Ćwiczenie 13. Spektrometr gamma

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 13. Spektrometr gamma"

Transkrypt

1 Ćwiczni 13 Sktromtr gamma Studnt winin wykazać się znajomością: 1. Prominiowani gamma, jgo własności i oddziaływani z matrią (n. otokt, kt Comtona, zjawisko tworznia ar).. Licznik scyntylacyjny budowa i zasada działania. 3. Sktromtr gamma, budowa i zasada działania.

2 Pomoc mrytoryczna do oracowania wyników. Widmo nrgtyczn rominiowania gamma mitowango rzz matriał rominiotwórczy jst z rguły widmm liniowym (dyskrtnym) o niwilkij, często jdnj, liczbi wystęujących nrgii. Stąd w wilu rzyadkach zastosowani urządzń ozwalających okrślić t nrgi nawt z stosunkowo nidużą dokładnością moż dostarczyć wystarczającj inormacji o rodzaju źródła rominiotwórczgo i jgo aktywności. Do takigo clu bardzo dobrz nadają się scyntylacyjn sktromtry gamma. Jako matriał scyntylacyjny najczęścij stosuj się kryształ NaJ(Tl). Uroszczony schmat takigo sktromtru jst okazany na rys.l. Rys. 1. Uroszczony schmat blokowy scyntylacyjngo sktromtru y: S - scyntylator; F - otoowilacz; W -wzmacniacz; A - analizator amlitudy (jdno- lub wilokanałowy). W sktromtrz scyntylacyjnym odowidzią na wniknięci do scyntylatora otonu gamma jst ojawini się na wjściu analizatora A imulsu naięciowgo o wnj amlitudzi, owidzmy U. W rzyadku analizatora wilokanałowgo cały zakrs możliwych amlitud naięcia jst odzilony na onumrowan rzdziały (z rguły równ) -zwan kanałami - tak ż ojawini się imulsu z okrślongo rzdziału amlitud owoduj zarjstrowani go w amięci odnośngo kanału. W rzyadku analizatora jdnokanałowgo, zminiamy sukcsywni rzdział amlitud imulsów rzuszczanych do analizatora (i rjstrowanych w nim lub srzężonym z nim rzliczniku). W obu rzyadkach wynikim omiaru jst tzw. rozkład amlitud - nikidy mówi się o widmi amlitud. Analiza tgo widma ozwala wnioskować o widmi nrgtycznym otonów gamma. Dobra znajomość sktromtru ozwala rzy znajomości widma nrgtyczngo rominiowania gamma rzwidzić kształt widma amlitud imulsów, natomiast wnioskowani w drugą stronę z rguły jst mnij jdnoznaczn. Podstawowymi charaktrystykami sktromtru są: 1) odowidź sktromtru (odnośn widmo amlitud imulsów) na mononrgtyczn rominiowani gamma; ) nrgtyczna zdolność rozdzilcza; 3) zalżność wydajności rjstracji od nrgii otonów gamma. O wartości amlitudy U imulsu ojawiającgo się na wjściu analizatora sktromtru

3 scyntylacyjngo dcydują: nrgia wytworzongo w scyntylatorz błysku (jj miarą moż być liczba owstałych otonów luminscncyjnych) E s, wsółczynnik charaktryzujący wydajność konwrsji oton-lktron katody otoowilacza K, wzmocnini struminia lktronów w owilaczu W oraz wzmocnini W w, co możmy zaisać wzorm 1. U const. E K W W. s Znak rzybliżonj równości odzwircidla akt, ż wystęując tu rocsy (jak n. konwrsja oton-lktron) mają charaktr statystyczny i odnośn wsółczynniki odzwircidlają śrdni kty. W wzorz (1) trzy końcow aramtry można rzyjąć za nizalżn od czynnika wywołującgo błysk, wobc czgo: w. U = A, E s gdzi A jst wną stałą aaraturową. Enrgia błysku E s jst z dobrym rzybliżnim roorcjonalna do nrgii E straconj rzz cząstkę jonizującą w matrial scyntylatora; gdy cząstka taka, n. lktron, zostani ochłonięta w scyntylatorz będzi to nrgia, jaką cząstka miała wnikając do nigo). Ostatczni więc mamy: 3. U = A E, gdzi A jst stała aaraturową. Można ją wyznaczyć z omiaru amlitudy imulsu rzy znanj wartości E (najlij to robić owodując ochłaniani cząstki o znanj nrgii E cz w scyntylatorz; wtdy E = E cz ). Fotony gamma rzchodząc rzz substancję mogą nikidy rznikać rzz stosunkowo grub jj warstwy bz żadngo oddziaływania; w rzyadku scyntylatora oznacza to możliwość rzniknięcia rzzń otonu gamma bz wywołania błysku czyli scyntylacji. Istnij jdnak skończon rawdoodobiństwo (rzy grubym scyntylatorz nawt duż), ż wystąi jdn z trzch rocsów: zjawisko otolktryczn, rozroszni komtonowski, tworzni.ar - +. Wtdy nadal będzi obowiązywać wzór (3), al rzz E nalży rozumić sumaryczną nrgię straconą rzz cząstki naładowan (lktrony, ozytony) owstał w scyntylatorz w wyniku oddziaływania irwotngo otonu gamma (i wntualni jgo ochodnych) z matriałm scyntylatora. Dla uroszcznia będzimy rzyjmować, ż owstał w scyntylatorz lktrony i ozytony są w nim ochłanian. Aby w wyniku wniknięcia otonu gamma do scyntylatora ojawił się w nim błysk,

4 musi zajść jdno z wyżj wyminionych trzch zjawisk. Możliwość wywołania rzz oton gamma każdgo z tych zjawisk moż być scharaktryzowana odowidnim liniowym wsółczynnikim absorcji, owidzmy dla otoktu, c dla Comtona i dla zjawiska tworznia ar. Jżli zatm korzystać z dobrz skolimowanj wiązki otonów gamma (owidzmy o zadanj nrgii E ; wsółczynniki i zalżą od nij) skirowanj rostoadl do owirzchni scyntylatora, to całkowita wydajność scyntylatora wynika z wzoru: d 4. ε = [ 1 ε ], gdzi d jst grubością scyntylatora, a s E E = E + c E + 5. ( ) ( ) ( ) ( ). Względny udział oszczgólnych rocsów w tj wydajności wynosi odowidnio: 6. ε =, dla otoktu ε ε c = = c, dla ktu Comtona, dla tworznia ar. Rozważmy koljno co dzij się w scyntylatorz rzy zajściu którgoś z tych rocsów. W rzyadku otoktu nrgia otonu gamma zostaj rztworzona w nrgię kintyczną lktronu i rominiowania rntgnowskigo wzbudzongo atomu. Praktyczni można rzyjąć, ż E w wzorz (3) jst równ wtdy E ; odnośn amlitudy U (dla wilu takich rocsów) oscylują w okolicy U = A E.W rzyadku rozrosznia komtonowskigo nrgia irwotngo otonu E jst dzilona między kwant rozroszony ( odrzutu ( E c ) rzy czym nrgia lktronu moż się zminiać E ) i lktron 7. E c max = E α E 1 = 1 + α 1 + α gdzi E 8. α = ; mc jst stosunkim nrgii otonu gamma do nrgii soczynkowj lktronu, a więc w tym rzyadku mamy więc: 9. < E <. 0 E c max

5 Jżli rozroszony oton zostani równiż ochłonięty w scyntylatorz, to wilkość E jst taka sama jak dla otoktu wywołango otonm irwotnym. Tworzni ar - + jst możliw doiro wtdy gdy nrgia otonu y rzwyższa odwójną nrgię soczynkową lktronu (1,0 MV). Zrodzon w tym rocsi lktron i ozyton są hamowan w scyntylatorz oddając mu nrgię kintyczną, równą 10. E E m c, min = Zatrzymany ozyton anihiluj z jdnym z lktronów scyntylatora, rzy czym nastęuj misja dwu otonów anihilacyjnych o nrgii 0,511 MV każdy. Jżli oba t otony ouszczą scyntylator to mamy: 11. E = E = E m c. 1 Jżli jdn z tych otonów zostani ochłonięty w scyntylatorz (będzi to z wnością otokt), wtdy: 1. E = E = E + m c = E m c, 1 Jżli oba otony anihilacyjn zostaną ochłonięt to: 13. E = E + m c = E 1 ma taką samą wartość jak dla otoktu. Zatm widmo amlitud będąc odowidzią sktromtru scyntylacyjngo (uściślijmy: rostgo, jdnolicznikowgo) jst bardzo skomlikowan i rozciąga się od U = 0 do U max bliskigo U = A E. Schmatyczni jst ono okazan na rysunku.

6 Dla clów analizy nrgtycznj rominiowania -y najistotnijszym ragmntm widma amlitudowgo z rys.. jst ik związany z zamianą całj irwotnj nrgii otonu gamma w nrgię rowadzącą do owstania błysku. Jżli jst on wyraźni oddzilony od ozostałj części widma (dostatczni wąski) to możmy mówić o dobrj charaktrystyc sktromtru w zakrsi nrgii otonów gamma z obszaru bliskigo E. Z ołożnia wirzchołka tgo iku (otrzbna jst wczśnijsza kalibracja sktromtru - wyznaczni stałj A wystęującj w wzorz (3) ) można wnioskować o nrgii otonów gamma. Wnioskowani to, a w szczgólności rozdzilni takich ików odnoszących się do dwu lub więcj oulacji otonów gamma (o różnych nrgiach) docirających do scyntylatora będzi tym lsz, im iki t będą węższ i im większa będzi ich owirzchnia (P ) w stosunku do całj owirzchni od wykrsm widma (P c ). Szrokość iku na ołowi jgo wysokości AE (wyrażona za omocą wzoru (3)) w jdnostkach nrgii a ni naięcia - oznacza bzwzględną nrgtyczną zdolność rozdzilczą sktromtru dla danj nrgii E, a wilkość 14. V E =, E nosi nazwę względnj zdolności rozdzilczj; często odaj się ją ni ułamkowo (n. 0,05) a rocntowo (n. 5%). Cl doświadcznia: Clm doświadcznia jst omiar widma nrgtyczngo dla źródł rominiowania gamma, okrślni nrgii oszczgólnych linii tgo rominiowania oraz wyznaczni zdolności rozdzilczj sktromtru. Schmat układu doświadczalngo jst analogiczny do układu oisango w części tortycznj, ida omiaru równiż. Tchnika omiarów. 1. Zaoznać się z układm omiarowym (wszlki wątliwości kirować od adrsm osób oikujących się racownią).. Zdjąć rozkład amlitudy rzy szrokości rzdziału amlitud tzw. "bramc" równj 0,1 [V], zminiając wartość dolngo naięcia "bramki" od 0 do 10V z skokim 0,1 [V] dla trzch, otrzymanych od oikuna racowni, źródł rominiotwórczych tzn. Na, Co 60 oraz Cs 137.

7 Oracowani wyników: 1. Sorządzić wykrsy zalżności szybkości zliczń od naięcia rogowgo analizatora, I = I(U ) - tzw. widmo amlitudow. W okolicy maksimów naniść niwności omiarow (wyjaśnić dlaczgo akurat tam).. Korzystając z widma nrgtyczngo Na oraz inormacji o wartości nrgii E s otonów owstających w wyniku anihilacji ar wyznaczyć stałą kalibracyjną A sktromtru. A = U s /E s, gdzi E s = 0,511 MV, a U s jst śrdnią amlitudą sygnału uwarunkowango rjstracją otonu anihilacyjngo. 3. Korzystając z wyznaczonj stałj kalibracyjnj sktromtru okrślić nrgię rominiowania gamma - E dla wszystkich badanych źródł. 4. Wyznaczyć nrgtyczną zdolność rozdzilczą sktromtru (szczgóły w omocy mrytorycznj). 5. Otrzyman wyniki orównać z wartościami katalogowymi. Końcow wnioski i oblicznia rzdstawić w tablach i rzdyskutować.

ĆWICZENIE J15. Celem ćwiczenia jest zbadanie efektu Comptona poprzez pomiar zależności energii rozproszonych kwantów gamma od kąta rozproszenia.

ĆWICZENIE J15. Celem ćwiczenia jest zbadanie efektu Comptona poprzez pomiar zależności energii rozproszonych kwantów gamma od kąta rozproszenia. ĆWICZNI J15 Badani fktu Comptona Clm ćwicznia jst zbadani fktu Comptona poprzz pomiar zalżności nrgii rozproszonych kwantów gamma od kąta rozprosznia. Wstęp fkt Comptona to procs nilastyczngo rozprosznia

Bardziej szczegółowo

Wykład Przemiany gazu idealnego

Wykład Przemiany gazu idealnego Wykład 4 2.6 Przmiany gazu idalngo Zmiana stanu gazu idalngo moż odbywać się rzy różnych warunkach narzuconych na odstawow aramtry oisując stan gazu. Ogólną rzmianę gazu rzy zmiani rzynajmnij dwóch aramtrów

Bardziej szczegółowo

ZADANIE 122 WYZNACZANIE ZAWARTOŚCI IZOTOPU

ZADANIE 122 WYZNACZANIE ZAWARTOŚCI IZOTOPU ZADANIE 122 WYZNACZANIE ZAWARTOŚCI IZOTOPU 40 K W NATURALNYM POTASIE Wstęp Pirwiastki chmiczn, z których zbudowany jst Wszchświat powstały w procsach nuklosyntzy rakcjach jądrowych zachodzących w wnętrzach

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła

Bardziej szczegółowo

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji.

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji. Zbrani obciążń a) Stał: Ciężar własny okrycia dachu: Pokryci dachówką kariówką odwójni. Przyjęto ciężar okrycia wraz z konstrukcją dachu: g 0,95 ; b) Zinn: Śnig wg EC: s ) C i i C s t k,gdzi: s wartość

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra

Bardziej szczegółowo

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1) 11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

Wpływ strategii powierzchniowej obróbki laserowej na jej efektywność

Wpływ strategii powierzchniowej obróbki laserowej na jej efektywność MECANIK NR 1/2015 23 Wływ stratgii owirzchniowj obróbki lasrowj na jj ktywność Inlunc o lasr surac tratmnt stratgy on its icincy JOANNA RADZIEJEWSKA JACEK WIDŁASZEWSKI Przdstawiono wyniki badań ksrymntalnych

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne Rozkład Maxwll a rędkośi ząstzk gazu 9-9. Rozkład Maxwll a rędkośi ząstzk gazu Prędkośi oszzgólnyh ząstzk ogą być w danj hwili dowoln 3 a tylko rędkość śrdnia kwadratowa wynosi sk. Można się jdnak sodziwać,

Bardziej szczegółowo

Kierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium

Kierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium Kirunk: Elktrotchnika wrsja z dn. 8.0.019 Prominiowani optyczn Laboratorium Tmat: OCENA ZAGROŻENIA ŚWIATŁEM NIEIESKIM Opracowani wykonano na podstawi: [1] PN-EN 6471:010 zpiczństwo fotobiologiczn lamp

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH

WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH Ć w i c z n i 34 WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH 34.1 Opis tortyczny Prominiowani γ jst prominiowanim towarzyszącym przmianom prominiotwórczym α i β. Są to kwanty prominiowania

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

PL B1. Sposób sprawdzania wskaźnika energetycznego pojazdów samochodowych, zwłaszcza elektrycznych i hybrydowych

PL B1. Sposób sprawdzania wskaźnika energetycznego pojazdów samochodowych, zwłaszcza elektrycznych i hybrydowych PL 223701 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223701 (13) B1 (21) Numr zgłosznia: 407860 (51) Int.Cl. G01M 99/00 (2011.01) G01M 17/00 (2006.01) Urząd Patntowy Rzczyosolitj Polskij

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Secjalność Transort morski Semestr II Ćw. 3 Badanie rzebiegów imulsowych Wersja oracowania Marzec 2005 Oracowanie:

Bardziej szczegółowo

Źródła promieniotwórcze. Zjawisko promieniotwórczości

Źródła promieniotwórcze. Zjawisko promieniotwórczości Źródła prominiotwórcz Zjawisko prominiotwórczości Układ okrsowy pirwiastków chmicznych zawira obcni 11 pirwiastków o przypisanych nazwach. Ostatnim jst Coprnicium, którgo nazwa została oficjalni zatwirdzona

Bardziej szczegółowo

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego. A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna

Bardziej szczegółowo

( t) UKŁADY TRÓJFAZOWE

( t) UKŁADY TRÓJFAZOWE KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni

Bardziej szczegółowo

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977.

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977. XXV OLMPADA FZYCZNA (1974/1975). Stopiń, zadani doświadczaln D Źródło: Nazwa zadania: Działy: Słowa kluczow: Komitt Główny Olimpiady Fizycznj, Waldmar Gorzkowski: Olimpiady fizyczn XX i XXV. WSiP, Warszawa

Bardziej szczegółowo

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie

Bardziej szczegółowo

Temat: Pochodna funkcji. Zastosowania

Temat: Pochodna funkcji. Zastosowania Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a

Bardziej szczegółowo

19. Kwantowa natura promieniowania elektromagnetycznego. Zjawisko fotoelektryczne. Efekt Comptona.

19. Kwantowa natura promieniowania elektromagnetycznego. Zjawisko fotoelektryczne. Efekt Comptona. 9 Kwantowa natura roiniowania lktroagntyzngo Zjawisko otolktryzn kt Cotona Wybór i oraowani zadań Jadwiga Mlińska-Drwko Więj zadań na tn tat znajdzisz w II zęśi skrytu 9 Jaką rędkość osiada otolktron wytworzony

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Zjawisko fotoelektryczne zewnętrzne

Zjawisko fotoelektryczne zewnętrzne Narodow Cntrum Badań Jądrowych Dział Edukacji i Szkolń ul. Andrzja Sołtana 7, 05-400 Otwock-Świrk ĆWICZENIE 17 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zjawisko fotolktryczn

Bardziej szczegółowo

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk Portalu Kulturalngo Warmii i Mazur www.światowid Przygotował: Krzysztof Prochra... Zatwirdził: Antoni Czyżyk... Elbląg, dn. 4.12.2014 Płna forma nazwy prawnj: www.światowid Formy płnj nazwy prawnj nalży

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

Ćwiczenie GAMMA Spektrometr promieniowania gamma z detektorem półprzewodnikowym HPGe

Ćwiczenie GAMMA Spektrometr promieniowania gamma z detektorem półprzewodnikowym HPGe Ćwiczenie GAMMA Sektrometr romieniowania gamma z detektorem ółrzewodnikowym HPGe Cel ćwiczenia Celem ćwiczenia jest zaoznanie się z odstawami metody sektrometrii romieniowania gamma, w szczególności orzez:

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

Temat: Wyznaczanie odległości ogniskowej i powiększenia cienkich soczewek.

Temat: Wyznaczanie odległości ogniskowej i powiększenia cienkich soczewek. Ćwiczni Nr 0 Tmat: Wznaczani odlgłości ognikowj i owiękznia cinkich oczwk. I. LITERTUR:. D. Hallida, R. Rnick, Fizka t. II, PWN, Warzawa.. J.R. Mr-rndt. Wtę do otki, PWN, Warzawa 977.. Ćwicznia laboratorjn

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Izotopy stabilne lub podlegające samorzutnym rozpadom

Izotopy stabilne lub podlegające samorzutnym rozpadom Izotopy stbiln lub podlgjąc smorzutnym rozpdom Izotopy - jądr o jdnkowj liczbi protonów, różniąc się liczbą nutronów t 1/ =14 s t 1/ =5730 lt Mp nuklidów stbilność jądr Frgmnt mpy nuklidów w obszrz otrzymywnych

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

BADANIE KORELACJI KIERUNKOWYCH DLA KASKADY PROMIENIOWANIA GAMMA EMITOWANEGO W ROZPADZIE ANIHILACYJNEGO POZYTONÓW Z ROZPADU 22 NA

BADANIE KORELACJI KIERUNKOWYCH DLA KASKADY PROMIENIOWANIA GAMMA EMITOWANEGO W ROZPADZIE ANIHILACYJNEGO POZYTONÓW Z ROZPADU 22 NA II racownia Fizyczna, γ3 γ3 - KORELCJE KIERUNKOWE BDNIE KORELCJI KIERUNKOWYCH DL KKDY ROMIENIOWNI GMM EMITOWNEGO W ROZDZIE 60 CO ORZ DL KWNTÓW ROMIENIOWNI NIHILCYJNEGO OZYTONÓW Z ROZDU 22 N I. Cel ćwiczenia

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo Zygmunt Szfliński 1 Wykład 9 Oddziaływani lktronów i ciężkich jonów z matrią Zmiany osłainia w funkcji liczy atomowj ośrodka 3 Exponncjaln osłaini fotonów Każd oddziaływani

Bardziej szczegółowo

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 11 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Oddziaływanie elektronu z materią

Oddziaływanie elektronu z materią Oddiaływani lktronu matrią p p X-ray p wt wt A wt p - lktron pirwotny, 0-3000V. wt - lktron wtórny, 0-0 V. A- lktron Augr a, 0-000V. X-ray- proiowani X, 000-000V. - plamon, 0-80 V. - fonon, 0,0-0,5V. Zdrni

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria . odstawow wilkości radio- i fotomtryczn (jdnostki nrgtyczn i świtln). rawa i zalżności fotomtrii (Lambrta, fotomtryczn, prawa odlgłości). http://www.if.pwr.wroc.pl/~wozniak/fotomtria Mijsc i trmin konsultacji:

Bardziej szczegółowo

Temat: Oscyloskop elektroniczny Ćwiczenie 2

Temat: Oscyloskop elektroniczny Ćwiczenie 2 PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Oscylosko elektroniczny Ćwiczenie 2 Sis rzyrządów omiarowych Program ćwiczenia 1. Pomiar naięcia i częstotliwości 1.1. Przygotować oscylosko

Bardziej szczegółowo

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej. Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich

Bardziej szczegółowo

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZNI 10 Spektrometria promieniowania z wykorzystaniem detektora scyntylacyjnego Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego

Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego Ćwiczni 4 Ralizacja programowa dwupołożniowj rgulacji tmpratury pica lktryczngo. Cl ćwicznia Clm ćwicznia jst zaznajomini z podstawami rgulacji obiktów ciągłych na przykładzi strowania dwupołożniowgo komputrowgo

Bardziej szczegółowo

Elektroosmotyczne osuszanie gruntu w warunkach pola jednorodnego; próba ujęcia teoretycznego

Elektroosmotyczne osuszanie gruntu w warunkach pola jednorodnego; próba ujęcia teoretycznego Elktroosmotyczn osuszani gruntu w warunkach ola jdnorodngo; róba ujęcia tortyczngo 12 Janusz Hauryłkiwicz Politchnika Koszalińska 1. Wstę Mlioracja gotchniczna jst ulszanim odłoŝa gruntowgo, najczęścij

Bardziej szczegółowo

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności

Bardziej szczegółowo

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich. Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy

Bardziej szczegółowo

Autor: Dariusz Piwczyński :07

Autor: Dariusz Piwczyński :07 Autor: Dariusz Piwczyński 011-1-01 14:07 Analiza danych jakościowych tsty opart o statystykę χ. Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub

Bardziej szczegółowo

AMD. Układy trójfazowe

AMD. Układy trójfazowe Wykład 7 kłady rójazow. Gnraory rójazow. kłady ołączń źródł. Wilkości azow i rzwodow 4. ołącznia odbiorników w Y(gwiazda i w D (rójką 5. Analiza układów rójazowych Gnraor naięcia sinusoidalngo rójazowgo

Bardziej szczegółowo

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia

Bardziej szczegółowo

2. Architektury sztucznych sieci neuronowych

2. Architektury sztucznych sieci neuronowych - 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak

Bardziej szczegółowo

DYNAMICZNA ELIMINACJA DRGAŃ MECHANICZNYCH

DYNAMICZNA ELIMINACJA DRGAŃ MECHANICZNYCH LABORATORIUM DYNAMIKI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mchaniki Stosowanj Zakład Wibroakustyki i Bio-Dynamiki Systmów Ćwiczni nr 3 Cl ćwicznia: DYNAMICZNA ELIMINACJA DRGAŃ MECHANICZNYCH

Bardziej szczegółowo

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK

Bardziej szczegółowo

J6 - Pomiar absorpcji promieniowania γ

J6 - Pomiar absorpcji promieniowania γ J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować

Bardziej szczegółowo

Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO

Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy

Bardziej szczegółowo

Wykład FIZYKA II. 9. Optyka - uzupełnienia. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 9. Optyka - uzupełnienia.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 9. Optyka - uzupłninia Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politchniki Wrocławskij http://www.if.pwr.wroc.pl/~wozniak/ PRZYRZĄDY OPTYCZNE - LUPA Lupa najprostszy przyrząd,

Bardziej szczegółowo

gamma - Pochłanianie promieniowania γ przez materiały

gamma - Pochłanianie promieniowania γ przez materiały PJLab_gamma.doc Promieniowanie jonizujące - ćwiczenia 1 gamma - Pochłanianie promieniowania γ przez materiały 1. Cel ćwiczenia Podczas ćwiczenia mierzy się natężenie promieniowania γ po przejściu przez

Bardziej szczegółowo

Wykład 4: Termy atomowe

Wykład 4: Termy atomowe Wykład : Trmy atomow Orbitaln i spinow momnty magntyczn Trmy atomow Symbol trmów Przykłady trmów Rguła Hunda dla trmów Rozszczpini poziomów nrgtycznych Właściwości magntyczn atomów wilolktronowych Wydział

Bardziej szczegółowo

Mirosława Jastrząb-Mrozicka Wskaźnik skolaryzacji

Mirosława Jastrząb-Mrozicka Wskaźnik skolaryzacji Wskaźnik skolaryzacji 89 Mirosława Jastrząb-Mrozicka Wskaźnik skolaryzacji Autorka pokazuj, ja k - w zalżności od przyjętj mtody pomiaru - otrzymuj się zróżniwan wilkości tzw. wskaźnika skolaryzacji, inaczj

Bardziej szczegółowo

J8 - Badanie schematu rozpadu jodu 128 I

J8 - Badanie schematu rozpadu jodu 128 I J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

Wykład 25. Kwantowa natura promieniowania

Wykład 25. Kwantowa natura promieniowania 1 Wykład 5 Kwantowa natura prominiowania 1.1 Prominiowani cipln. Ciała, któr podgrzwan są do dostatczni wysokich tmpratur świcą. Świcni ciał, któr spowodowan jst nagrzwanim, nazywa się prominiowanim ciplnym

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych LABORATORIUM

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych LABORATORIUM POLITECHNIKA GDAŃSKA Wydział Elktrotchniki i Automatyki Katdra Enrgolktroniki i Maszyn Elktrycznych LABORATORIUM SYSTEMY ELEKTROMECHANICZNE TEMATYKA ĆWICZENIA MASZYNA SYNCHRONICZNA BADANIE PRACY W SYSTEMIE

Bardziej szczegółowo

Ćw. 27. Badanie właściwości statystycznych elektronów emitowanych z katody lampy próżniowej

Ćw. 27. Badanie właściwości statystycznych elektronów emitowanych z katody lampy próżniowej Ćw. 7. Badani właściwości statystycznych lktronów itowanych z katody lapy próżniowj Michał Urbański 1. Wprowadznia Kintyczna toria gazów i atrii została sforułowana pod konic XIXw. i spowodowała rwolucję

Bardziej szczegółowo

REGULAMIN ŚWIADCZENIA USŁUGI DORADZTWA DLA PRZEDSIĘBIORSTW W EFIX DOM MAKLERSKI S.A.

REGULAMIN ŚWIADCZENIA USŁUGI DORADZTWA DLA PRZEDSIĘBIORSTW W EFIX DOM MAKLERSKI S.A. REGULAMIN ŚWIADCZENIA USŁUGI DORADZTWA DLA PRZEDSIĘBIORSTW W EFIX DOM MAKLERSKI S.A. Rozdział I. POSTANOWIENIA OGÓLNE 1. Rgulamin okrśla zasady świadcznia usługi doradztwa dla przdsiębiorstw w zakrsi:

Bardziej szczegółowo

Makroekonomia Gospodarki Otwartej Wykład 6 Model Dornbuscha przestrzelenia kursu walutowego

Makroekonomia Gospodarki Otwartej Wykład 6 Model Dornbuscha przestrzelenia kursu walutowego Makrokonomia Gosodarki Otwartj Wykład 6 Modl Dornbuscha rzstrzlnia kursu walutowgo Lszk Wincnciak Wydział Nauk Ekonomicznych UW 2/25 Plan wykładu: Założnia modlu Formaln rzdstawini modlu Równowaga na rynku

Bardziej szczegółowo

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.

Bardziej szczegółowo

Zjawisko Comptona opis pół relatywistyczny

Zjawisko Comptona opis pół relatywistyczny FOTON 33, Lato 06 7 Zjawisko Comtona ois ół relatywistyczny Jerzy Ginter Wydział Fizyki UW Zderzenie fotonu ze soczywającym elektronem Przy omawianiu dualizmu koruskularno-falowego jako jeden z ięknych

Bardziej szczegółowo

Zjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony

Zjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony Zjonizowana cząstczka wodoru H - lktron i dwa protony Enrgia potncjalna lktronu w polu lktrycznym dwu protonów ˆ pˆ H = m pˆ 1 m p pˆ m p 1 1 1 4πε 0 r0 r1 r Hamiltonian cząstczki suma nrgii kintycznj

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSYUU ECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI POLIECHNIKI ŚLĄSKIEJ INSRUKCJA LABORAORYJNA emat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA DLA KONWEKCJI WYMUSZONEJ W RURZE

Bardziej szczegółowo

Ćwiczenie 9. Pomiar bezwględnej aktywności źródeł promieniotwórczych.

Ćwiczenie 9. Pomiar bezwględnej aktywności źródeł promieniotwórczych. Ćwiczenie 9 Pomiar bezwględnej aktywności źródeł promieniotwórczych. Stanowisko 9 (preparaty beta promieniotwórcze) Stanowisko 9 (preparaty gamma promieniotwórcze) 1. Student winien wykazać się znajomością:

Bardziej szczegółowo

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy izobaryczne

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy izobaryczne PLAN WYKŁADU Sooby dochodznia do tanu naycnia Procy izobaryczn Ochładzani izobaryczn (mratura unktu roy) Ochładzani rzz izobaryczn i adiabatyczn wyarowani/kondnację wody (mratura wilgotngo trmomtru, mratura

Bardziej szczegółowo

Nowości neutrinowe: skąd pochodzą neutrina i jak je rejestrować?

Nowości neutrinowe: skąd pochodzą neutrina i jak je rejestrować? FOTON 104, Wiosna 2009 15 Nowości nutrinow: skąd pochodzą nutrina i jak j rjstrować? Krzysztof Fiałkowski Instytut Fizyki UJ 1. Skąd pochodzą nutrina? Już wilokrotni Foton zamiszczał artykuły poświęcon

Bardziej szczegółowo

Fizyka środowiska. Moduł 5. Hałas i akustyka

Fizyka środowiska. Moduł 5. Hałas i akustyka Fizyka środowiska Moduł 5 Hałas i akustyka nstytut Fizyki PŁ 8 5 Równanie falowe Rozważmy nieruchomy jednorodny ośrodek o gęstości ρ i ciśnieniu Lokalna fluktuacja ciśnienia + (r t) wywołuje fluktuacje

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

Elektrony, kwanty, fotony

Elektrony, kwanty, fotony Wstęp. Elktrony, kwanty, fotony dr Janusz B. Kępka Sir Isaa Nwton (angilski fizyk i filozof, 16-177) w swym znakomitym dzil Optiks (170 r.) rozważał zarówno korpuskularny jak i falowy araktr światła, z

Bardziej szczegółowo

IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach

IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1 IM-8 Badanie absorpcji promieniowania gamma w materiałach I. Cel ćwiczenia Celem ćwiczenia jest pomiar współczynników absorpcji

Bardziej szczegółowo

11. Zjawiska korpuskularno-falowe

11. Zjawiska korpuskularno-falowe . Zjawiska korpuskularno-falow.. Prominiowani trmizn Podstawow źródła światła: - ogrzan iała stał lub gazy, w który zaodzi wyładowani lktryzn. misja absorpja R - widmowa zdolność misyjna prominiowania

Bardziej szczegółowo

Model Atomu Bohra. Część 2

Model Atomu Bohra. Część 2 Część Modl Atomu Bohra.1: Modl atomu Thomsona i Ruthrforda.: Modl Ruthrforda.3: Klasyczny Modl Atomu.4: Modl Bohra atomu wodoru.5: Liczby atomow a rntgnowski widma charaktrystyczn.6: Zasada korspondncji..7:

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ

ZASTOSOWANIA POCHODNEJ ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych

Bardziej szczegółowo

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 5: Projektowanie połączeń

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 5: Projektowanie połączeń KONSTRUKCJE STLOWE W EUROPIE Wilokondygnacyjn konstrukcj stalow Część 5: Projktowani ołączń. Wilokondygnacyjn konstrukcj stalow Część 5: Projktowani ołączń 5 - ii Część 5: Projktowani ołączń PRZEDMOW

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka Seminarium -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne Konrad Tudyka 1 W 1908r. Rutheford zatopił niewielka ilość 86 Rn w szklanym naczyniu o ciękich sciankach (przenikliwych

Bardziej szczegółowo

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21 PAN WYKŁADU Równani Clausiusa-Clapyrona 1 /1 Podręczniki Salby, Chaptr 4 C&W, Chaptr 4 R&Y, Chaptr /1 p (mb) 1 C Fusion iquid Solid 113 6.11 Vapor 1 374 (ºC) Kropl chmurow powstają wtdy kidy zostani osiągnięty

Bardziej szczegółowo

Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.

Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów. modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:

Bardziej szczegółowo

Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków

Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków Sygnał Analiza składu chmiczngo powirzchni Analiza składu chmiczngo powirzchni Sposoby analizy Rjstrujmy cząstki mitowan z powirzchni Tchniki lktronow -molkuł - fragmntów Emisja: -atomów - lktronów - fotonów

Bardziej szczegółowo

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ ĆWICZENIE 2 BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie następujących charakterystyk sond promieniowania γ: wydajności detektora w funkcji odległości detektora

Bardziej szczegółowo

Badanie próbek środowiskowych

Badanie próbek środowiskowych J16 Badanie próbek środowiskowych Celem ćwiczenia jest pomiar promieniowania gamma emitowanego z próbki trynitytu oraz identyfikacja i określenie aktywności izotopów w niej zawartych. Trynityt to szkliwo

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo