Katedra Elektrotechniki Teoretycznej i Informatyki
|
|
- Mateusz Jasiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Katedra Elektrotechniki Teoretycznej i Inormatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich umer ćwiczenia: 7 Temat: Wprowadzenie do Signal Processing Toolbox 1. PRÓBKOWAIE I KWATYZACJA Sygnał analogowy o częstotliwości : x ( t ) = A sin( 2πt ) jest próbkowany z częstotliwością s (na rys. s = 16*; K = 16; = 1 khz; A = 1): x n) = A sin( 2πnt ). ( s Czas rzeczywisty (ciągły) został zamieniony na czas dyskretny, określany przez zmienną indeksową n: x( t) x( n) t nts n = 0,1,2, K 1 Sygnał y(n) przedstawiony jest za pomocą prąŝków. Aby inormacja mogła być poprawnie odtworzona, minimalna częstotliwość próbkowania sygnału musi być przynajmniej dwukrotnie większa od najwyŝszej częstotliwości składowej w sygnale: s 2 max max - maksymalna częstotliwość w sygnale. 1
2 Wizualizacja procesu próbkowania przedstawiona jest w skrypcie probkowanie.m: clear all s=16000; % częstotliwość próbkowania =1000; % częstotliwość sygnału ts=1/s; % odstęp próbkowania K=s/; % ilość próbek na okres K*ts = T lt=8; % liczba generowanych okresów pt=2; % liczba pokazywanych okresów pt <= lt n=1:k*lt; t=0:0.01/:(1/)*lt; % wygenerowanie lt okresów czasu (100 punktów/okres) x=sin(2*pi**t); % sygnał ciągły xs=sin(2*pi**n*ts); % sygnał próbkowany (K próbek/okres) igure plot(t,x,'k') % wykres sygnału ciągłego w dziedzinie czasu stem(n*ts,xs,'r') % wykres sygnału próbkowanego w dziedzinie czasu axis([0,(1/)*pt,-1.5,1.5]) xlabel('czas t [s]'); hold o Sinusoida =1kHz próbkowana jest częstotliwością s=16khz. a podstawie skryptu naleŝy: 1. sprawdzić jak częstotliwość próbkowania s wpływa na odwzorowanie sygnału podczas próbkowania (dla s=550, 1050, 2000, 2050, 8000, Hz). 2. określić, dlaczego dla s=2000 (s równe dokładnie dwukrotnej częstotliwości sygnału) sygnał próbkowany nie występuje, co naleŝy zrobić aby to zmienić? Aby sygnał mógł być przetwarzany przez układy cyrowe, oprócz dyskretyzacji w dziedzinie czasu, musi być dokonana dyskretyzacja wartości sygnału (sprowadzenie wartości sygnału do zbioru skończonego). W wyniku tego działania powstają błędy kwantyzacji, których wielkość zaleŝna jest od ilości przedziałów, na które podzielony został zakres sygnału. Przykładem procesu kwantyzacji jest unkcja kwantyzuj. Dzieli ona zakres wartości danego sygnału na 2^bit przedziały (bit ilość bitów przetwornika AC). Wartości kaŝdej z próbek przyporządkowuje wartość środkową z przedziału, w którym się zawiera. Wywołanie tej unkcji wygląda następująco: sygnal_wyjsciowy = kwantyzuj (ilosc_bitów_przetwornika_ac, sygnal_wejsciowy). 2. DYSKRETA TRASFORMATA FOURIERA Analiza i przetwarzanie sygnałów wymaga znajomości reprezentacji sygnału nie tylko w dziedzinie czasu, ale i w dziedzinie częstotliwości. Przejście pomiędzy tymi dziedzinami moŝliwe jest dzięki transormacie Fouriera (t->) i odwrotnej transormacie Fouriera (->t). Transormata Fouriera dla unkcji ciągłych wyraŝa się następującą zaleŝnością: X ( ) = x ( t ) e j ϖ t dt Dla sygnałów dyskretnych w dziedzinie czasu stosowana jest dyskretna transormata Fouriera, wyraŝająca się następującym wzorem: X ( m ) = 1 n = 0 x( n) e j 2πnm 2
3 W wyniku powstaje dyskretny ciąg X(m) w dziedzinie częstotliwości, przy czym m jest indeksem próbek wyjściowych DFT w dziedzinie częstotliwości (m=0,1,2, -1). to liczba próbek ciągu wejściowego oraz liczba punktów częstotliwości w ciągu wyjściowym DFT. Analiza częstotliwościowa sygnału x(n), wyznaczająca wartości X(m) DFT, zwane prąŝkami, jest dokonywana w punktach osi częstotliwości będących całkowitymi wielokrotnościami częstotliwości zdeiniowanej jako s/. a podstawie tego moŝliwe jest wyliczenie podziałki częstotliwości: m s an ( m) =. Ogół zagadnień związanych z próbkowaniem, kwantyzacją i DFT przedstawiony jest w skrypcie prob_dt. a początku uŝytkownik wprowadza podstawowe parametry sygnału (amplitudy i częstotliwość; sygnał x1 to suma dwóch sinusoid), częstotliwość próbkowania oraz ilość bitów przetwornika. astępnie przedstawiona jest róŝnica pomiędzy sygnałem kwantowanym, a nie kwantowanym. Po tym pokazane są błędy wynikające z procesu kwantyzacji. a końcu wyliczona jest DFT. W skrypcie posłuŝono się zaleŝnością na DFT, po przekształceniu Eulera, tj: X ( m ) = 1 n = 0 x ( n )[cos( 2π nm ) j sin( 2π nm )] Wyświetlana jest tylko pierwsza połowa próbek, poniewaŝ przy wyliczaniu punktowej transormaty DFT, jedynie pierwsze /2 próbek jest niezaleŝnych. Druga połowa jest odbiciem symetrycznym pierwszej. Wykonana została równieŝ korekta wartości widma amplitudowego. clear all = 32; % ilosc punktów DFT n = 1:; m = 1:; % deinicja opisów wejściowych: opis = {'Czestotliwosc pierwszej skladowej 1 [Hz]:','Czestotliwosc drugiej skladowej 2 [Hz]:',... 'Amplituda pierwszej skladowej A1 [V]:','Amplituda drugiej skladowej A2 [V]:',... 'Czestotliwosc probkowania s Hz]:','Liczba bitow przetwornika (1-12):'}; % deinicja wartosci domyslnych: de = {'1000','2000','1','0','32000','3'}; % wygenerowanie okna dialogowego: odp = inputdlg(opis,'parametry sygnalu',1,de); % przyporzadkowanie wartosci: temp = str2num(char(odp)); 1 = temp(1) 2 = temp(2) A1 = temp(3) A2 = temp(4) s = temp(5) % czestotliwosc próbkowania = (ilosc próbek)/sek; najlepiej *1000 ts = 1/s; % odstep próbkowania bit = temp(6) % zdeiniowanie sygnalu wejsciowego x1(n) x1 = A1*sin(2*pi*1*(n-1)*ts)+A2*sin(2*pi*2*(n-1)*ts); % x1(n) % porównanie sygnalu przed i po kwantyzacji subplot(2,1,1) plot(0:-1,x1,'r') % wykres w dziedzinie czasu stem(0:-1,x1,'g'); % sygnal spróbkowany title('probkowanie sygnalu'); legend('x1-sygnal ciagly','probki bez kwantyzacji'); ylabel('[v]'); hold o 3
4 subplot(2,1,2) plot(0:-1,x1,'r') x=kwantyzuj(bit,x1); stem(0:-1,x,'k'); title('probkowanie z kwantyzacja sygnalu'); legend('x1-sygnal ciagly','probki po kwantyzacji'); ylabel('[v]'); hold o % wykres w dziedzinie czasu % wywolanie unkcji kwantyzujacej % próbki po kwantyzacji % przedstawienie bledów kwantyzacji igure stem(0:-1,x1-x,'b'); title('bledy spowodowane kwantyzacja sygnalu (zalezne od ilosci bitow przetwarzania)'); legend('(x1 - x)') % wyliczenie DFT an = (m-1)*s/ % wyliczenie podzialki czestotliwosci or m = 1: X(m)=0; or n = 1: X(m) = X(m) + x(n)*(cos(2*pi*(n-1)*(m-1)/)-j*sin(2*pi*(n-1)*(m-1)/)); end end X = X/(/2); % korekta amplitudy X(1) = X(1)/2; % korekta poziomu skladowej stalej % przedstawienie wyników dzialania DFT igure stem(an,sqrt(real(x).^2+imag(x).^2)) % wykres modulu w dziedzinie czestotliwosci axis([0,((/2)+1)*s/,0,1.1*max(sqrt(real(x).^2+imag(x).^2))]); title('dyskretna transormata Fouriera'); legend('prazki reprezentuja skladowe czestotliwosci sygnalu'); xlabel('czestotliwosc [Hz]'); ylabel('modul [V]'); W programie MATLAB transormata Fouriera realizowana jest przez polecenie t: X = t(x,n); x sygnał cyrowy w dziedzinie czasu n liczba punktów transormaty X- widmo sygnału (sygnał w dziedzinie częstotliwości). Odwrotna transormata Fouriera realizowana jest przez polecenie it: x = it(x,n); X- widmo sygnału (sygnał w dziedzinie częstotliwości) n liczba punktów transormaty x sygnał cyrowy w dziedzinie czasu. 4
5 3. ĆWICZEIA Ćwiczenie 1 Zmieniając liczbę bitów przetwornika AC (np. bit = 1, 3, 4, 8, 10), zbadać: a) jak zmienia się obraz próbkowanego sygnału, b) poziom (rząd wielkości) błędów kwantyzacji, porównać maksymalny błąd kwantyzacji z połową przedziału kwantowania, c) jakie zniekształcenia się pojawiają (wyŝsze harmoniczne sygnału), dla bit=1, 2, 4, 8 wyznacz współczynnik zawartości harmonicznych, zdeiniowany następująco: Ćwiczenie 2 k h H 2 + H 3 + H 4 + K =, gdzie H n - n-ta harmoniczna H 1 Zaobserwować, Ŝe dla sygnału prostokątnego (bit=1), występują jedynie nieparzyste harmoniczne sygnału. Ćwiczenie 3 Porównać wyniki (szczególnie w dziedzinie częstotliwości) dla dwóch przypadków: - s= 8000 Hz, bit=8, pozostałe parametry domyślne - s= 8600 Hz, bit=8, pozostałe parametry domyślne. - W ostatnim przypadku s nie jest całkowitą wielokrotnością częstotliwości składowej sygnału, a więc występuje zjawisko przecieku widma DFT. Energia składowej nie spełniającej tego warunku ujawnia się w pewnym stopniu we wszystkich prąŝkach: bez przecieku z przeciekiem Ćwiczenie 4 1. Wygenerować sygnał y składający się z 4 harmonicznych 2. Wyznaczyć jego postać częstotliwościową Y 3. a podstawie Y stosując odwrotną transormatę Fouriera wyznacz ponownie sygnał w dziedzinie czasu. Zapisz go w zmiennej y1 4. Porównaj sygnały y i y1, wykreśl (y1 - y)/max(y) 5
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Bardziej szczegółowoDYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Bardziej szczegółowoĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3
1 Zakład Elektrotechniki Teoretycznej ver.3 ĆWICZEIE III AALIZA WIDMOWA SYGAŁÓW DYSKRETYCH (00) Celem ćwiczenia jest przeprowadzenie analizy widmowej dyskretnych sygnałów okresowych przy zastosowaniu szybkiego
Bardziej szczegółowoĆwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia:
Ćwiczenie 11 Podstawy akwizycji i cyfrowego przetwarzania sygnałów Program ćwiczenia: 1. Konfiguracja karty pomiarowej oraz obserwacja sygnału i jego widma 2. Twierdzenie o próbkowaniu obserwacja dwóch
Bardziej szczegółowoDYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
Bardziej szczegółowo9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Bardziej szczegółowoĆwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Bardziej szczegółowoZjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Bardziej szczegółowoTemat ćwiczenia. Analiza częstotliwościowa
POLIECHNIKA ŚLĄSKA W YDZIAŁ RANSPORU emat ćwiczenia Analiza częstotliwościowa Analiza częstotliwościowa sygnałów. Wprowadzenie Analizę częstotliwościową stosuje się powszechnie w wielu dziedzinach techniki.
Bardziej szczegółowoFFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Bardziej szczegółowouzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
Bardziej szczegółowo8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
Bardziej szczegółowodr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w
Bardziej szczegółowoMETODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH
INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH Methods of analyzing vibro-acoustics signal Zakres ćwiczenia: 1. Rodzaje sygnałów. 2. Metody analizy sygnałów w dziedzinie
Bardziej szczegółowoLaboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii
Bardziej szczegółowoTransformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Bardziej szczegółowoANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing
POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM PRZETWARZANIA SYGNAŁÓW ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing I. Cel ćwiczenia Celem
Bardziej szczegółowoDyskretne przekształcenie Fouriera cz. 2
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie
Bardziej szczegółowoĆwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Bardziej szczegółowoTeoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Bardziej szczegółowoSymulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
Bardziej szczegółowoLaboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa
PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Analiza widmowa Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład
Bardziej szczegółowoPodstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Bardziej szczegółowoEFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Pomiar parametrów sygnałów sieci elektroenergetycznej dr inż.
Bardziej szczegółowoAndrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZEIE 6 Dyskretne przekształcenie Fouriera DFT 1. Cel ćwiczenia Dyskretne przekształcenie Fouriera ( w skrócie oznaczane jako DFT z ang. Discrete Fourier
Bardziej szczegółowoTeoria przetwarzania A/C i C/A.
Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych
Bardziej szczegółowoO sygnałach cyfrowych
O sygnałach cyfrowych Informacja Informacja - wielkość abstrakcyjna, która moŝe być: przechowywana w pewnych obiektach przesyłana pomiędzy pewnymi obiektami przetwarzana w pewnych obiektach stosowana do
Bardziej szczegółowo7. Szybka transformata Fouriera fft
7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów
Bardziej szczegółowoPodstawy akwizycji i cyfrowego przetwarzania sygnałów
AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego
Bardziej szczegółowoĆwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Bardziej szczegółowoĆwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Bardziej szczegółowoLABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha
AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego
Bardziej szczegółowoPOLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Analiza sygnałów czasowych Opracował: dr inż. Roland Pawliczek Opole 2016 1 2 1. Cel
Bardziej szczegółowoSPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI
1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711
Bardziej szczegółowoKatedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa. Nr ćwicz.
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II ELEMENTY CYFROWEGO PRZETWARZANIA SYGNAŁÓW POMIAROWYCH Grupa Nr ćwicz. 2 1... kierownik 2... 3... 4... Data
Bardziej szczegółowoAndrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście
Bardziej szczegółowoWOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
Bardziej szczegółowoĆwiczenie 4: Próbkowanie sygnałów
Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW MODULACJI I SYSTEMÓW Ćwiczenie 4: Próbkowanie sygnałów Opracował dr inż. Andrzej
Bardziej szczegółowoCYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert
Bardziej szczegółowoLaboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk
Bardziej szczegółowoWydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Bardziej szczegółowox(n) x(n-1) x(n-2) D x(n-n+1) h N-1
Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej
Bardziej szczegółowoANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny
Bardziej szczegółowoWydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
Bardziej szczegółowoĆw. 7 Przetworniki A/C i C/A
Ćw. 7 Przetworniki A/C i C/A 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadami przetwarzania sygnałów analogowych na cyfrowe i cyfrowych na analogowe poprzez zbadanie przetworników A/C i
Bardziej szczegółowoParametryzacja przetworników analogowocyfrowych
Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),
Bardziej szczegółowo1.5. Sygnały. Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego
Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego Za pomocąsygnałów przekazywana jest informacja. Sygnałjest nośnikiem informacji. Za pomocą sygnału moŝna: badać
Bardziej szczegółowoWydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
Bardziej szczegółowoKatedra Elektrotechniki Teoretycznej i Informatyki
Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich Numer ćwiczenia: 7,8 Temat: Signal Processing Toolbox - filtry cyfrowe, transmitancja
Bardziej szczegółowoPrzetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości
Bardziej szczegółowoSygnał a informacja. Nośnikiem informacji mogą być: liczby, słowa, dźwięki, obrazy, zapachy, prąd itp. czyli różnorakie sygnały.
Sygnał a informacja Informacją nazywamy obiekt abstarkcyjny, który może być przechowywany, przesyłany, przetwarzany i wykorzystywany y y y w określonum celu. Zatem informacja to każdy czynnik zmnejszający
Bardziej szczegółowoWłaściwości sygnałów i splot. Krzysztof Patan
Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ
Bardziej szczegółowoPolitechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Bardziej szczegółowoSpis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1
Spis treści 1. Cyfrowy zapis i synteza dźwięku... 2 2. Schemat blokowy i zadania karty dźwiękowej... 4 UTK. Karty dźwiękowe. 1 1. Cyfrowy zapis i synteza dźwięku Proces kodowania informacji analogowej,
Bardziej szczegółowoCyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control 1. Wstęp 2.Próbkowanie i odtwarzanie sygnałów 3. Charakterystyka sygnałów analogowych 4. Aliasing 5. Filtry antyaliasingowe 6.
Bardziej szczegółowoPrzekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
Bardziej szczegółowoWydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Bardziej szczegółowo1. Modulacja analogowa, 2. Modulacja cyfrowa
MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna
Bardziej szczegółowoWYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH
PODSTAWY SYGNAŁÓW POMIAROWYCH I METROLOGII WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH WSTĘP TEORETYCZNY Sygnałem nazywamy przebieg dowolnej wielkości fizycznej mogącej być nośnikiem informacji Opis
Bardziej szczegółowoPolitechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 3 Analiza częstotliwościowa sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest
Bardziej szczegółowoPrzetwarzanie analogowo-cyfrowe sygnałów
Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów
Bardziej szczegółowoKartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.
Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów
Bardziej szczegółowoPL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Bardziej szczegółowoZastosowania mikrokontrolerów w przemyśle
Zastosowania mikrokontrolerów w przemyśle Cezary MAJ Katedra Mikroelektroniki i Technik Informatycznych Współpraca z pamięciami zewnętrznymi Interfejs równoległy (szyna adresowa i danych) Multipleksowanie
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoPrzetworniki analogowo-cyfrowe - budowa i działanie" anie"
Przetworniki analogowo-cyfrowe - budowa i działanie" anie" Wprowadzenie Wiele urządzeń pomiarowych wyposaŝonych jest obecnie w przetworniki A/C. Końcówki takich urządzeń to najczęściej typowe interfejsy
Bardziej szczegółowoWydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Bardziej szczegółowoPrzekształcenie Fouriera i splot
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera
Bardziej szczegółowoAlgorytmy detekcji częstotliwości podstawowej
Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe
Bardziej szczegółowoPolitechnika Warszawska
Politechnika Warszawska Wydział Elektryczny Laboratorium Podstaw Techniki Mikroprocesorowej Skrypt do ćwiczenia M.43 Obliczanie wartości średniej oraz amplitudy z próbek sygnału język C .Część teoretyczna
Bardziej szczegółowoCechy karty dzwiękowej
Karta dzwiękowa System audio Za generowanie sygnału dźwiękowego odpowiada system audio w skład którego wchodzą Karta dźwiękowa Głośniki komputerowe Większość obecnie produkowanych płyt głównych posiada
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja
Bardziej szczegółowoKompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.
1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci
Bardziej szczegółowoLaboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006 1. Cel
Bardziej szczegółowoRealizacja filtrów cyfrowych z buforowaniem próbek
str. 1 Realizacja filtrów cyfrowych z buforowaniem próbek 1. Filtry Cyfrowe Zadaniem filtracji jest przepuszczanie (tłumienie) składowych sygnału leŝących w określonym paśmie częstotliwości. Ogólnie filtr
Bardziej szczegółowoDyskretne sygnały deterministyczne i analiza widmowa
Wydział Elektryczny Zakład Automatyki LABORATORIUM CYFROWEGO PRZETWARZAIA SYGAŁÓW Ćwiczenie Dyskretne sygnały deterministyczne i analiza widmowa. Cel ćwiczenia Opanowanie umiejętności komputerowego modelowania
Bardziej szczegółowoAnaliza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
Bardziej szczegółowoPrzetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2
Bardziej szczegółowodr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 3 Politechnika Gdaoska, 20 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 9 Kodowanie podpasmowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
Bardziej szczegółowoLaboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
Bardziej szczegółowoPrzykładowe pytania 1/11
Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.
Bardziej szczegółowoPolitechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Bardziej szczegółowoĆWICZENIE I SYGNAŁY DYSKRETNE W CZASIE, ALIASING (00)
Zakład Elektrotechniki Teoretycznej ĆWICZENIE I SYGNAŁY DYSKRETNE W CZASIE, ALIASING () Celem ćwiczenia jest generacja sygnałów dyskretnych w czasie oraz ilustracja zjawiska aliasingu. Celem ćwiczenia
Bardziej szczegółowoGenerowanie sygnałów na DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą
Bardziej szczegółowoLaboratorium Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB. 2. Program ćwiczenia. Przykład 1 Wprowadź
Podstawy Informatyki 1 Laboratorium 9 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB 2. Program ćwiczenia Przykład 1 Wprowadź fo = 4; %frequency of the sine wave
Bardziej szczegółowo6. Transmisja i generacja sygnałów okresowych
24 6. Transmisja i generacja sygnałów okresowych Cele ćwiczenia Zapoznanie ze środowiskiem programistycznym Code Composer Studio. Zapoznanie z urządzeniem TMX320C5515 ezdsp. Zapoznanie z podstawami programowania
Bardziej szczegółowoPRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA.
strona 1 PRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA. Cel ćwiczenia Celem ćwiczenia jest przedstawienie istoty działania przetwornika C/A, źródeł błędów przetwarzania, sposobu definiowania
Bardziej szczegółowo(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.
MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.
Bardziej szczegółowoZastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów
31.01.2008 Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów Paweł Tkocz inf. sem. 5 gr 1 1. Dźwięk cyfrowy Fala akustyczna jest jednym ze zjawisk fizycznych mających charakter okresowy.
Bardziej szczegółowoPodstawowe funkcje przetwornika C/A
ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:
Bardziej szczegółowoTERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych
Bardziej szczegółowoPrzetwarzanie sygnału cyfrowego (LabVIEW)
Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział: Elektryczny, Kierunek: Informatyka Projekt zaliczeniowy Przedmiot: Systemy akwizycji i przesyłania informacji Przetwarzanie sygnału
Bardziej szczegółowo8. Realizacja projektowanie i pomiary filtrów IIR
53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów
Bardziej szczegółowoPrzekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Bardziej szczegółowodr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w
Bardziej szczegółowoANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA.
ĆWICZENIE NR 15 ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSYCZNYCH DUDNIENIA. I. Cel ćwiczenia. Celem ćwiczenia było poznanie podstawowych pojęć związanych z analizą harmoniczną dźwięku jako fali
Bardziej szczegółowoDyskretne przekształcenie Fouriera
Dyskretne przekształcenie Fouriera Dyskretne przekształcenie Fouriera (ang. Discrete Fourier Transform - DFT) jest jedną z dwóch najbardziej popularnych i wydajnych procedur spotykanych w dziedzinie cyfrowego
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego
Bardziej szczegółowo