Badanie schematu rozpadu jodu 128 I
|
|
- Laura Tomaszewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona c) tworzenie par, anihilacja pozytonów d) zależność przekrojów czynnych na oddziaływanie kwantów γ z materią od energii kwantów gamma i liczby atomowej ośrodka. 2. Rozpad β [1,2,3] a) warunki energetyczne rozpadu β, b) schemat rozpadu przykładowych źródeł kalibracyjnych (np. 137 Cs, 60 Co, 22 Na), c) okres połowicznego rozpadu T 1/2. 3. Detekcja promieniowania γ [1,4,5] a) budowa i działanie detektora scyntylacyjnego, b) kalibracja energetyczna spektrometru źródłami promieniowania γ, c) widmo monoenergetycznej linii γ w spektrometrze scyntylacyjnym d) podstawowe układy elektroniczne współpracujące ze spektrometrem: oscyloskop, zasilacz wysokiego napięcia, wzmacniacz, wielokanałowy analizator amplitudy. 4. Źródła neutronów termicznych, spowalnianie neutronów [1] 5. Metoda aktywacji Wykonanie zadania 1. Zapoznanie się z układem pomiarowym 2. Optymalizacja warunków pracy układu (napięcie detektora, zdolność rozdzielcza, itd.) 3. Kalibracja energetyczna układu pomiarowego przy wykorzystaniu standartowych źródeł promieniowania gamma. 4. Pomiar tła. 5. Aktywacja scyntylatora (zawierającego 127 I) w strumieniu neutronów termicznych. 6. Pomiar widma gamma i jego interpretacja schemat rozpadu 128 I. 7. Wyznaczenie zależności czasowej intensywności zmierzonego promieniowania. 8. Określenie wartości przekroju czynnego na wychwyt neutronu dla 127 I. LITERATURA 1. A.Strzałkowski - Wstęp do fizyki jądra atomowego 2. T.Mayer-Kuckuk - Fizyka jądrowa 3. K.N.Muchin - Doświadczalna fizyka jądrowa cz. I Fizyka jądra atomowego 4. J.B.England - Metody doświadczalne fizyki jądrowej 5.Chart of Nuclides 1
2 Informacje dodatkowe Detekcja promieniowanie gamma Warunkiem zarejestrowania promieniowanie gamma jest jego oddziaływanie z materiałem detektora. Promieniowanie gamma może oddziaływać zarówno z elektronami jak i z jądrami i polami elektrycznymi elektronów i jąder atomowych. Oddziaływania te mogą prowadzić do całkowitej absorpcji lub też elastycznego bądź nieelastycznego rozpraszania kwantów promieniowania gamma. W praktyce znaczenie mają trzy zjawiska: Zjawisko fotoelektryczne w procesie tym kwant gamma oddziałuje z elektronem związanym w atomie ośrodka i przekazuje mu całą swoją energię. Kwant gamm zostaje całkowicie zaabsorbowany natomiast elektron uzyskuje energię równą: E e = E γ E B (1) gdzie E B energia wiązania elektronu na orbicie atomowej, z której został wybity, zwykle E B << E γ. Efekt Comptona w procesie tym kwant gamma ulega nieelastycznemu rozproszeniu na swobodnym (słabo związanym elektronie) i przekazuje mu część swojej energii. Energia kinetyczna przyspieszonego elektronu określona jest wzorem wynikającym z zasady zachowania energii i pędu: α ( 1 cosθ ) E e = Eγ 1+ α ( 1 cosθ ) (2) gdzie θ - kąt pod jakim nastąpiło rozproszenie kwantu gamma, 2 E / m c α =. γ e Jak wynika ze wzoru (2), energia elektronu zależy od kąta pod jakim nastąpiło rozproszenie kwantu gamma i przyjmuje wartości od 0 - dla kątów rozproszenia równych zero do wartości maksymalnej - dla kwantów gamma rozproszonych do tyłu (θ =180º). Zjawisko kreacji par w procesie tym kwant gamma zamienia się na parę e+e- (eletkronpozyton). Proces ten może zachodzić jedynie dla kwantów gamma o energii większej niż 2m e c 2 = 1022 kev. Łączna energia kinetyczna wytworzonej pary e + e - wynosi: E + Ee = E e+ γ 2m c e 2 (3) Konwersja kwantu gamma na parę e + e - może zachodzić jedynie w polu jądra atomowego (rzadziej elektronu), gdyż tylko wtedy możliwe jest spełnienie zasady zachowania energii i pędu. Prawdopodobieństwo zajścia każdego z wymienionych procesów silnie zależy od energii kwantu gamma oraz liczby atomowej materiału ośrodka. 2
3 Detektor scyntylacyjny Rysunek 2 przedstawia schemat budowy detektora, w którym jako scyntylator zastosowano kryształ NaI(Tl) (jodek sodu aktywowany talem). Kryształ NaI(Tl) jest połączony optycznie z oknem wejściowym tzw. fotopowielacza. Promieniowanie gamma oddziałuje z kryształem NaI(Tl) poprzez proces fotoelektryczny, rozproszenie komptonowskie lub konwersją na parę elektron-pozyton. Elektrony przyspieszone w wyniku zajścia któregoś z tych procesów poruszają się w krysztale i tracą swoją energię powodując jonizację i wzbudzenia atomów ośrodka. Procesom deekscytacji tych wzbudzeń towarzyszy emisja kwantów światła. W scyntylatorach używanych do celów spektrometrycznych (tzn. do pomiaru energii promieniowania) całkowita liczba wyemitowanych fotonów jest proporcjonalna do energii początkowej elektronu. Strumień fotonów scyntylacyjnych jest rejestrowany przez fotopowielacz. Fotopowielacz jest to lampa elektronowa, której katoda wykonana jest z materiału światłoczułego. Między katodą i anodą fotopowielacza znajduje się układ kilku odpowiednio ukształtowanych elektrod zwanych dynodami. Między kolejnymi elektrodami przy pomocy odpowiednio skonstruowanego dzielnika napięcia wytwarzane jest pole elektryczne. Fotony docierające do fotokatody wybijają elektrony (efekt fotoelektryczny), które są przyspieszane w kierunku pierwszej dynody. Elektron uderzający w dynodę powoduje wybicie 3-4 elektronów wtórnych, które są przyspieszane w kierunku kolejnej dynody itd. Proces ten prowadzi do szybkiego powielenia początkowej liczby elektronów i dzięki temu w fotopowielaczach osiąga się wzmocnienia rzędu Amplituda sygnału wyjściowego fotopowielacza jest proporcjonalna do energii zaabsorbowanej przez kryształ scyntylatora. Zwróćmy uwagę, że energia ta jest absorbowana za pośrednictwem elektronów przyspieszanych w wyniku oddziaływania kwantów gamma z materiałem scyntylatora. scyntylator NaI(Tl) rozproszony kwant gamma kwant gamma foton scyntylacyjny - fotokatoda fotopowielacz dzielnik napięcia dynod R + anoda impuls wyjściowy Rys.2 Schemat budowy detektora scyntylacyjnego. Rysunek 3 przedstawia widmo (rozkład) amplitud sygnałów z detektora scyntylacyjnego zarejestrowane podczas pomiaru źródła 137 Cs emitującego kwanty gamma o energii 662 kev. Pik, którego środek leży w kanale 300 odpowiada pełnej absorpcji promieniowania gamma 3
4 o energii 662 kev w krysztale NaI(Tl). Jest to możliwe np. wskutek zajścia zjawiska fotoelektrycznego w materiale scyntylatora. Przedział amplitud rozciągający się od kanału 0 do tzw. krawędzi Comptona odpowiada zdarzeniom, w których jedynie część energii kwantu gamma została zaabsorbowana w krysztale scyntylatora. Główny wkład do tej części widma daje efekt Comptona, w którym kwant gamma przekazuje część swojej energii jednemu z elektronów materiału scyntylatora natomiast kwant rozproszony ucieka z kryształu. Energia jaką uzyskuje elektron zależy od wartości kąta pod jakim nastąpiło rozproszenie. Krawędź Comptona odpowiada przypadkom, w których w procesie rozpraszania kwant gamma przekazał elektronowi w krysztale scyntylatora maksymalną energię (rozproszenie pod kątem θ =180, zobacz wzór (2) ) Liczba zliczeń próg detekcji rozpraszanie komptonowskie w detektorze 137 pik absorpcji pełnej Cs energii 662 kev krawędź Comptona Numer kanału Rys. 3 Widmo amplitud sygnałów z detektora NaI(Tl) zarejestrowane podczas pomiaru promieniowania gamma emitowanego ze źródła 137 Cs. Podstawowe wielkości określające własności układu spektrometrycznego 1) Energetyczna zdolność rozdzielcza określająca zdolność układu detekcyjnego do obserwacji przejść gamma o bardzo bliskich energiach. W przypadku detektorów z kryształem NaI(Tl) energetyczną zdolność rozdzielczą przyjęto określać mierząc, w połowie wysokości, całkowitą szerokość piku odpowiadającego rejestracji promieniowania gamma o energii 662 kev, emitowanego ze źródła 137 Cs. Dla spektrometrów NaI(Tl) energetyczna zdolność rozdzielcza, określona jako stosunek szerokości połówkowej piku do jego położenia, wynosi 6-8 %. 2) Wydajność rejestracji promieniowania gamma. Z praktycznego punktu widzenia interesująca jest wydajność rejestracji pełnej energii emitowanych kwantów gamma. Wielkość tę definiuje się jako stosunek liczby zliczeń zarejestrowanych w piku odpowiadającym rejestracji pełnej energii kwantu gamma do całkowitej liczby kwantów gamma wyemitowanych ze źródła w czasie trwania pomiaru. Wydajność 4
5 spektrometru silnie zależy od energii rejestrowanych kwantów oraz od geometrii pomiaru (kształtu i położenia źródła względem kryształu detektora). 3) Kalibracja energetyczna określa związek pomiędzy energią kwantów gamma a amplitudą rejestrowanych sygnałów. W przypadku kalibracji liniowej zależność tę opisuje się jako E = a + bk, gdzie k numer kanału, a, b współczynniki kalibracyjne. γ Kalibrację energetyczną oraz kalibrację wydajnościową spektrometru wykonuje się wykorzystując źródła kalibracyjne o bardzo dobrze znanych energiach kwantów gamma i aktywnościach. Schematy rozpadu źródeł kalibracyjnych 5
6 Energie wzbudzenia poziomów i energie przejść gamma podano w kev. 6
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
J6 - Pomiar absorpcji promieniowania γ
J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować
J8 - Badanie schematu rozpadu jodu 128 I
J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu
J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej
J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej Celem doświadczenie jest wyznaczenie zawartości manganu w stalowym przedmiocie. Przedmiot ten, razem z próbką zawierającą czysty mangan,
Badanie próbek środowiskowych
J16 Badanie próbek środowiskowych Celem ćwiczenia jest pomiar promieniowania gamma emitowanego z próbki trynitytu oraz identyfikacja i określenie aktywności izotopów w niej zawartych. Trynityt to szkliwo
J17 - Badanie zjawiska Dopplera dla promieniowania gamma
J17 - Badanie zjawiska Dopplera dla promieniowania gamma Celem doświadczenia jest obserwacja i analiza zjawiska Dopplera dla promieniowania γ emitowanego ze stanu wzbudzonego 12 C. Promieniowanie to powstaje
BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 11 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy
Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy
PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZNI 10 Spektrometria promieniowania z wykorzystaniem detektora scyntylacyjnego Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest
γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego
γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne
IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach
IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1 IM-8 Badanie absorpcji promieniowania gamma w materiałach I. Cel ćwiczenia Celem ćwiczenia jest pomiar współczynników absorpcji
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny
gamma - Pochłanianie promieniowania γ przez materiały
PJLab_gamma.doc Promieniowanie jonizujące - ćwiczenia 1 gamma - Pochłanianie promieniowania γ przez materiały 1. Cel ćwiczenia Podczas ćwiczenia mierzy się natężenie promieniowania γ po przejściu przez
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów
Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje
Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.
Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie
Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji
Wyznaczanie energii promieniowania γ pochodzącego ze 6 źródła Co metodą absorpcji I. Zagadnienia 1. Procesy fizyczne prowadzące do emisji kwantów γ. 2. Prawo absorpcji. Oddziaływanie promieniowania γ z
Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym
Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym Oskar Gawlik, Jacek Grela 24 listopada 28 1 Wstęp 1.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się i nacechowanie licznika
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Sebastian Gajos Dominik Kaniszewski
Sebastian Gajos Dominik Kaniszewski 13.06.006 Imię i nazwisko Data Ćw.1 Spektometria scyntylacyjna promieniowania Υ. Temat ćwiczenia ocena podpis 1. Część teoretyczna: Prawo rozpadu promieniotwórczego.
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 4 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Dobór optymalnego
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności
Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski
Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega
Badanie absorpcji promieniowania γ
Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji
Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek
Elementy Fizyki Jądrowej Wykład 7 Detekcja cząstek Detekcja cząstek rejestracja identyfikacja kinematyka Zjawiska towarzyszące przechodzeniu cząstek przez materię jonizacja scyntylacje zjawiska w półprzewodnikach
Wyznaczanie energii promieniowania gamma metodą scyntylacyjną
Wyznaczanie energii promieniowania gamma metodą scyntylacyjną Wiesław Tłaczała i Krystyna Wosińska Wprowadzenie Celem ćwiczenia jest wyznaczenie energii promieniowania gamma oraz pokazanie zjawisk, towarzyszących
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-6
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM Z PRZEDMIOTU METODY REZONANSOWE ĆWICZENIE NR MR-6 JAKOŚCIOWA I ILOŚCIOWA ANALIZA
POLITECHNIKA WARSZAWSKA Wydział Fizyki
POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia Opracował:
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 8 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar okresu połowicznego
J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE
J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,
Detekcja widma promieniowania gamma emitowanego ze źródła 2 2 Na za pomocą licznika scyntylacyjnego
Opracował: Jerzy Dryzek Detekcja widma promieniowania gamma emitowanego ze źródła 2 2 Na za pomocą licznika scyntylacyjnego I. Cel ćwiczenia Zapoznanie się z zasadą działania spektrometru do pomiaru widma
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X
X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu
PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.
Oddziaływanie promieniowania jonizującego z materią
Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony
Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.
Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora
Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE
Oddziaływanie Promieniowania Jonizującego z Materią
Oddziaływanie Promieniowania Jonizującego z Materią Plan Ogólne własności detektora Czułość Rozdzielczość energetyczna Funkcja odpowiedzi Wydajność i czas martwy Tomasz Szumlak AGH-UST Wydział Fizyki i
POLITECHNIKA WARSZAWSKA Wydział Fizyki
POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia 1.
Wyznaczanie energii promieniowania gamma metodą scyntylacyjną
Wyznaczanie energii promieniowania gamma metodą scyntylacyjną Wiesław Tłaczała Wprowadzenie Celem ćwiczenia jest wyznaczenie energii promieniowania gamma oraz pokazanie zjawisk, towarzyszących promieniowaniu
(2) Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok
(2) Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do Wydział Fizyki, 2009 r. Spis Treści 1. Zjawisko fluorescencji rentgenowskiej (XRF)... 2 2. Detekcja promieniowania
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6 Wyznaczanie krzywej aktywacji Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie kształtu krzywej zależności
C2: WYKORZYSTANIE DETEKTORA PÓŁPRZEWODNIKOWEGO W POMIARACH PROMIENIOWANIA
C2: WYKORZYSTANIE DETEKTORA PÓŁPRZEWODNIKOWEGO W POMIARACH PROMIENIOWANIA Wykonanie ćwiczenia Ćwiczenie będzie odbywało się z użyciem detektora germanowego technologii HPGe (high purity germanium lub hyperpure
Miejsce Wirtualnego Nauczyciela w infrastruktureze SILF
Miejsce Wirtualnego Nauczyciela w infrastruktureze SILF Schemat infrastruktury SILF załączona jest na rys. 1. Cała komunikacja między uczestnikami doświadczenia a doświadczeniem przebiega za pośrednictwem
Badanie Efektu Comptona
Badanie Efektu Comptona Przemysław Duda Laboratorium Fizyki i Techniki Jądrowej Wydziału Fizyki P.W. Materiał dydaktyczny dla Wydziału Fizyki Politechniki Warszawskiej, opracowany w ramach zadania nr 33:
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych
Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący
Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET
18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia
Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej)
Rozpad gamma Deekscytacja jądra atomowego (przejście ze stanu wzbudzonego o energii do niższego stanu o energii ) może zachodzić dzięki oddziaływaniu elektromagnetycznemu przez tzw. rozpad gamma Przejście
NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA
ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE
Liniowy Model Pozytonowego Tomografu Emisyjnego
Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne (rys.
Osłabienie promieniowania gamma
Osłabienie promieniowania gamma Cel ćwiczenia Celem ćwiczenia jest badanie osłabienia wiązki promieniowania gamma przy przechodzeniu przez materię oraz wyznaczenie współczynnika osłabienia dla różnych
Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów
Elementy Fizyki Jądrowej Wykład 8 Rozszczepienie jąder i fizyka neutronów Rozszczepienie lata 30 XX w. poszukiwanie nowych nuklidów n + 238 92U 239 92U + reakcja przez jądro złożone 239 92 U 239 93Np +
Korpuskularna natura światła i materii
Podręcznik zeszyt ćwiczeń dla uczniów Korpuskularna natura światła i materii Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348
Ćwiczenie LP1. Jacek Grela, Łukasz Marciniak 22 listopada 2009
Ćwiczenie LP1 Jacek Grela, Łukasz Marciniak 22 listopada 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 14a L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Obserwacja efektu
Ćwiczenie 3 : Spektrometr promieniowania gamma z licznikiem półprzewodnikowym Ge(Li)
Ćwiczenie 3 : Spektrometr promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) Oskar Gawlik, Jacek Grela 3 listopada 28 1 Wstęp 1.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się i nacechowanie
II Pracownia Fizyczna - część: Pracownia Jądrowa. Ćwiczenie nr 8
II Pracownia Fizyczna - część: Pracownia Jądrowa Ćwiczenie nr 8 Pomiar i analiza widm monoenergetycznego promieniowania gamma za pomocą detektora scyntylacyjnego z oprogramowaniem Genie 2000. 1. Cel ćwiczenia:
promieniowania Oddziaływanie Detekcja neutronów - stosowane reakcje (Powtórka)
Wykład na Studiach Podyplomowych "Energetyka jądrowa we współczesnej elektroenergetyce", Kraków, 4 maj DETEKCJA NEUTRONÓW JERZY JANCZYSZYN Oddziaływanie promieniowania (Powtórka) Cząstki naładowane oddziałują
Scyntygrafia, Tomografia Emisyjna Pojedynczego Fotonu, Pozytonowa Tomografia Emisyjna
Scyntygrafia, Tomografia Emisyjna Pojedynczego Fotonu, Pozytonowa Tomografia Emisyjna Scyntygrafia, Komputerowa Tomografia Emisyjna Pojedynczego Fotonu (ang. Single Photon Emmision Computed Tomograpy,
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 3-12 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Oddziaływanie z materią
Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna
Elementy Fizyki Jądrowej Wykład 3 Promieniotwórczość naturalna laboratorium Curie troje noblistów 1903 PC, MSC 1911 MSC 1935 FJ, IJC Przemiany jądrowe He X X 4 2 4 2 A Z A Z e _ 1 e X X A Z A Z e 1 e
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009
Ćwiczenie LP2 Jacek Grela, Łukasz Marciniak 25 października 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii
przyziemnych warstwach atmosfery.
Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych
Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β.
Wyznaczanie współczynnika rozpraszania otnego. Zagadnienia promieniowania β. 1. Promieniotwórczość β.. Oddziaływanie cząstek β z materią (w tym rozproszenie otne w wyniku zderzeń sprężystych). 3. Znajomość
Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.
Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.
Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa
Rozpad alfa Samorzutny rozpad jądra (Z,A) na cząstkę α i jądro (Z-2,A-4) tj. rozpad 2-ciałowy, stąd Widmo cząstek α jest dyskretne bo przejścia zachodzą między określonymi stanami jądra początkowego i
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Spektrometria promieniowania gamma
Politechnika Warszawska, Wydział Fizyki Pracownia Fizyki i Techniki Jądrowej Instrukcja do ćwiczenia laboratoryjnego: Spektrometria promieniowania gamma Opracowanie: prof. dr hab. Jan Pluta, pluta@if.pw.edu.pl,
LICZNIK SCYNTYLACYJNY PROMIENIOWANIA JONIZUJĄCEGO
Politechnikia Poznańska Instytut Chemii i Elektrochemii Technicznej Zakład Chemii Fizycznej Materiały do ćwiczeń laboratoryjnych z Chemii Fizycznej i Podstaw Ochrony Radiologicznej LICZNIK SCYNTYLACYJNY
IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH
IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH I. Cel ćwiczenia Zapoznanie się z fotoelektryczną optyczną metodą wyznaczania energii przerwy wzbronionej w półprzewodnikach na przykładzie
Politechnika Warszawska, Wydział Fizyki. Pracownia Fizyki i Techniki Jądrowej. Spektrometria gamma
Politechnika Warszawska, Wydział Fizyki Instrukcja do ćwiczenia laboratoryjnego: Opracowanie: Pracownia Fizyki i Techniki Jądrowej Spektrometria gamma prof. dr hab. Jan Pluta, pluta@if.pw.edu.pl, Gmach
Pomiar maksymalnej energii promieniowania β
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 7 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar maksymalnej
Jądra o wysokich energiach wzbudzenia
Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym
OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość
OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,
Ćwiczenie 57 Badanie absorpcji promieniowania α
Ćwiczenie 57 Badanie absorpcji promieniowania α II PRACOWNIA FIZYCZNA UNIWERSYTET ŚLĄSKI W KATOWICACH Cele doświadczenia Głównym problemem, który będziemy badać w tym doświadczeniu jest strata energii
Jak zobaczyć pojedynczy foton, czyli czego oko nie widzi
FOTON 119, Zima 2012 21 Jak zobaczyć pojedynczy foton, czyli czego oko nie widzi Studenci: Łukasz Kapłon, Nikodem Krawczyk, Ines Moskal Instytut Fizyki UJ Czy możemy zobaczyć jeden foton? Już w latach
VII. DETEKCJA PROMIENIOWANIA O WYSOKIEJ ENERGII
VII. DETEKCJA PROMIENIOWANIA O WYSOKIEJ ENERGII 7.1 Uwagi ogólne Podstawą detekcji promieniowania jest powodowanie przezeń zmian fizycznych lub chemicznych w ośrodku. Zmiany te są niewielkie, tak więc
VII. DETEKCJA PROMIENIOWANIA O WYSOKIEJ ENERGII
VII. DETEKCJA PROMIENIOWANIA O WYSOKIEJ ENERGII 7.1 Uwagi ogólne Podstawą detekcji promieniowania jest powodowanie przezeń zmian fizycznych lub chemicznych w ośrodku. Zmiany te są niewielkie, tak więc
Efekt fotoelektryczny
Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej
BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8
Ćwiczenie BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8 I. WSTĘP W skorupie ziemskiej znajduje się promieniotwórczy uran-238 ( 238 U), wytworzony wiele miliardów lat temu. Przetrwał
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą
Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.
Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą
Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan
Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,
Oddziaływanie promieniowania jonizującego z materią, sztuczne barwienie kryształów. Andrzej Lipiec. Opracowanie w ramach przedmiotu Metody i Techniki
Oddziaływanie promieniowania jonizującego z materią, sztuczne barwienie kryształów. Opracowanie w ramach przedmiotu Metody i Techniki Jądrowe Andrzej Lipiec Wydział Fizyki Politechniki Warszawskiej, 2014
WYZNACZANIE ZAWARTOŚCI POTASU
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW obowiązuje w r. akad. 2017 / 2018 WYZNACZANIE ZAWARTOŚCI POTASU W STAŁEJ PRÓBCE SOLI Opiekun ćwiczenia: Miejsce ćwiczenia:
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Badanie rozkładów kątowych kwantów anihilacyjnych γ z anihilacji pozyton i elektron w 22 Na
Badanie rozkładów kątowych kwantów anihilacyjnych γ z anihilacji pozyton i elektron w 22 Na Cel ćwiczenia Celem ćwiczenia jest: poznanie metody pomiarów w koincydencji, możliwości i zastosowania; poznanie
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy