3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona

Wielkość: px
Rozpocząć pokaz od strony:

Download "3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona"

Transkrypt

1 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia w zjawisku Comptona. III. Wymagania. Rozpady promieniotwórcze - ścieżka stabilności.. Rozpady promieniotwórcze i ich rodzaje (klasyfikacja przemian promieniotwórczych). 3. Prawo spontanicznego rozpadu promieniotwórczego, aktywność źródła, stała rozpadu, prawdopodobieństwo rozpadu. 4. Podstawowe wiadomości dotyczące przemian α, β, (krótka charakterystyka tych rodzajów promieniowania). 5. Powstawanie promieniowania gamma. 6. Oddziaływanie promieniowania z materią (wymień najważniejsze zjawiska i podaj ich krótką charakterystykę). 7. Podstawowe wielkości i jednostki używane w ochronie radiologicznej (w szczególności: aktywność, dawka ekspozycyjna, dawka pochłonięta, równoważnik dawki, efektywny równoważnik dawki). 8. Wyjaśnij na czym polega oddziaływanie promieniowania jonizującego na komórki. 9. Omów zjawisko Comptona. 0. Wyprowadź wzór na comptonowską zmianę długości fali.. Oblicz jaka jest długość fali fotonu gamma rozproszonego comptonowsko pod kątem 90 dla promieniowania emitowanego przez jądra cezu 37. Jak duża (procentowo) jest zmiana długości fali w stosunku do długości fali początkowej? Oblicz jaka jest energia rozproszonego fotonu gamma. (Energia emitowanych fotonów gamma E g =0,66MeV, długość fali λ 0 =0,00875nm).. Oblicz jaka jest długość fali fotonu rozproszonego comptonowsko pod kątem 90 dla promieniowania rentgenowskiego emitowanego przez molibden (linia K). Jak duża (procentowo) jest zmiana długości fali w stosunku do długości fali początkowej? Oblicz jaka jest energia rozproszonego fotonu X. (Energia emitowanych fotonów X E X =0,075MeV, długość fali λ 0 =0,734Å). 3. Na czym polega zjawisko scyntylacji? W jaki sposób promieniowanie γ oddziałuje ze scyntylatorem (wymień i omów najważniejsze zjawiska). Wymień i omów przynajmniej dwa typy luminescencji, z którymi można mieć do czynienia w scyntylatorach. 4. Zasada działania wielokanałowego analizatora amplitudy impulsów elektrycznych. IV. Wykonanie zadania. Aparatura i materiały W zadaniu wykorzystuje się (rys..): - sondę scyntylacyjną (SS), - wzmacniacz (W), - zasilacz fotopowielacza sondy (ZWN), - analizator wielokanałowy (A) sprzężony z komputerem (PC), - źródło promieniowania (37Cs, energia kwantów 0,66MeV). 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona Strona z 5

2 Rys.. Schemat aparatury. Oznaczenia: SS - sonda scyntylacyjna, ZWN - zasilacz wysokiego napięcia (zasilacz fotopowielacza sondy), W - wzmacniacz, A - analizator wielokanałowy, PC - komputer, φ - kąt rozproszenia fotonów γ. Włączenie aparatury (odbywa się pod nadzorem opiekuna). Włączyć panel analizatora wielokanałowego oraz komputer PC.. Włączyć napięcie zasilania fotopowielacza (+ 050 V). 3. Wywołać program obsługi analizatora.sman.exe. 4. Zapoznać się z obsługą analizatora wielokanałowego (ustawienie parametrów pracy, rejestracja widma, zapis widma na dysk).. Kalibracja analizatora wielokanałowego Kalibracji analizatora wielokanałowego można dokonać na podstawie analizy zmiany położenia (numeru kanału n p ) piku fotoelektrycznego, dla fotonów promieniowania rozproszonego comptonowsko pod różnymi kątami, mierzonymi względem pierwotnego kierunku propagacji wiązki. Wzór Comptona: h 0 cos, () mc gdzie: λ- długość fali promieniowania rozproszonego, λ 0 - długość fali promieniowania przed rozproszeniem, φ - kąt rozproszenia promieniowania (mierzony względem kierunku propagacji wiązki przed rozproszeniem) Ponieważ hc E, zatem wzór () można przekształcić do postaci: cos. () E E mc 0 Położenie piku fotoelektrycznego n p (numer kanału) zależy liniowo od energii kwantów γ: E n p, (3) (α, β - współczynniki, które należy wyznaczyć, aby wycechować analizator wielokanałowy). Można zatem można napisać: Porównując () i (4) można zauważyć, że: n p 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona Strona z 5 a b cos. (4)

3 b E b a mc a Zatem wzór () można zapisać w postaci: i przekształcić do formy: 0 E 0 mc. (5) a cos, (6) E b mc mc bmc E a a b cos b mc mc co z kolei pozwala zapisać zależność (3) jako: bmc ab cos cos n p, (7). (8) Odczytując z tablic fizycznych wartość mc [ (3) MeV] można wyznaczyć energię E 0 fotonów gamma emitowanych przez źródło promieniowania oraz dokonać kalibracji analizatora (tj. wyznaczyć α i β). Wykonanie pomiarów a. W programie SMAN ustawić czas rejestracji widm na 300s. b. Z obudowy źródła promieniowania wyjąć zatyczkę blokującą wiązkę promieniowania gamma. UWAGA! NIE WOLNO "zaglądać" do wnętrza obudowy źródła promieniowania ani umieszczać na drodze wiązki jakiejkolwiek części ciała. c. Na drodze wiązki promieniowania umieszczać kolejno walec aluminiowy, miedziowy i grafitowy (pełnią one funkcję rozpraszacza - rys..). Dla każdego z rozpraszaczy rejestrować widma amplitudowe scyntylacji (liczba zliczeń fotonów gamma w funkcji numeru kanału analizatora) powstałe w wyniku oddziaływania monoenergetycznego promieniowania γ ze scyntylatorem. Pomiary wykonać dla kątów od 0 do 50, z krokiem 5 dla zakresu 0-90 i z krokiem 30 dla zakresu Po każdym pomiarze zapisywać widmo na dysk komputera. Po zakończeniu wszystkich pomiarów przenieść dane pomiarowe na zewnętrzny nośnik danych. 3. Obserwacja widma scyntylacji Umieścić sondę scyntylacyjną na wprost otworu obudowy źródła promieniowania (kąt Φ=0 ). Zarejestrować widmo amplitudowe scyntylacji bez umieszczania na drodze wiązki rozpraszacza. V. Wykonanie sprawozdania Sprawozdanie wykonać zgodnie z wymaganiami zawartymi w instrukcji przygotowania sprawozdania, dostępnej na stronie internetowej Pracowni Fizyki Medycznej i Technicznej. Część "Wyniki". Kalibracja analizatora wielokanałowego a. Dla kolejnych kątów rozproszenia i kolejnych rozpraszaczy: 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona Strona 3 z 5

4 - przedstawić w formie graficznej widma amplitudowe scyntylacji (liczba zliczeń fotonów γ w funkcji numeru kanału n p ) i opisać zmiany kształtu widma, w szczególności piku fotoelektrycznego (położenie i wysokość), - wyznaczyć numery kanału n p odpowiadające pikowi fotoelektrycznemu, wyniki przedstawić w tabeli: Tabela. Położenie piku fotoelektrycznego w zależności od kąta rozproszenia dla rozpraszacza aluminiowego (/miedziowego/grafitowego). L.p. Φ [rad] -cos(φ) Numer kanału (n p ) / n p b. Dla kolejnych rozpraszaczy: na podstawie tabel wykonanych w punkcie a., nanieść na wykresy punkty pomiarowe / n p, w funkcji -cos(φ) i metodą najmniejszych kwadratów dopasować do nich prostą: y a b x, (9) gdzie zgodnie z zależnością (4): y n p, x cos, podać wyniki dopasowania, tj. wartości współczynników a i b oraz niepewności ich wyznaczenia; wyznaczone współczynniki a i b wykorzystać do obliczenia na podstawie wzoru (5) energii fotonów γ emitowanych przez źródło (E 0 ), wyznaczyć niepewność pomiaru tej wielkości (podać wzór, z jakiego wyznaczono ta niepewność), wyznaczone współczynniki a i b wykorzystać do obliczenia na podstawie wzoru (8) energii fotonów γ dla kolejnych kątów rozproszenia: E bmc a b cos Doswiadcza ln a, mc = MeV, przyjmując, że fotony γ emitowane przez źródło cezowe mają energię E 0 =66 MeV, obliczyć dla kolejnych kątów rozproszenia energię: E Tablicowa cos E E0 mc, (0) wyniki przedstawić w tabeli, wyznaczyć współczynnik korelacji między danymi doświadczalnymi (E Doswiadczalna ) i talicowymi (E Tablicowa ) i współczynnik determinacji wyznaczone współczynniki a i b wykorzystać do sporządzenia na podstawie wzoru (8) wykresu punktów E Doświadczalna (n p ), metodą najmniejszych kwadratów dopasować do nich prostą: E n, () Doswiadcza ln a p podać wyniki dopasowania, tj. wartości współczynników α i β oraz niepewności ich wyznaczenia;. Obserwacja widma scyntylacji Korzystając z wyznaczonych współczynników α i β sporządzić wykres widma amplitudowego scyntylacji w funkcji energii E Doświadczalna, tj. wykres liczby zliczeń fotonów γ w funkcji energii odpowiadającej kolejnym kanałom analizatora. Opisać kształt widma: oznaczyć na wykresie zarejestrowane "piki" (fotoelektryczny, comptonowski, odpowiadający tworzeniu par), opisać dla jakich przedziałów energii fotonów te piki występują. 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona Strona 4 z 5

5 Część "Wnioski" a. Wyjaśnić kształt zarejestrowanych widm. - Jakie procesy oddziaływania promieniowania ze scyntylatorem odpowiadają za powstawanie kolejnych "pików"? - Dlaczego "pik" comptonowski jest szeroki i "płaski"? - Czy udało się zarejestrować pik odpowiadający tworzeniu par pozyton - elektron? Dlaczego? - Dlaczego do kalibracji analizatora wielokanałowego wykorzystuje się pik odpowiadający zjawisku fotoelektrycznemu? b. Skomentować wynik uzyskany dla energii fotonów γ emitowanych przez źródło (E 0 ). Czy w granicach niepewności pomiarowej jest on zbieżny z danymi literaturowymi? Jakie są główne źródła niepewności? c. Skomentować wyniki obliczeń dla autokorelacji między wynikami doświadczalnymi a uzyskanymi na podstawie danych tablicowych. Czy istnieje korelacja między tymi wynikami? Jaki to rodzaj korelacji. d. Biorąc pod uwagę wnioski b i c, czy metoda kalibracji analizatora wielokanałowego wykorzystana w doświadczeniu jest dobra? VI. Literatura: [] A. Strzałkowski, Wstęp do fizyki jądra atomowego. [] E. Skrzypczak, Z. Szefliński, Wstęp do fizyki jądra atomowego cząstek elementarnych, PWN, Warszawa, 00. [3] Sz. Szczeniowski, Fizyka doświadczalna, cz.vi, Fizyka jądrowa. [4] J. B. A. England, Metody doświadczalne fizyki jądrowej. [5] J. Araminowicz i inni, Laboratorium fizyki jądrowej. [6] B. Gostkowska, Wielkości, jednostki i obliczenia stosowane w ochronie radiologicznej, CLOR, Warszawa 99. [7]. Instrukcja obsługi wielokanałowego analizatora amplitudy. [8] F. Jaroszyk, red., Biofizyka, Wydawnictwo Lekarskie PZWL, Warszawa, Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona Strona 5 z 5

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZNI 10 Spektrometria promieniowania z wykorzystaniem detektora scyntylacyjnego Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach

IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1 IM-8 Badanie absorpcji promieniowania gamma w materiałach I. Cel ćwiczenia Celem ćwiczenia jest pomiar współczynników absorpcji

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE LABORATORIUM PROMIENIOWANIE W MEDYCYNIE Ćw nr 3 NATEŻENIE PROMIENIOWANIA γ A ODLEGŁOŚĆ OD ŹRÓDŁA PROMIENIOWANIA Nazwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa 1 Cel ćwiczenia Natężenie

Bardziej szczegółowo

J6 - Pomiar absorpcji promieniowania γ

J6 - Pomiar absorpcji promieniowania γ J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować

Bardziej szczegółowo

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.

Bardziej szczegółowo

J8 - Badanie schematu rozpadu jodu 128 I

J8 - Badanie schematu rozpadu jodu 128 I J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 4 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Dobór optymalnego

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji

Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji Wyznaczanie energii promieniowania γ pochodzącego ze 6 źródła Co metodą absorpcji I. Zagadnienia 1. Procesy fizyczne prowadzące do emisji kwantów γ. 2. Prawo absorpcji. Oddziaływanie promieniowania γ z

Bardziej szczegółowo

gamma - Pochłanianie promieniowania γ przez materiały

gamma - Pochłanianie promieniowania γ przez materiały PJLab_gamma.doc Promieniowanie jonizujące - ćwiczenia 1 gamma - Pochłanianie promieniowania γ przez materiały 1. Cel ćwiczenia Podczas ćwiczenia mierzy się natężenie promieniowania γ po przejściu przez

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 8 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar okresu połowicznego

Bardziej szczegółowo

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ ĆWICZENIE 2 BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie następujących charakterystyk sond promieniowania γ: wydajności detektora w funkcji odległości detektora

Bardziej szczegółowo

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich. Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy

Bardziej szczegółowo

OZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA GAMMA PRZY UŻYCIU LICZNIKA SCYNTYLACYJNEGO

OZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA GAMMA PRZY UŻYCIU LICZNIKA SCYNTYLACYJNEGO Politechnika Poznańska, nstytut Chemii i Elektrochemii Technicznej, OZNACZANE WSPÓŁCZYNNKA POCHŁANANA PROMENOWANA GAMMA PRZY UŻYCU LCZNKA SCYNTYLACYJNEGO nstrukcję przygotował: dr, inż. Zbigniew Górski

Bardziej szczegółowo

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo

Badanie absorpcji promieniowania γ

Badanie absorpcji promieniowania γ Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej

J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej Celem doświadczenie jest wyznaczenie zawartości manganu w stalowym przedmiocie. Przedmiot ten, razem z próbką zawierającą czysty mangan,

Bardziej szczegółowo

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 11 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy

Bardziej szczegółowo

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β.

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β. Wyznaczanie współczynnika rozpraszania otnego. Zagadnienia promieniowania β. 1. Promieniotwórczość β.. Oddziaływanie cząstek β z materią (w tym rozproszenie otne w wyniku zderzeń sprężystych). 3. Znajomość

Bardziej szczegółowo

PROMIENIOWANIE RENTGENOWSKIE

PROMIENIOWANIE RENTGENOWSKIE PROMIENIOWANIE RENTGENOWSKIE 1. Zagadnienia teoretyczne Promieniowanie rentgenowskie, poziomy energetyczne w atomie, stała Planck a i metody wyznaczania jej wartości, struktura krystalograficzna, dyfrakcyjne

Bardziej szczegółowo

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest obserwacja pochłaniania cząstek alfa w powietrzu wyznaczenie zasięgu w aluminium promieniowania

Bardziej szczegółowo

Licznik scyntylacyjny

Licznik scyntylacyjny Detektory promieniowania jonizującego. Licznik scyntylacyjny Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 004. s.1/8 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii Technicznej,

Bardziej szczegółowo

Ć W I C Z E N I E N R J-1

Ć W I C Z E N I E N R J-1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO

Bardziej szczegółowo

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się

Bardziej szczegółowo

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny

Bardziej szczegółowo

Licznik Geigera - Mülera

Licznik Geigera - Mülera Detektory gazowe promieniowania jonizującego. Licznik Geigera - Mülera Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 2004. s.1/7 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii

Bardziej szczegółowo

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie

Bardziej szczegółowo

Miejsce Wirtualnego Nauczyciela w infrastruktureze SILF

Miejsce Wirtualnego Nauczyciela w infrastruktureze SILF Miejsce Wirtualnego Nauczyciela w infrastruktureze SILF Schemat infrastruktury SILF załączona jest na rys. 1. Cała komunikacja między uczestnikami doświadczenia a doświadczeniem przebiega za pośrednictwem

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE LABORATORIUM PROMIEIOWAIE w MEDYCYIE Ćw nr STATYSTYKA ZLICZEŃ PROMIEIOWAIA JOIZUJACEGO azwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa Cel ćwiczenia Rozpad izotopu promieniotwórczego wysyłającego

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

ĆWICZENIE 3. BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH

ĆWICZENIE 3. BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH ĆWICZENIE 3 BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu w

Bardziej szczegółowo

Sebastian Gajos Dominik Kaniszewski

Sebastian Gajos Dominik Kaniszewski Sebastian Gajos Dominik Kaniszewski 13.06.006 Imię i nazwisko Data Ćw.1 Spektometria scyntylacyjna promieniowania Υ. Temat ćwiczenia ocena podpis 1. Część teoretyczna: Prawo rozpadu promieniotwórczego.

Bardziej szczegółowo

DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE

DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE X3 DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE Tematyka ćwiczenia Promieniowanie X wykazuje właściwości jonizujące. W związku z tym powietrze naświetlane promieniowaniem X jest elektrycznie

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania

Bardziej szczegółowo

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2 Radon w powietrzu Marcin Polkowski marcin@polkowski.eu 10 marca 2008 Streszczenie Celem ćwiczenia był pomiar stężenia 222 Rn i produktów jego rozpadu w powietrzu. Pośrednim celem ćwiczenia było również

Bardziej szczegółowo

Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO

Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy

Bardziej szczegółowo

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu promieniowania

Bardziej szczegółowo

Badanie próbek środowiskowych

Badanie próbek środowiskowych J16 Badanie próbek środowiskowych Celem ćwiczenia jest pomiar promieniowania gamma emitowanego z próbki trynitytu oraz identyfikacja i określenie aktywności izotopów w niej zawartych. Trynityt to szkliwo

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Fizyki

POLITECHNIKA WARSZAWSKA Wydział Fizyki POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia Opracował:

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ OZNACZANIE OKRESU PÓŁROZPADU DLA NUKLIDU 40 K WSTĘP Naturalny potas stanowi mieszaninę trzech nuklidów: 39 K (93.08%), 40 K (0.012%) oraz 41 K (6.91%). Nuklid 40 K jest izotopem promieniotwórczym, którego

Bardziej szczegółowo

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6 Wyznaczanie krzywej aktywacji Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie kształtu krzywej zależności

Bardziej szczegółowo

Radiobiologia, ochrona radiologiczna i dozymetria

Radiobiologia, ochrona radiologiczna i dozymetria Radiobiologia, ochrona radiologiczna i dozymetria 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil

Bardziej szczegółowo

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą

Bardziej szczegółowo

Fizyka promieniowania jonizującego #

Fizyka promieniowania jonizującego # Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Fizyka promieniowania jonizującego Nazwa jednostki prowadzącej przedmiot Kod ECTS 10135 Instytut

Bardziej szczegółowo

Badanie Efektu Comptona

Badanie Efektu Comptona Badanie Efektu Comptona Przemysław Duda Laboratorium Fizyki i Techniki Jądrowej Wydziału Fizyki P.W. Materiał dydaktyczny dla Wydziału Fizyki Politechniki Warszawskiej, opracowany w ramach zadania nr 33:

Bardziej szczegółowo

Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym

Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym Oskar Gawlik, Jacek Grela 24 listopada 28 1 Wstęp 1.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się i nacechowanie licznika

Bardziej szczegółowo

( L ) I. Zagadnienia. II. Zadania

( L ) I. Zagadnienia. II. Zadania ( L ) I. Zagadnienia 1. Promieniowanie X w diagnostyce medycznej powstawanie, właściwości, prawo osłabienia. 2. Metody obrazowania naczyń krwionośnych. 3. Angiografia subtrakcyjna. II. Zadania 1. Wykonanie

Bardziej szczegółowo

WFiIS. Wstęp teoretyczny:

WFiIS. Wstęp teoretyczny: WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Osłabienie promieniowania gamma

Osłabienie promieniowania gamma Osłabienie promieniowania gamma Cel ćwiczenia Celem ćwiczenia jest badanie osłabienia wiązki promieniowania gamma przy przechodzeniu przez materię oraz wyznaczenie współczynnika osłabienia dla różnych

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego

Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego Ćwiczenie 8 Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego 8.. Zasada ćwiczenia Celem ćwiczenia jest wyznaczenie czasu połowicznego zaniku izotopu promieniotwórczego Ba-37m (izotop wtórny)

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Pomiar zasięgu promieniowania α w powietrzu

Pomiar zasięgu promieniowania α w powietrzu Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 5 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar zasięgu promieniowania

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Fizyki

POLITECHNIKA WARSZAWSKA Wydział Fizyki POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia 1.

Bardziej szczegółowo

przyziemnych warstwach atmosfery.

przyziemnych warstwach atmosfery. Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych

Bardziej szczegółowo

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia

Bardziej szczegółowo

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,

Bardziej szczegółowo

Ćwiczenie 57 Badanie absorpcji promieniowania α

Ćwiczenie 57 Badanie absorpcji promieniowania α Ćwiczenie 57 Badanie absorpcji promieniowania α II PRACOWNIA FIZYCZNA UNIWERSYTET ŚLĄSKI W KATOWICACH Cele doświadczenia Głównym problemem, który będziemy badać w tym doświadczeniu jest strata energii

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO

CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 1 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO

Bardziej szczegółowo

Pomiar maksymalnej energii promieniowania β

Pomiar maksymalnej energii promieniowania β Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 7 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar maksymalnej

Bardziej szczegółowo

Energia promieniowania termicznego sprawdzenie zależności temperaturowej

Energia promieniowania termicznego sprawdzenie zależności temperaturowej 6COACH 25 Energia promieniowania termicznego sprawdzenie zależności temperaturowej Program: Coach 6 Projekt: komputer H C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Termodynamika\Promieniowanie

Bardziej szczegółowo

WYZNACZANIE ZAWARTOŚCI POTASU

WYZNACZANIE ZAWARTOŚCI POTASU POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW obowiązuje w r. akad. 2017 / 2018 WYZNACZANIE ZAWARTOŚCI POTASU W STAŁEJ PRÓBCE SOLI Opiekun ćwiczenia: Miejsce ćwiczenia:

Bardziej szczegółowo

Bierne układy różniczkujące i całkujące typu RC

Bierne układy różniczkujące i całkujące typu RC Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 3-12 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Oddziaływanie z materią

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Ćwiczenie nr 82: Efekt fotoelektryczny

Ćwiczenie nr 82: Efekt fotoelektryczny Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 82: Efekt fotoelektryczny

Bardziej szczegółowo

Ćwiczenie nr 2 Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok

Ćwiczenie nr 2 Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok Ćwiczenie nr 2 Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok Wydział Fizyki, 2009 r. I Cel ćwiczenia Celem ćwiczenia jest: Zapoznanie się

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,

Bardziej szczegółowo

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA Agnieszka Głąbała Karol Góralczyk Wrocław 5 listopada 008r. SPRAWDZENIE PRAWA STEFANA - BOLTZMANA LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE z Ćwiczenia 88 1.Temat i cel ćwiczenia: Celem niniejszego ćwiczenia

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Zagadnienia: polaryzacja światła, metody otrzymywania światła spolaryzowanego, budowa polarymetru, zjawisko

Bardziej szczegółowo

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący

Bardziej szczegółowo

Pomiar widm energetycznych promieniowania gamma przy pomocy analizatora wielokanałowego i detektora scyntylacyjnego

Pomiar widm energetycznych promieniowania gamma przy pomocy analizatora wielokanałowego i detektora scyntylacyjnego Jacek Pączkowski Gdańsk,. 05. 2013 r. Pomiar widm energetycznych promieniowania gamma przy pomocy analizatora wielokanałowego i detektora scyntylacyjnego 0 Cel ćwiczenia Pomiary przeprowadzone w ćwiczeniu

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Cel ćwiczenia: Obserwacja swobodnego spadania z wykorzystaniem elektronicznej rejestracji czasu przelotu kuli przez punkty pomiarowe. Wyznaczenie

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Dozymetria promieniowania jonizującego

Dozymetria promieniowania jonizującego Dozymetria dział fizyki technicznej obejmujący metody pomiaru i obliczania dawek (dóz) promieniowania jonizującego, a także metody pomiaru aktywności promieniotwórczej preparatów. Obecnie termin dawka

Bardziej szczegółowo

BADANIE KORELACJI KIERUNKOWYCH DLA KASKADY PROMIENIOWANIA GAMMA EMITOWANEGO W ROZPADZIE ANIHILACYJNEGO POZYTONÓW Z ROZPADU 22 NA

BADANIE KORELACJI KIERUNKOWYCH DLA KASKADY PROMIENIOWANIA GAMMA EMITOWANEGO W ROZPADZIE ANIHILACYJNEGO POZYTONÓW Z ROZPADU 22 NA II racownia Fizyczna, γ3 γ3 - KORELCJE KIERUNKOWE BDNIE KORELCJI KIERUNKOWYCH DL KKDY ROMIENIOWNI GMM EMITOWNEGO W ROZDZIE 60 CO ORZ DL KWNTÓW ROMIENIOWNI NIHILCYJNEGO OZYTONÓW Z ROZDU 22 N I. Cel ćwiczenia

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

Ćwiczenie nr 5. Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji.

Ćwiczenie nr 5. Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji. Ćwiczenie nr 5 Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji. 1. 2. 3. 1. Ołowiany domek pomiarowy z licznikiem kielichowym G-M oraz wielopoziomowymi wspornikami. 2. Zasilacz

Bardziej szczegółowo