Konkurs matematyczny dla uczniów gimnazjum
|
|
- Karolina Brzezińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Stanis³aw Zieleñ Konkurs matematyczny dla uczniów gimnazjum Zadania z Wojewódzkiego Konkursu Matematycznego dla uczniów gimnazjów województwa opolskiego z lat OPOLE Wydawnictwo NOWIK Sp.j. 2012
2 Wstêp Ksi¹ ka zawiera zestawy zadañ z konkursów matematycznych przeprowadzanych w gimnazjach na terenie województwa opolskiego w latach Prezentowane zestawy obejmuj¹ treœci zadañ przeznaczonych na eliminacje gminne i zawody wojewódzkie. Zadania w zestawach s¹ ró norodne i zró nicowane pod wzglêdem stopnia trudnoœci. Wszystkie zadania maj¹ kompletne rozwi¹zania, co umo liwia samodzielne ich rozwi¹zywanie w trakcie przygotowañ do nastêpnych konkursów i s³u y pog³êbianiu wiedzy matematycznej. Zbiór œwietnie nadaje siê do pracy z uczniami na zajêciach kó³ matematycznych w gimnazjum. Zestawy zadañ z zawodów gminnych maj¹ na ogó³ ni szy stopieñ trudnoœci od zestawów zadañ z zawodów wojewódzkich i niejednokrotnie spe³niaj¹ rolê przygotowawcz¹ do startu na zawodach wojewódzkich. Publikacja jest odpowiedzi¹ na zapotrzebowanie nauczycieli i uczniów szkó³ gimnazjalnych. Mamy nadziejê, e do³¹czy ona do kanonu lektur niezbêdnych przy przygotowywaniu siê do konkursów i olimpiad matematycznych i potwierdzi prawdziwoœæ znanego powiedzenia, e Opolskie matematyk¹ stoi. Autor 5
3 Zestaw 1 Zadanie 1. a) SprawdŸ, czy prawdziwe s¹ równoœci: 2 4 2, 4 8, b) Wstaw w miejsce a, b i c takie liczby, aby równoœæ a b c a b c by³a prawdziwa i nie by³a identyczna z adn¹ równoœci¹ z podpunktu a). Zadanie 2. Dany jest u³amek a. Do licznika tego u³amka dodano b liczbê 1. Jak¹ liczbê nale y dodaæ do mianownika tego u³amka, eby otrzymaæ u³amek równy danemu? Zadanie. Handlowiec podniós³ cenê pewnego towaru o 2 z³, a w kolejnej podwy ce o 2,10 z³; twierdzi³, e za ka dym razem podnosi³ cenê o ten sam procent. Jak¹ cenê mia³ ten towar po obydwu podwy kach? Zadanie 4. Olek hoduje rybki w akwarium o wymiarach 40 cm, 64 cm i 5 cm (wysokoœæ), natomiast Kamil w akwarium o wymiarach 50 cm, 80 cm i 40 cm (wysokoœæ). Gdy Olek wrzuci³ kamieñ do swego akwarium, poziom wody podniós³ siê o 2 mm. Na jak¹ wysokoœæ podniós³by siê poziom wody w akwarium Kamila po wrzuceniu tego samego kamienia? Zadanie 5. Bok trójk¹ta równobocznego ma d³ugoœæ 1 dm. Zbadaj, jak¹ d³ugoœæ mo e mieæ promieñ okrêgu, który ma szeœæ punktów wspólnych z bokami tego trójk¹ta. (Zawody gminne 2001 r.) 7
4 Zestaw 2 Zadanie 1. Dane jest równanie ax 2 x 8. a) Dla jakiej liczby podstawionej w miejsce a rozwi¹zaniem równania jest 0,5? b) Dla jakich liczb naturalnych podstawionych w miejsce a rozwi¹zaniem równania jest liczba ca³kowita? c) Wyznacz wszystkie liczby a, dla których rozwi¹zaniem równania bêdzie liczba wiêksza od 2. Zadanie 2. Wyka bez kalkulatora, e: a) , b) , c) Zadanie. Podczas rajdu samochodowego ORLI SZLAK Bob prowadzi³ przed Romusem. Na ostatnim etapie o d³ugoœci 450 km Bob osi¹gn¹³ prêdkoœæ œredni¹ 150 km/h, natomiast Romus 151 km/h i wygra³ rajd. Po og³oszeniu wyników okaza³o siê, e ró nica czasów Romusa i Boba na mecie rajdu by³a dwa razy wiêksza od czasu, jaki mia³ do odrobienia Romus. Jaka ró nica czasów by³a na mecie? Zadanie 4. Punkty A, B i Cnale ¹ do okrêgu. Ciêciwa AB ma d³ugoœæ 14 dm, AC 10 dm, a odleg³oœæ punktu Cod prostej AB wynosi 6 dm. Jak¹ d³ugoœæ ma ciêciwa BC? Zadanie 5. Kwadrat ABCD ma bok o d³ugoœci 2 cm. a) Wykreœl okr¹g o promieniu 1,5 cm tak, aby okr¹g ten mia³ z ka - dym bokiem kwadratu jeden punkt wspólny. b) Rozstrzygnij, jak¹ d³ugoœæ mo e mieæ promieñ okrêgu, wiedz¹c, e okr¹g ma jeden punkt wspólny z ka dym bokiem tego kwadratu? (Zawody wojewódzkie 2001 r.) 8
5 ODPOWIEDZI I ROZWI ZANIA Zestaw 1 Zadanie 1. a) Spe³niona jest tylko równoœæ 8, bo b) Np ; znajdÿ inne przyk³ady. Zadanie 2. Równoœæ b a 1 a jest spe³niona, gdy x b. x b a Zadanie. Niech c oznacza cenê towaru przed podwy kami. Cena ta spe³nia równanie c 2 c 4, 1. St¹d c 40. Cena towaru po obydwu c c 2 podwy kach wynosi³a 44,10 z³. Podnoszono j¹ za ka dym razem o 5%. Zadanie 4. Objêtoœæ kamienia wynosi³a: ( , 2) cm 512 cm Poziom wody w akwarium Kamila podniós³ siê o x 512 mm = 1,28 mm Zadanie 5. Promieñ okrêgu r spe³nia warunek: 6. r. Zestaw 2 Zadanie 1. a) a 11. b) a 0, 2,, 4, 7. c) Wszystkie liczby a spe³niaj¹ warunek: 1 a 4. 9
6 Zadanie 2. a) Suma ma 10 sk³adników, z których jeden wynosi 1 20, a ka dy z pozosta³ych jest wiêkszy od 20 1, zatem ich suma jest wiêksza od 10 20, czyli wiêksza od 1 2. b) Suma sk³adników jest wiêksza od 10 0, czyli wiêksza od 1. c) Suma 10 pocz¹tkowych sk³adników jest wiêksza od 1, suma 10 2 nastêpnych sk³adników jest wiêksza od 1, a suma ostatnich 10 sk³adników jest wiêksza od 1. Zatem suma wszystkich sk³ad- 4 ników jest wiêksza od , czyli jest wiêksza od 1. 4 Zadanie. Niech t oznacza czas w godzinach, który mia³ do odrobienia Romus. Z warunków zadania wynika, e 2 t , czyli t 02. Romus wygra³ rajd z przewag¹ godziny nad Bobem. 02 Zadanie 4. D³ugoœæ ciêciwy BC wynosi 6 2 dm. Zadanie 5. a) Okr¹g ten ma œrodek w punkcie O, który dzieli przek¹tn¹ AC na odcinki AO 2 2 cm i CO cm, a promieniem jest 2 2 odcinek o d³ugoœci 1,5 cm. Okr¹g ten jest styczny do boków BC i CD. b) D³ugoœæ r promienia okrêgu spe³nia warunek: 1 r 2, natomiast œrodek O okrêgu nale y do przek¹tnej np. AC kwadratu ABCD i dzieli j¹ na odcinki o d³ugoœciach: AO ( 2 r) 2 cm i CO r 2 cm. Gdy r 1 cm, wtedy okr¹g jest wpisany w kwadrat ABCD; gdy r 2 cm, œrodkiem okrêgu jest np. wierzcho³ek A kwadratu, a boki AB i BC maj¹ z okrêgiem wspólny punkt (wierzcho³ek) B, boki AD i CD punkt D. 40
Witold Bednarek. Konkurs matematyczny w gimnazjum Przygotuj siê sam!
Witold Bednarek Konkurs matematyczny w gimnazjum Przygotuj siê sam! OPOLE Wydawnictwo NOWIK Sp.j. 2012 Spis treœci Od autora......................................... 4 Rozgrzewka.......................................
Matematyka na szóstke
Stanislaw Kalisz Jan Kulbicki Henryk Rudzki Matematyka na szóstke Zadania dla klasy VI OPOLE Wydawnictwo NOWIK Sp.j. 013 Spis treœci Wstêp...5 1. Liczby ca³kowite... 7 1. Zadania ró ne... 7. U³amki zwyk³e...
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Przed matur¹ MAJ 2011 r. Czas pracy 180 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJ CY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATUR MAJ 2012 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu
Próbne zestawy egzaminacyjne
66 40 Próbne zestawy egzaminacyjne Zestaw nr 7 Zadanie 1. (0 1) Piasek tworz¹cy sto ek o promieniu podstawy 0,5 m i wysokoœci równej 0,3 m przesypano do zbiornika w kszta³cie walca o œrednicy podstawy
Przyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9.
Zadanie. Przyk³adowe zdania Napisz równanie prostej przechodz¹cej przez punkty A (, ) i B (, 4 ). Zadanie. Napisz równanie prostej, której wspó³czynnik kierunkowy równy jest, wiedz¹c, e przechodzi ona
Witold Bednarek CIEKAWA MATEMATYKA. dla uczniów gimnazjum
Witold Bednarek CIEKAWA MATEMATYKA dla uczniów gimnazjum OPOLE Wydawnictwo NOWIK Sp.j. 2014 SK AD KOMPUTEROWY I RYSUNKI Barbara Kwaœnicka PROJEKT OK ADKI Tomasz Fronckiewicz ISBN: 978-83-62687-49-7 Wydanie
Matematyka na szóstke
Stanislaw Kalisz Jan Kulbicki Henryk Rudzki Matematyka na szóstke Zadania dla klasy V Opole Wydawnictwo NOWIK Sp.j. 2012 Wstêp...5 1. Liczby naturalne...7 Rachunek pamiêciowy...7 1. Dodawanie i odejmowanie...7
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania
MATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem (Wpisuje zdaj¹cy przed rozpoczêciem pracy) KOD ZDAJ CEGO MMA-R1A1P-021 EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdaj¹cego POZIOM ROZSZERZONY Czas pracy 150 minut 1. Proszê
EGZAMIN MATURALNY Z MATEMATYKI
pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas
Matematyka na szóstke
Stanislaw Kalisz Jan Kulbicki Henryk Rudzki Matematyka na szóstke Zadania dla klasy IV OPOLE Wydawnictwo NOWIK Sp.j. 2013 Wstêp...5 1. Liczby naturalne...7 Rachunek pamiêciowy...7 1. Liczby a cyfry...7
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)
W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie
Konkurs matematyczny dla uczniów szko³y podstawowej
Teresa Dziemidowicz Konkurs matematyczny dla uczniów szko³y podstawowej Zadania z Wojewódzkiego Konkursu Matematycznego dla uczniów szkó³ podstawowych województwa opolskiego z lat 2004 2014 OPOLE Wydawnictwo
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Przed matur¹ MAJ 2011 r. Czas pracy 170 minut Instrukcja dla pisz¹cego 1. SprawdŸ, czy arkusz zawiera
XXII Krajowa Konferencja SNM. Egzamin gimnazjalny- matematyka
1 XXII Krajowa Konferencja SNM Egzamin gimnazjalny- matematyka Beata Bork-Krzywicka, lubuskie@pazdro.com.pl Przedstawiciel Regionalny oficyny Edukacyjnej* Krzysztof Pazdro Streszczenie. Od przedstawiciela
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut
Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 170 minut 1. Sprawdê, czy arkusz zawiera 15 stron. 2. W zadaniach
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014
XIII KONKURS MATEMATYCZNY
XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania
SPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011
XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011 Etap III Klasa IV Z 24 patyczków jednakowej długości ułożono 9 małych kwadratów tworzących jeden duży kwadrat 3 3. Ile
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
MATEMATYKA Instrukcja dla ucznia
KOD UCZNIA Centralna Komisja Egzaminacyjna UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia UZUPEŁNIA ZESPÓŁ
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 1 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 1. sà podane
1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
pobrano z (A1) Czas GRUDZIE
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 150 minut ARKUSZ II STYCZE ROK 2005 Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 10
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 6 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
Wymagania na poszczególne oceny klasa 4
Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 15 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 10 minut 1. Sprawdê, czy arkusz zawiera 10 stron.. W zadaniach od 1. do 5. sà podane
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.
Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 8 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do. sà podane
KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2011 UZUPE NIA ZESPÓ NADZORUJ CY KOD UCZNIA PESEL miejsce na naklejk z kodem
LICZBY RZECZYWISTE a) 3n, n N ; b) 3n 2, n N. 6. a) 0; b) 590; c) a) 1 ; b) a) 7; b) 27; c) 3; d) 2.
LICZB RZECZWISTE b) NWD( 0, 900) 0, NWW ( 0, 900) 600; c) NWD( 6, 58), NWW ( 6, 58) 654 0 4 a) n, n N ; b) n, n N 5 a) 0a b, a {,,, 9 }, b { 0,,, 9 }; b) 0a b ; c) b, b {,,, 9 } 6 a) 0; b) 590; c) 7 9
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci
56 Za³ó my, e twierdzenie jest prawdziwe dla macierzy dodatnio okreœlonej stopnia n 1. Macierz A dodatnio okreœlon¹ stopnia n mo na zapisaæ w postaci n 1 gdzie A n 1 oznacza macierz dodatnio okreœlon¹
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Rys Mo liwe postacie funkcji w metodzie regula falsi
5.3. Regula falsi i metoda siecznych 73 Rys. 5.1. Mo liwe postacie funkcji w metodzie regula falsi Rys. 5.2. Przypadek f (x), f (x) > w metodzie regula falsi 74 V. Równania nieliniowe i uk³ady równañ liniowych
nie zdałeś naszej próbnej matury z matematyki?
Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem (Wpisuje zdaj cy przed rozpocz ciem pracy) KOD ZDAJ CEGO MMA-RG1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 00 Instrukcja dla
MATEMATYKA Instrukcja dla ucznia
KOD UCZNIA Centralna Komisja Egzaminacyjna UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia UZUPEŁNIA ZESPÓŁ
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych.
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych LICEUM Klucz odpowiedzi do zadań zamkniętych 6 7 8 9 0 6 7 8 9 0 D A D A A B A B B C B D C C C D B C C B Zadanie. (pkt) Rozwiąż
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. pobrano z
Uk ad graficzny CKE 010 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM ROZSZERZONY Czas pracy 180 minut 1. Sprawdê, czy arkusz egzaminacyjny zawiera 13
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 11 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
matematyczne i podstawowe kompetencje naukowo-techniczne, informatyczne, uczenia siê.
16. CO KRYJE TWIERDZENIE PITAGORASA? 1. Realizowane treœci podstawy programowej Przedmiot Realizowana treœæ podstawy programowej Matematyka 10. Figury p³askie. Uczeñ: oblicza pole ko³a, pierœcienia ko³owego,
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 13 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
Matematyka dla odwa nych
Jan Kowolik, Tomasz Szwed Matematyka dla odwa nych Zbiór zadañ konkursowych dla uczniów uzdolnionych matematycznie Szko³a ponadgimnazjalna i nie tylko Opole 010 1 Spis treœci Wstêp...5 Rozdzia³ I. W³asnoœci
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Rejonowy
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj uważnie
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?
PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
Ko³a i szprychy. 12 Samouczek zadaniowy
12 Samouczek zadaniowy 6. A jak jest z okrêgami stycznymi do okrêgów? A jeœli musz¹ przechodziæ przez ustalony punkt? Gdzie le ¹ ich œrodki? Jakie figury tworz¹? Jak takie okrêgi styczne narysowaæ? 7.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 13 KWIETNIA 013 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba 3 ( 1 8) 1
Joanna Kwatera PO NITCE DO K ÊBKA. czyli jak æwiczyæ sprawnoœæ rachunkow¹ uczniów klas 4 6 szko³y podstawowej OPOLE
Joanna Kwatera PO NITCE DO K ÊBKA czyli jak æwiczyæ sprawnoœæ rachunkow¹ uczniów klas 4 6 szko³y podstawowej OPOLE Wydawnictwo NOWIK Sp.j. 2015 SK AD KOMPUTEROWY Barbara Kwaœnicka PROJEKT OK ADKI Daria
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 4 MARCA 201 CZAS PRACY: 10 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych liczb
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZJ Y KO PESEL PRÓNY EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY PRZE MTUR MJ 01 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 3). Ewentualny brak zg³oœ przewodnicz¹cemu zespo³u
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,
ARKUSZ EGZAMINACYJNY Z MATEMATYKI
dysleksja Miejsce na naklejk z kodem szko y ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw 1 POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz zawiera 12 stron (zadania