Laboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela
|
|
- Dagmara Marciniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 ĆWICZENIE 3 Dwuekspozycyjny hologram Fresnela 1. Wprowadzenie Holografia umożliwia zapis pełnej informacji o obiekcie, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe obiekty w ich naturalnym i przestrzennym kształcie. Na hologramie możemy zapisać pole interferencyjne pochodzące z dwóch lub więcej różnych naświetlań. W ten sposób otrzymujemy hologram dwu- lub wielo-ekspozycyjny. Dzięki temu możliwa jest detekcja zmian danego obiektu (np. po ogrzaniu, przyłożeniu siły lub napięcia), gdy wykonamy na hologramie dwie ekspozycje i będziemy obserwować powstające dodatkowe prążki interferencyjne. 2. Podstawowy hologram Fresnela Zaczniemy od skrótowego omówienia zapisu hologramu obiektu punktowego. Na rys. 1 przedstawiona jest geometria układu, w którym dokonujemy rejestracji hologramu oraz zaznaczone są podstawowe zależności. Rysunek 1. Geometria zapisu hologramu Przy założeniu, że wiązka odniesienia jest falą płaską, otrzymuje się następujący rozkład natężenia w płaszczyźnie hologramu: ( ) (1) Strona 1 z 6
2 gdzie amplituda wiązki obiektowej, amplituda płaskiej fali odniesienia, długość wektora oraz liczba falowa. Przyjęto, że w płaszczyźnie hologramu z = 0. Po zapisaniu tak opisanego natężenia na kliszy, a następnie odtworzeniu hologramu falą płaską o amplitudzie otrzymuje się trzy składniki: ( ) (2) (3) (4) Składnik (2) jest tzw. wyrazem zerowego rzędu propagującym się zgodnie z kierunkiem propagacji wiązki odniesienia. Nie niesie on żadnej informacji o obiekcie. Wyrażenie (3) opisuje obraz urojony, a wyrażenie (4) obraz rzeczywisty obiektu (w tym wypadku punktowego źródła światła). Analogiczne rozumowanie można przeprowadzić dla każdego punktu holografowanego przedmiotu, a następnie zsumować wszystkie przyczynki. Powyższe podejście pomija interferencję fal emitowanych przez poszczególne punkty obiektu, daje ono jednak wystarczający, a zarazem prosty opis teoretyczny. Powyższe rozważania, wyrażone wzorami od (1) do (4) można uogólnić na dowolny ( front falowy pochodzący od obiektu (tzn. ( ) ( ) ) ). Nadal obowiązuje założenie, że fala odniesienia jest falą płaską. Otrzymuje się wówczas następujące wyrażenie na natężenie światła w płaszczyźnie hologramu: ( ), (5) gdzie amplituda oraz faza zależą od, czyli od wektora wodzącego punktu w płaszczyźnie hologramu:. Przy założeniu liniowego zapisu intensywności przez materiał światłoczuły [1], jego transmitancję można opisać następująco: ( ), (6) gdzie T 0 oraz β są parametrami zależnymi od emulsji światłoczułej i warunków naświetlania, a t e czasem naświetlania [1]. Na końcu otrzymujemy materiał światłoczuły o transmitancji określonej wzorem (6), na którym zapisany jest rozkład natężenia (5). Oświetlamy taki wywołany materiał płaską falą odniesienia i tuż za hologramem otrzymujemy pole będące sumą wyrażeń: Strona 2 z 6
3 [ ( )] (7) (8) (9) Składnik (7) propaguje się w kierunku fali rekonstruującej i analogicznie do składnika (2) nie niesie informacji o obiekcie (wyraz zerowego rzędu). Podobnie jak składnik (3), wyrażenie (8) opisuje obraz urojony, natomiast (9), analogicznie do (4), obraz rzeczywisty. Należy zdawać sobie sprawę, że poprawny zapis hologramu nakłada na układ optyczny pewne warunki poprawnej rejestracji hologramu, które muszą być spełnione: równe natężenia interferujących wiązek, niewielki kąt pomiędzy interferującymi wiązkami, stabilność mechaniczna układu, równe drogi optyczne od momentu podziału wiązki do jej połączenia. 3. Dwuekspozycyjny hologram Fresnela Hologram dwuekspozycyjny może polegać na kolejnym zapisaniu dwóch hologramów tego samego obiektu na tym samym elemencie światłoczułym - jednego w stanie podstawowym, a drugiego, gdy obiekt poddany jest obciążeniu lub przemieszcza się. Rekonstruując tak zapisany hologram dostaje się obraz obiektu z nałożonym pewnym obrazem prążkowym, który po analizie pozwala określić na przykład rodzaj ruchu przedmiotu [1-3] lub sposób przenoszenia przez ten obiekt obciążeń [4]. Jest to tzw. interferometria holograficzna. Poniżej podany jest szkic obliczeń reprezentujących konstrukcję i rekonstrukcję klasycznego hologramu dwuekspozycyjnego. Dokładniejsze wyprowadzenia znajdują się w pozycji [5]. W wyniku interferencji wzorcowej wiązki obiektowej z wiązką odniesienia dostaniemy w płaszczyźnie hologramu natężenie opisane wzorem (5). Rozkład taki zostanie zapisany na materiale światłoczułym o transmitancji opisanej wzorem (6) i da następujący rozkład transmitancji amplitudowej: [ ] (10) gdzie amplituda oraz faza zależą od. Po rejestracji hologramu odkształconego przedmiotu transmitancja amplitudowa będzie miała postać: [ ] (11) Strona 3 z 6
4 gdzie oznacza parametry fali (zależne od ) podczas drugiego naświetlenia, natomiast indeks 2 parametry emulsji/ekspozycji również podczas drugiego naświetlenia. Po oświetleniu przeźrocza o transmitancji (11) płaską falą odtwarzającą opisaną wzorem: dostaniemy tuż za hologramem rozkład postaci: ( ) (12) ( ) ( ). (13) Po wstawieniu (10), (11) i (12) do (13) otrzymamy cztery fale ugięte, tworzące parami obrazy rzeczywiste i urojone. Przy jednakowych natężeniach wiązek, czasach naświetlania i użyciu tej samej wiązki odniesienia podczas obu ekspozycji dostaniemy w płaszczyźnie obrazowej rozkład intensywności spełniający warunek: ( ) [ ( )] (14) Zatem analiza interferogramu opiera się na badaniu rozkładu intensywności w miejscach, gdzie różnica faz to wielokrotność 2, czyli gdzie natężenie jest maksymalne. Zależność (14) jest kluczowa dzięki niej możliwe jest uzyskiwanie informacji o obiekcie na podstawie obrazów prążkowych. Hologram dwuekspozycyjny może polegać również na kolejnym zapisaniu dwóch hologramów różnych obiektów na tym samym elemencie światłoczułym, przy wykorzystaniu dwóch różnych wiązek odniesienia. W takim wypadku analiza matematyczna staje się jeszcze bardziej skomplikowana niż w przypadku hologramu dwuekspozycyjnego używanego do interferometrii holograficznej, w związku z czym nie będziemy jej tutaj przytaczać. Należy jedynie wspomnieć, że jeśli w pierwszej ekspozycji wiązka odniesienia będzie padać na kliszę pod kątem, a podczas drugiej ekspozycji pod kątem, to odtwarzając hologram zobaczymy pod tymi kątami (odpowiednio) obiekt 1 i obiekt 2. Zakładamy, że w obu ekspozycjach obiekty stoją w tym samym miejscu. 4. Wykonanie ćwiczenia Ćwiczenie będzie polegało na zapisaniu hologramu dwuekspozycyjnego kolejno w każdej z dwóch wersji. Część I: Zapis hologramu dwuekspozycyjnego dwa obiekty widoczne pod różnymi kątami W tym przypadku zapis będzie odbywał się w układzie przedstawionym na rys. 2. Strona 4 z 6
5 Rysunek 2. Schemat układu do zapisu hologramu dwuekspozycyjnego dwa obiekty widoczne pod różnymi kątami Zwierciadła: 1 0% lub 50%; 2 50%; 3, 4, 5 100%. Zapis w układzie z rys. 2 składa się z dwóch ekspozycji. W pierwszej zapisujemy hologram obiektu 1, z wiązką odniesienia 1. Następnie wymieniamy obiekt oraz przesłaniamy pierwszą wiązkę odniesienia, a odsłaniamy drugą po tych operacjach wykonujemy drugą ekspozycję. Część II: Zapis hologramu dwuekspozycyjnego jeden obiekt w stanie podstawowym oraz poddany obciążeniu Zapis hologramu obiektu w stanie podstawowym i w stanie obciążonym odbywa się w tradycyjnym układzie do zapisu hologramu Fresnela (rys. 3). Pomiędzy ekspozycjami należy jedynie obciążyć obiekt, np. położyć ciężki przedmiot na gumce do ścierania. Rysunek 3. Schemat układu do zapisu hologramu dwuekspozycyjnego ten sam obiekt widoczny w dwóch różnych stanach np. z obciążeniem i bez Strona 5 z 6
6 5. Literatura 1. K. Patorski, M. Kujawińska, L. Sałbut Interferometria laserowa z automatyczną analizą obrazu, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2005) 2. Kazimierz Gniadek Optyczne przetwarzanie informacji, PWN, Warszawa (1992) 3. P. K. Rastogi Holographic Interferometry. Principles and Methods, Springer Series in Optical Sciences 68, (1994) 4. M. De la Torre-Ibarra et. al Detection of surface strain by three-dimensional digital holography ; Appl. Opt. 44, (2005) 5. M. Pluta Holografia Optyczna. Podstawy Fizyczne i zastosowania ; PWN, Warszawa (1980) Strona 6 z 6
Rys. 1 Geometria układu.
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Ćwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr)
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
ĆWICZENIE 5. HOLOGRAM KLASYCZNY TYPU FRESNELA
ĆWICZENIE 5. HOLOGAM KLASYCZNY TYP FESNELA Wstęp teoretyczny Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej przez falę elektromagnetyczną
Ćwiczenie 12. Wprowadzenie teoretyczne
Ćwiczenie 12 Hologram cyfrowy. I. Wstęp Wprowadzenie teoretyczne Ze względu na sposób zapisu i odtworzenia, hologramy można podzielić na trzy grupy: klasyczne, syntetyczne i cyfrowe. Hologramy klasyczny
Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera
ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę
Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne
Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią
Ćwiczenie 3. Wybrane techniki holografii. Hologram podstawy teoretyczne
Ćwiczenie 3 Wybrane techniki holografii Hologram podstawy teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym. Dzięki temu można m.in. odtwarzać trójwymiarowe obiekty w ich naturalnym,
Laboratorium Informatyki Optycznej ĆWICZENIE 5. Sprzęganie fazy
ĆWICZENIE 5 Sprzęganie fazy 1. Wprowadzenie Ćwiczenie polega na praktycznym wykorzystaniu zjawiska sprzęgania fazy. Efekt sprzężenia fazy realizowany będzie w sposób holograficzny. Podstawowym zadaniem
ĆWICZENIE 6. Hologram gruby
ĆWICZENIE 6 Hologram gruby 1. Wprowadzenie Na jednym z poprzednich ćwiczeń zapoznaliśmy się z cienkim (powierzchniowo zapisanym) hologramem Fresnela, który daje nam możliwość zapisu obiektu przestrzennego.
Ćwiczenie 11. Wprowadzenie teoretyczne
Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia
Ćwiczenie H2. Hologram Fresnela
Pracownia Informatyki Optycznej Wydział Fizyki PW Ćwiczenie H Hologram Fresnela 1. Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej
Laboratorium Informatyki Optycznej ĆWICZENIE 7. Hologram gruby widoczny w zakresie 360
ĆWICZENIE 7 Hologram gruby widoczny w zakresie 360 1. Wprowadzenie Klasyczne hologramy są jak dotąd najlepszą metodą rejestracji obiektów trójwymiarowych. Dzięki pełnemu zapisowi informacji o obiekcie
Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.
HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Badania elementów i zespołów maszyn laboratorium (MMM4035L)
Badania elementów i zespołów maszyn laboratorium (MMM4035L) Ćwiczenie 23. Zastosowanie elektronicznej interferometrii obrazów plamkowych (ESPI) do badania elementów maszyn. Opracowanie: Ewelina Świątek-Najwer
ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006 1. Cel
Hologram gruby (objętościowy)
Hologram gruby (objętościowy) Wprowadzenie teoretyczne Holografia jest bardzo rozległą dziedziną optyki i na pewno nie dziwi fakt, że istnieją hologramy różnego typu. W zależności od metody zapisu hologramu,
Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.
Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Ćwiczenie 3. Koherentne korelatory optyczne
Ćwiczenie 3 Koherentne korelatory optyczne 1. Wprowadzenie Historycznie jednym z waŝniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę zdjęć lotniczych lub
BADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Układy holograficzne: Odbiciowe Transparentne Fourierowskie Tęczowe Kolorowe grube Plazmoniczne Hologramy generowane
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Hologram Fresnela obiektu punktowego
Hologram Fresnela obiektu punktowego Ponieważ rejestracja hologramu opiera się na zjawisku interferencji jako źródło światła stosuje się laser. Wiązka laserowa charakteryzuje się tak dużym stopniem spójności,
Badanie zjawisk optycznych przy użyciu zestawu Laser Kit
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser
ZASTOSOWANIE INTEREFOMETRII HOLORAFICZNEJ
Romuald BĘDZIŃSKI, Celina PEZOWICZ wszelkie prawa zastrzeżone ZASTOSOWANIE INTEREFOMETRII HOLORAFICZNEJ 1. ISTOTA HOLOGRAFII 1.1. Wprowadzenie Holografia to rejestracja i rekonstrukcja powierzchni falowych:
Laboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski
Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Rys. 1 Schemat układu obrazującego 2f-2f
Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)
ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM
Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 2 ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM 2.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie z teorią dwustopniowego
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej
Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej Cel ćwiczenia: Celem ćwiczenia jest demonstracja i ilościowa analiza wybranych metod dyskretnej i ciągłej zmiany fazy w interferometrach
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona
Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
HOLOGRAFIA CEL ĆWICZENIA APARATURA ZAGADNIENIA DO KOLOKWIUM (INSTRUKCJA + PROPONOWANA LITERATURA) ZADANIA DO PRZYGOTOWANIA
H HOLOGRAFIA CEL ĆWICZENIA Ćwiczenie jest doświadczeniem z dziedziny interferometrii i rejestracji obrazów trójwymiarowych. W trakcie ćwiczenia wykonywane są hologramy typu odbiciowego, objętościowego
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych
Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu
HOLOGRAFIA CEL ĆWICZENIA PROPONOWANY PRZEBIEG ĆWICZENIA ZAGADNIENIA DO KOLOKWIUM (INSTRUKCJA + PROPONOWANA LITERATURA)
HOLOGRAFIA CEL ĆWICZENIA Ćwiczenie jest doświadczeniem z dziedziny interferometrii oraz rejestracji obrazów trójwymiarowych. W trakcie ćwiczenia konstruowany jest interferometr Michelsona oraz są wykonywane
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Laboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych
ĆWICZENIE 1 Optyczna filtracja sygnałów informatycznych 1. Wprowadzenie Przyjmijmy że znamy pole świetlne w płaszczyźnie ( ) czyli że znamy rozkład jego amplitudy i fazy we wszystkich punktach gdzie określony
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia
DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
Ćwiczenie O-9 YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali światła laserowego i szerokości
Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Egzamin / zaliczenie na ocenę*
Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy optyki fizycznej i instrumentalnej Nazwa w języku angielskim Fundamentals of Physical and Instrumental Optics Kierunek
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
ĆWICZENIE 5/6 HOLOGRAM SYNTETYCZNY
ĆWICZENIE 5/6 HOLOGRAM SYNTETYCZNY Wstęp teoretyczny Celem ćwiczeń laboratoryjnych z cyklu "Holografia Syntetyczna" jest przygotowanie sceny przestrzennej oraz obliczenie tworzonego przez nią rozkładu
Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Ćwiczenie 4. Część teoretyczna
Ćwiczenie 4 Badanie aberracji chromatycznej soczewki refrakcyjnej i dyfrakcyjnej. Badanie odpowiedzi impulsowej oraz obrazowania przy użyciu soczewki sferycznej. Zbadanie głębi ostrości przy oświetleniu
Optyka Fourierowska. Wykład 9 Hologramy cyfrowe
Optyka Fourierowska Wykład 9 Hologramy cyfrowe Hologramy generowane w komputerze Hologramy poza zapisem intefererujących fal koherentnych można wyliczyć za pomocą komputera i wydrukować na ploterze lub
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie
Wykład VI Dalekie pole
Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga
Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja
18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
WYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA
WYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA prof. dr hab. inż. Krzysztof Patorski Omawiane zagadnienia z zakresu dyfrakcji Fresnela obejmują: dyfrakcję na obiektach o symetrii obrotowej ze szczególnym uwzględnieniem
POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane
FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika
Politechnika Warszawska
Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Rodzina czujników przemieszczeń w płaszczyźnie z wykorzystaniem interferometrii siatkowej (GI) i plamkowej (DSPI)
Rodzina czujników przemieszczeń w płaszczyźnie z wykorzystaniem interferometrii siatkowej (GI) i plamkowej (DSPI) Kierownik: Małgorzata Kujawińska Wykonawcy: Leszek Sałbut, Dariusz Łukaszewski, Jerzy Krężel
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
ZASTOSOWANIE LASERÓW W HOLOGRAFII
ZASTOSOWANIE LASERÓW W HOLOGRAFII Holografia - dzia optyki zajmuj cy si technikami uzyskiwania obrazów przestrzennych metod rekonstrukcji fali (g ównie wiat a, ale te np. fal akustycznych). Przez rekonstrukcj
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:
Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2
FIZYKA LASERÓW XIII. Zastosowania laserów
FIZYKA LASERÓW XIII. Zastosowania laserów 1. Grzebień optyczny Częstość światła widzialnego Sekunda to Problemy dokładności pomiaru częstotliwości optycznych Grzebień optyczny linijka częstotliwości Laser
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Zaproszenie do dyskusji. Fake News. Zdzisław Jankiewicz. Podziel się wiedzą WAT, Warszawa
Zaproszenie do dyskusji Fake News Zdzisław Jankiewicz Podziel się wiedzą WAT, Warszawa 15.04.2019 1 Fake News - zwrot, który zrobił ostatnio zawrotną karierę: co oznacza? Sięgnijmy do Internetu: Fake news