia
Instrukcja do laboratorium z cyfrowego przetwarzania sygnałów. Wybrane właściwości Dyskretnej Transformacji Fouriera
Instrukcja do laboratorium z cyfrowego przetwarzania sygnałów Wybrane właściwości Dyskretnej Transformacji Fouriera Przemysław Korohoda, KE, AGH Zawartość instrukcji: 1 Materiał z zakresu DSP 1.1 Macierzowy
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Ćwiczenie 11. Wprowadzenie teoretyczne
Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości
Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny
Autokoherentny pomiar widma laserów półprzewodnikowych autorzy: Łukasz Długosz Jacek Konieczny Systemy koherentne wstęp Systemy transmisji światłowodowej wykorzystujące podczas procesu transmisji światło
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
ZASTOSOWANIE METOD NUMERYCZNYCH DO BADANIA ROZKŁADÓW PRAWDOPODOBIEŃSTW SYGNAŁÓW ZAKŁÓCAJĄCYCH
Zeszyty Naukowe Akademii Morskiej w Gdyni Scientific Journal of Gdynia Maritime University Nr 98/017, 0 09 ISSN 1644-1818 e-issn 451-486 ZASTOSOWANIE METOD NUMERYCZNYCH DO BADANIA ROZKŁADÓW PRAWDOPODOBIEŃSTW
CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW
CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.
1. Modulacja analogowa, 2. Modulacja cyfrowa
MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna
Badanie widma fali akustycznej
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 00/009 sem.. grupa II Termin: 10 III 009 Nr. ćwiczenia: 1 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta: 6 Nr. albumu: 15101
Szereg i transformata Fouriera
Analiza danych środowiskowych III rok OŚ Wykład 3 Andrzej Leśniak KGIS, GGiOŚ AGH Szereg i transformata Fouriera Cel wykładu: Wykrywanie i analiza okresowości w szeregach czasowych Przepływ wody w rzece
Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca
Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms
Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.
MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.
Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje
Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje
Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Badanie efektu Faraday a w kryształach CdTe i CdMnTe Pracownia Fizyczna dla Zaawansowanych ćwiczenie F8 w zakresie Fizyki Ciała Stałego Streszczenie
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008
Analiza obrazu komputerowego wykład 5 Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Interferencja promieniowania
nterferencja promieniowania Zastosowania Metrologia Nanotechnologie Czujniki szczególnie światłowodowe Elementy fotoniczne Wyjaśnianie: generacji modów w laserze propagacji modów w światłowodach Generacja
Projektowanie systemów pomiarowych. 02 Dokładność pomiarów
Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.
Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne
Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią
Przekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Rys. 1 Geometria układu.
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
WZORCOWANIE MOSTKÓW DO POMIARU BŁĘDÓW PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH ZA POMOCĄ SYSTEMU PRÓBKUJĄCEGO
PROBLEMS AD PROGRESS METROLOGY PPM 18 Conference Digest Grzegorz SADKOWSK Główny rząd Miar Samodzielne Laboratorium Elektryczności i Magnetyzmu WZORCOWAE MOSTKÓW DO POMAR BŁĘDÓW PRZEKŁADKÓW PRĄDOWYCH APĘCOWYCH
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie
Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych
Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych
MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e
Nośna: MODULACJE ANALOGOWE c(t) = Y 0 cos(ωt + ϕ 0 ) Sygnał analityczny sygnału zmodulowanego y(t): z y (t) = m(t)z c (t), z c (t) = Y 0 e jωt Funkcja modulująca zależna od sygnału modulującego: j arg
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra Elektrotechniki Teoretycznej i Inormatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich umer ćwiczenia: 7 Temat: Wprowadzenie do Signal Processing Toolbox 1. PRÓBKOWAIE
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Opracowanie bloku scalania światła do dyskretnego pseudomonochromatora wzbudzającego
Przemysław CEYNOWA Wydział Elektroniki i Informatyki, Politechnika Koszalińska E-mail: przemysław.ceynowa@gmail.com Opracowanie bloku scalania światła do dyskretnego pseudomonochromatora wzbudzającego
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2
Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona
Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem
ZASTOSOWANIE SKOSU STOJANA W JEDNOFAZOWYM SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI
Maszyny Elektryczne - Zeszyty Problemowe Nr 3/2016 (111) 29 Maciej Gwoździewicz, Mariusz Mikołajczak Politechnika Wrocławska, Wrocław ZASTOSOWANIE SKOSU STOJANA W JEDNOFAZOWYM SILNIKU SYNCHRONICZNYM Z
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing
POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM PRZETWARZANIA SYGNAŁÓW ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing I. Cel ćwiczenia Celem
Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów
31.01.2008 Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów Paweł Tkocz inf. sem. 5 gr 1 1. Dźwięk cyfrowy Fala akustyczna jest jednym ze zjawisk fizycznych mających charakter okresowy.
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Propagacja w przestrzeni swobodnej (dyfrakcja)
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja
Rozwinięcie funkcji modulującej m(t) w szereg potęgowy: B PM 2f m
Wąskopasmowa modulacja fazy (przypadek k p x(t) max 1) Rozwinięcie funkcji modulującej m(t) w szereg potęgowy: m(t) = e jk px(t) = 1 + jk p x(t) +... Sygnały zmodulowane: z PM (t) Y 0 [1 + jk p x(t)]e
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
) (2) 1. A i. t+β i. sin(ω i
Ćwiczenie 8 AALIZA HARMOICZA PRZEBIEGÓW DRGAŃ 1. Cel ćwiczenia Analiza przebiegów drgań maszyny i wyznaczenie składowych harmonicznych tych przebiegów,. Wprowadzenie.1. Sygnały pomiarowe W celu przeprowadzenia
Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman
Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy
Ćw.2. Prawo stygnięcia Newtona
Ćw.2. Prawo stygnięcia Newtona Wstęp Ćwiczenie przedstawia metodę monitorowania temperatury w czasie rzeczywistym przy użyciu czujników światłowodowych. Specjalna technologia kryształów półprzewodnikowych
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę