Przykład 3.2. Zginanie ukośne. Układ współrzędnych (0xy)
|
|
- Henryk Wawrzyniak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Prkład.. Zgnane ukośne. Układ współrędnch (0) Wnac rokład naprężena normalnego w prekroju podporowm belk wspornkowej o długośc L obcążonej na końcu swobodnm ponową słą P. Wmar prekroju poprecnego belk podane są na rsunku amesconm ponżej. Oblc naprężena prjmując następujące wartośc lcbowe: P0kN L00cm a1cm Prekrój poprecn P L a 6a a a Rowąane Oblcm moment gnąc charakterstk prekroju. Prekonam sę c wektor momentu gnącego pokrwa sę jedną głównch os momentów bewładnośc prekroju. Pred prstąpenem do oblceń warto pre chwlę astanowć sę nad adanem. Prglądając sę kstałtow prekroju poprecnego łatwo możem prewdeć że ose główne są ustawone skośne. Poneważ wektor momentu jest poom (prostopadł do sł P) prewdujem że mam odcnena e gnanem ukośnm. Wnacm wektor momentu gnącego w utwerdenu. L PPL000[kNcm] α P α -α α L PL
2 Oblcm moment bewładnośc prekroju poprecnego. Podelm fgurę na dwa prostokąt wnacm środek cężkośc wartość momentów bewładnośc wględem os centralnch. a Współrędne środka cężkośc wnacam e worów: a a 6a Σ S c Σ F Σ S c. Σ F F -onaca pole powerchn -tej fgur na które podelono cał prekrój. S F - jest momentem statcnm -tej fgur na które podelono cał prekrój wględem os. oment statcn wględem os równ jest locnow pola powerchn tej fgur pre współrędną jej środka cężkośc. S F - jest momentem statcnm -tej fgur na które podelono cał prekrój wględem os. oment statcn wględem os równ jest locnow pola powerchn tej fgur pre współrędną jej środka cężkośc. Oblcena możem sbko preprowadć wkorstując arkus kalkulacjn. nr fgur F pole powerchn S moment statcn S moment statcn 1 [a] [a] 6 [a] 7 [a] 8 [a] 1 [a] 5 [a] 60 [a] [a] 6 [a] [a] [a] 96 [a] 5 [a] 10 [a] Σ S 96a Σ S 10a a a c 5 Σ F a Σ F a c
3 Oblcm tera korstając e worów Stenera wartośc momentów bewładnośc wględem os centralnch.nech ose 1 1 onacają ose centralne dla poscególnch fgur na które podelono cał prekrój a 1a 5a a a 6a (a) 1 a (6a) 1 + (a) 1a + + (a) 1a 16a a (6a) 1 6a (a) 1 + ( a) 1a + + a 1a 6a 0 + a ( a) 1a ( a) a 1a 8a Dalsą cęść adana możem rowąać na dwa sposob. ożna wnacć ose główne centralne naleźć współrędne wektora momentu gnącego w osach głównch centralnch wkorstać wór na naprężena pr gnanu dla os głównch centralnch. Drug sposób polega na wkorstanu woru na naprężena pr gnanu wprowadonego dla os centralnch. etoda druga jest krótsa ale daje mnej możlwośc sprawdena poprawnośc nasego rowąana. Rowąując metodą perwsą nam ustawene os głównch możem sprawdć c wnacona pre nas oś obojętna dla gnana ukośnego jest odchlona od kerunku wektora momentu w stronę os głównej wględem której moment bewładnośc jest mnejs. Predstawm węc obdwa rowąana.
4 etoda rowąane w osach głównch centralnch. Wnacm ose główne centralne główne centralne moment bewładnośc. ( + ) ( + ) + 0a 0 0 tg β β n π / [ rad] β n5 ' Poneważ moment dewacjn ma wartość ujemną węc oś główna wględem której moment bewładnośc osąga maksmum prechod pre perwsą ćwartkę układu (0). Zmeńm układ os na tak jak tradcjne stosuje sę w adanach na gnane belek. Zamast układu (01) wprowadm układ (0). Zapsm moment bewładnośc wględem os nowego układu: 1 0a
5 Oblcm współrędne momentu gnącego w układe (0). sn(6 0 5 )0.7 cos(6 0 5 )0.89 Rokład naprężena normalnego od gnana wnacm e woru: Podstawając wartośc PL 0a otrmujem: 0.7PL 0.89PL 0a Równane os obojętnej (boru punktów prekroju dla którch naprężene równe jest eru) otrmujem podstawając a wartość ero. 0.7PL 0.89PL a Wnacm naprężena w punktach położonch najdalej od os obojętnej. Onacm te punkt lteram wnacm współrędne tch punktów w osach głównch centralnch (0) Zapsem współrędne punktów w osach (0) dokonam transformacj układu pre obrót o kąt α6 o 5. 5
6 cosα + snα snα + cosα podstawając dla punktu a a dla punktu 0-5a otrmam odpowedno współrędne punktów w układe prmam. Dla punktu : a cosα + a snα. 105a a snα + a cosα a Dla punktu : 0a cosα + ( 5a) snα. 61a 0a snα + ( 5a) cosα. 71a Wróćm do układu (0) w którm wnacalśm naprężene od gnana. Współrędne punktów w tm układe wnosą: Dla punktu : a.105a Dla punktu : -.71a -.61a Podstawm tera wnacone współrędne punktów do wprowadonego wceśnej równana na naprężene normalne pr gnanu: 0.7PL 0.89PL 0a Dla punktu : a.105a 0.7PL 0.89PL 1.PL 1.6PL 7.PL.105a ( a) + 0a 0a dla PL000 [kncm] a1 [cm] otrmam: 180 [ kn / cm ] 1.8 [ GPa]. Dla punktu : -.71a 6
7 -.61a 0.7PL 0.89PL ( 1) PL PL 8PL (.61a). 71a 0a 0a dla PL000 [kncm] a1 [cm] otrmam: 00 [ kn / cm ].0 [ GPa]. etoda rowąane w osach centralnch. Rokład naprężena normalnego od gnana apsan dla układu centralnego wraża wór: + + J Prejdźm układu (0) w którm sukalśm momentów bewładnośc prekroju poprecnego do układu (0) w którm wprowadon bł wór na naprężena normalne od gnana 16 a 6 a 8 a 16 a 6 a 8 a 7
8 Zauważm że nasm adanu wektor momentu gnącego pokrwa sę osą. Wartośc składowch momentu wnosą węc: PL 0. Wór na naprężena normalne od gnana uprasca sę do postac: Równane os obojętnej otrmujem podstawając a wartość ero a 8 a Wnacm naprężena w punktach położonch najdalej od os obojętnej. Onacm te punkt lteram wnacm współrędne tch punktów w osach centralnch (0). 8
9 Współrędne punktów wnosą: Punktu -a a Punktu 5a 0 Podstawm tera współrędne punktów wartośc momentów bewładnośc do wprowadonego wceśnej równana na naprężene normalne pr gnanu. Otrmam naprężena normalne w punktach leżącch najdalej od os obojętnej. dla punktu PL 8 a PL 6 a PL a ( a) a 6 a (8 a ) 16 a 6 a (8 a ) a Po podstawenu wartośc lcbowch dla P L otrmujem: 000kNcm [ / ] 1.8 [ ] kn cm GPa cm dla punktu PL 6 a (5a) 16 a 6 a (8 a ) PL 0.05 a Po podstawenu wartośc lcbowch dla P L otrmujem: 000kNcm [ / ].0 [ ] kn cm GPa cm 9
Przykład 3.1. Projektowanie przekroju zginanego
Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena
8. Zginanie ukośne. 8.1 Podstawowe wiadomości
8. 1 8. ginanie ukośne 8.1 Podstawowe wiadomości ginanie ukośne zachodzi w przypadku, gdy płaszczyzna działania obciążenia przechodzi przez środek ciężkości przekroju pręta jednak nie pokrywa się z żadną
4. Podzielnica uniwersalna 4.1. Budowa podzielnicy
4. Podelnca unwersalna 4.. Budowa podelncy Podelnca jest pryrądem podałowym, który stanow specjalne wyposażene frearek unwersalnych. Podstawowym astosowanem podelncy jest dokonywane podału kątowego. Jest
ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie
WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v
PLANIMETRIA. Poziom podstawowy
LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,
OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE PRZEJŚCIE DLA ZWIERZĄT W KM 24+800 - PRZĘSŁO 1. NORMY, PRZEPISY, LITERATURA.
OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE PRZEJŚCIE DLA ZWIERZĄT W KM 24+800 - PRZĘSŁO 1. NORMY, PRZEPISY, LITERATURA. 1.1. PN-85/S-10030 Obiekty mostowe. Obciążenia. 1.2. PN-91/S-10042 Obiekty mostowe. Konstrukcje
Kratownice Wieża Eiffel a
Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,
Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.
Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła
RZUTOWANIE AKSONOMETRYCZNE
Zapis i Podstawy Konstrukcji Rzuty aksonometryczne 1 RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów W metodzie aksonometrycznej rzutnią jest płaszczyzna
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Mchał Kolupa Poltechnka Radomska w Radomu Joanna Plebanak Szkoła Główna Handlowa w Warszawe KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Projekt konstrukcji jazu dokowego
8. Obliczenia statyczne Projekt konstrukcji jazu dokowego Ryc. Xx. Schemat układu sił działających na konstrukcję jazu (przypadek eksploatacyjny) skala: 100 Zestawienie sił: G D ciężar doku [kn] G F ciężar
DOBÓR SERWOSILNIKA POSUWU
DOBÓR SERWOSILNIKA POSUWU Rysunek 1 przedstawa schemat knematyczny napędu jednej os urządzena. Fp Fw mc l Sp Serwoslnk Rys. 1. Schemat knematyczny serwonapędu: przełożene przekładn pasowej, S p skok śruby
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 20/202 KOD UCZNIA Etap: Data: Czas pracy: szkolny 5 listopada 20 r. 90 minut Informacje dla ucznia:.
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Rys. 1. Rysunek do zadania testowego
Test zaliczeniowy Zadanie testowe. Przeanalizuj rysunek 1., przedstawiający odwzorowanie pewnej sytuacji przestrzennej przy pomocy metody Monge a (rzutów prostokątnych na dwie wzajemnie prostopadłe rzutnie
Podstawy wytrzymałości materiałów
Podst trmłośi mteriłó IiR - Wkłd Nr 7 Zgi prętó prost sił eętre sił eętre belk, trde Sedler Żurskgo, kresó sił popre i mometó giją Wdił Iżrii eej i Robotki Ktedr Wtrmłośi, Zmęei teriłó i Kostrukji Dr b
Rekompensowanie pracy w godzinach nadliczbowych
Rekompensowanie pracy w godzinach nadliczbowych PRACA W GODZINACH NADLICZBOWYCH ART. 151 1 K.P. Praca wykonywana ponad obowiązujące pracownika normy czasu pracy, a także praca wykonywana ponad przedłużony
Mechanika i wytrzymałość materiałów
1 eik i trmłość mteriłó Wkłd Nr 11 Zgi prętó prost sił eętre belk podd giiu, trde Sedler Żurskgo, kresó sił popre i mometó giją Wdił Iżrii eej i Robotki Ktedr Wtrmłośi, Zmęei teriłó i Kostrukji Dr b iż
10 RUCH JEDNOSTAJNY PO OKRĘGU
Włodzimiez Wolczyński Miaa łukowa kąta 10 RUCH JEDNOSTAJNY PO OKRĘGU 360 o =2π ad = = 2 s 180 o =π ad 90 o =π/2 ad = jednostka adian [1 = 1 = 1] Π ad 180 o 1 ad - x o = 180 57, 3 57 18, Ruch jednostajny
W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych
WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH
Ćwczene nr 1 Statystyczne metody wspomagana decyzj Teora decyzj statystycznych WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Problem decyzyjny decyzja pocągająca za sobą korzyść lub stratę. Proces decyzyjny
Geometria Wykreślna Wykład 3
Geometria Wykreślna Wykład 3 OBRÓT PUNKTU Z obrotem punktu A związane są następujące elementy obrotu: - oś obrotu - prosta l, - płaszczyzna obrotu - płaszczyzna, - środek obrotu - punkt S, - promień obrotu
KARTA INFORMACYJNA ELEKTROMAGNESY NAPĘDOWE. TYP ES-2a i ES-2
Producent : Spnia Inwalidów INMET 476 Kędzierzyn Kożle ul. Portowa 33 KARTA INFORMACYJNA ELEKTROMAGNESY NAPĘDOWE TYP ES2a i ES2 jednofazowe wnętrzowe bez obudowy 24 500 V 1780 W 50 Hz ZASTOSOWANIE : Do
Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych. Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych
Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych Wydajność przenośnika Wydajnością przenośnika określa się objętość lub masę nosiwa przemieszczanego
Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest
Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3
KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,
KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
TEST WIADOMOŚCI: Równania i układy równań
Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za
B. OBLICZENIA STATYCZNE
. OLICENI STTCNE ESTWIENIE POCJI OLICENIOWCH. Nr. Po. obliceniowa Nawa eleentu. Str. 1 ałożenia prjęte w scheacie obliceniow estawienie obciążeń. 3 Scheat obliceniow stropu na I kongnacją. 4 4 Po. S-1/1
Wały napędowe półosie napędowe przeguby wałów i półosi
Wykorzystano materiały Układ napędowy - podzespoły Wały napędowe półosie napędowe przeguby wałów i półosi opracowanie mgr inż. Ireneusz Kulczyk aktualizacja 07.2011 Zespół Szkół Samochodowych w Bydgoszczy
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc
PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych
Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 5 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Obliczenia statycznie obciążonej belki
Wytyczne dla środków masowego przekazu
Wytyczne dla środków masowego przekazu ZASADY korzystania ze znaków PZPN przez środki masowego przekazu Nowe znaki PZPN są jedynie obowiązującymi. Dotychczasowych logotypów można używać wyłącznie do celów
Test całoroczny z matematyki. Wersja A
Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach
Instrukcja Laboratoryjna
Karkonoska Państwowa Szkoła Wyższa w Jeleniej Górze Wydział Przyrodniczo-Techniczny Edukacja Techniczno-Informatyczna Instrukcja Laboratoryjna Komputerowe wspomaganie w technice i nowoczesne techniki informatyczne
jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów A i B.
Zadanie PP-GA-1. W trójkącie równoramiennym prostokątnym punkt C = ( 3, 1) jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów
TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)
SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej
Całka potrójna. Całka potrójna po prostopadłoscianie. f (x i, y i, z i ) x i y i z i. (1)
Całka potrójna Całka potrójna po prostopadłoscianie Rozważmy prostopadłościan = {(x, y, z) R 2 : a x b, c y d, p z q}, gdzie a, b, c, d, p, q R, oraz funkcję trzech zmiennych f : R ograniczoną w tym prostopadłościanie.
Wytrzymałość materiałów
1 Wtrmałość materiałów EiP - Wkład Nr 9 Odkstałceia beek giach iia ugięcia beki, kąt obrotu beki, waruek stwości pr giaiu, rówaie różickowe iii ugięcia beki, waruki bregowe, waruki ciągłości odkstałceń,
Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem
Zadanie 1 - (7 punktów) Latające kartki Ponieważ są 64 liczby od 27 do 90 włącznie, mamy 64 strony, czyli 16 kartek (16= 64 : 4). Pod stroną 26. znajdują się strony 24., 22.,..., 4. i 2. wraz z ich nieparzystymi
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013
Etap szkolny 13 listopada 2012 r. Godzina 10.00 Kod ucznia Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i
Wykład 7. Obliczenia wytrzymałościowe prętów skręcanych. Skręcanie sprężyste i sprężysto - plastyczne.
Wykład 7. Obliczenia wytrzymałościowe prętów skręcanych. Skręcanie sprężyste i sprężysto - astyczne. Zadanie. Załóżmy, że pręt składa się z dwóch odcinków o długościach jak na rysunku poniżej, nie precyzując
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
Zadania z parametrem
Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk
ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM
ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM DLA UCZNIÓW GIMNAZJUM Drogi gimnazjalisto! Serdecznie dziękujemy, że zdecydowałeś się na wzięcie udziału w naszym konkursie. Test (tzw. wielokrotnego wyboru) składa
ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
O B L I C Z E N I A. Spis zawartości części obliczeniowej: I. Ściany nośne: 1.1. Ściany fundamentowe
Spis zawartości części obliczeniowej: I. Ściany nośne: 1.1. Ściany fundamentowe O B L I C Z E N I A II. Płyty Ŝelbetowe.1. Płyta Ŝelbetowa trybun L4,96m szer. 0,9m;.. Płyta Ŝelbetowa trybun L4,96m szer.
Podstawy wytrzymałości materiałów
odst trmłośi mteriłó IiR - ib - Wkłd Nr 8 Zgi prętó prost - prężei prężei torsąe giiu, ruek bepeńst gi, dobór miró prekrojó popre prętó gi Wdił Iżrii eiej i Robotki Ktedr Wtrmłośi, Zmęei teriłó i Kostrukji
KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 8: Opis kalkulatora do obliczania nośności elementów konstrukcyjnych
KONSTRUKCJE STALOWE W EUROPIE Wielokondgnacjne konstrukcje stalowe Cęść 8: Opis kalkulatora do oblicania nośności elementów konstrukcjnch Wielokondgnacjne konstrukcje stalowe Cęść : Opis kalkulatora do
- 1 - OBLICZENIA SCHODÓW ŻELBETOWYCH
- 1 - Użytkownik: iuro Inżynierskie SPECUD Schody Płytowe v.3.0 OLICZENI SCHODÓW ŻELETOWYCH 2005-2014 SPECUD Gliwice utor: mg inż. Jan Kowalski Tytuł: Obliczenia schodów ieg schodowy 1 [obliczenia i szkic
Mechanika i wytrzymałość materiałów
1 eik i trmłość mteriłó Wkłd Nr 12 Zgi prętó prost prężei torsąe giiu, gi ste, gi proste, oś obojęt, lii ugięi belki, rokłd prężeń prę gim, ruek bepeńst gi, skźik trmłośi prekroju gi, dobór miró prekrojó
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
Temat ćwiczenia: Analiza pojedynczego zdjęcia lotniczego
Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Analiza pojedynczego zdjęcia lotniczego ZAGADNIENIA 1. Podstawowe elementy
Mechanika i wytrzymałość materiałów
1 ehik i wtrmłość mteriłów I - Wkłd Nr 3 Sttk: płski i prestre ukłd sił rówowg płskiego ukłdu sił, prestre ukłd sił redukj, wruki rówowgi Wdił Iżierii ehiej i Rootki Ktedr Wtrmłośi, Zmęei teriłów i Kostrukji
Badanie silnika asynchronicznego jednofazowego
Badanie silnika asynchronicznego jednofazowego Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady funkcjonowania silnika jednofazowego. W ramach ćwiczenia badane są zmiany wartości prądu rozruchowego
Trenuj przed sprawdzianem! Matematyka Test 4
mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce
KSIĘGA ZNAKU TOTORU S.C.
2011 SPIS TREŚCI FORMA PODSTAWOWA...03 FORMY UZUPEŁNIAJĄCE...06 KONSTRUKCJA ZNAKU...08 POLE PODSTAWOWE I POLE OCHRONNE...10 WIELKOŚCI MINIMALNE...11 WARIANTY ACHROMATYCZNE I MONOCHROMATYCZNE...13 KOLORYSTYKA...15
środek masy 5. ŚRODEK MASY UKŁADU = i= + m2
5. ŚRODEK MASY UKŁADU Środek asy układu składającego sę z cząstek zajuje określone połoŝene, które określay za poocą wektora R : R r (46) Przykładowo, dla układu złoŝonego z dwóch cząstek: R r + r + (47)
PL-Lublin: Obrabiarki 2012/S 132-218684. Ogłoszenie o udzieleniu zamówienia. Dostawy
1/5 Niniejsze ogłoszenie w witrynie TED: http://ted.europa.eu/udl?uri=ted:notice:218684-2012:text:pl:html PL-Lublin: Obrabiarki 2012/S 132-218684 Ogłoszenie o udzieleniu zamówienia Dostawy Dyrektywa 2004/18/WE
Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy
Zestw - Dziłni n wektorch i mcierzch, wyzncznik i rząd mcierzy PRZYKŁADOWE ZADANIA Z ROZWIAZANIAMI Dodjąc( bądź odejmując) do siebie dw wektory (lub więcej), dodjemy (bądź odejmujemy) ich odpowiednie współrzędne
OBLICZE IA STATYCZ O-WYTRZYMAŁOŚCIOWE Wzmocnienia stropu w budynku mieszkalnym w akle ad otecią ul. Dąbrowskiego 44
- str.12 - OBLICZE IA STATYCZ O-WYTRZYMAŁOŚCIOWE Wzmocnienia stropu w budynku mieszkalnym w akle ad otecią ul. Dąbrowskiego 44 1. Zestawienia obciążeń jednostkowych Zestawienia obciążeń jednostkowych w
Proste zginanie belek, łuków, ram. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji
Proste zginanie belek, łuków, ram dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Siły zewnętrzne to siły skupione, momenty oraz obciążenia ciągłe o stałym lub zmiennym natężeniu. Obok sił czynnych
SPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
pobrano z (A1) Czas GRUDZIE
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla
Stowarzyszenie TERRANOVA zaprasza na Warsztaty Pracy Wodnej w dniach 20.08 do 28.08.2016
Stowarzyszenie TERRANOVA zaprasza na Warsztaty Pracy Wodnej w dniach 20.08 do 28.08.2016 Warsztaty odbędą się w Ośrodku Wczasowym STANICA WODNA na Mazurach w malowniczej miejscowości Stare Jabłonki (okolice
Test F- Snedecora. będzie zmienną losową chi-kwadrat o k 1 stopniach swobody a χ
Test F- nedecora W praktyce często mamy do czynienia z kilkoma niezaleŝnymi testami, słuŝącymi do weryfikacji tej samej hipotezy, prowadzącymi do odrzucenia lub przyjęcia hipotezy zerowej na róŝnych poziomach
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania
Pomiary napięć i prądów w obwodach prądu stałego
WARSZTATY INŻYNIERSKIE ELEKTROTECHNICZNE Grupa Podgrupa Numer ćwiczenia Nazwisko i imię Ocena Data wykonania. ćwiczenia. Podpis prowadzącego. zajęcia. Uwaga! ćwiczenie realizowane w 5-ciu 5. podgrupach
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych.
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych LICEUM Klucz odpowiedzi do zadań zamkniętych 6 7 8 9 0 6 7 8 9 0 D A D A A B A B B C B D C C C D B C C B Zadanie. (pkt) Rozwiąż
U C H W A Ł A NR XIX/81/2008. Rady Gminy Ostrowite z dnia 21 maja 2008 roku. u c h w a l a s ię:
U C H W A Ł A NR XIX/81/2008 Rady Gminy Ostrowite z dnia 21 maja 2008 roku w sprawie regulaminu udzielania pomocy materialnej o charakterze socjalnym dla uczniów. Na podstawie art. 90f. ustawy z dnia 7
Zadanie 21. Stok narciarski
Numer zadania Zadanie. Stok narciarski KLUCZ DO ZADA ARKUSZA II Je eli zdaj cy rozwi e zadanie inn, merytorycznie poprawn metod otrzymuje maksymaln liczb punktów Numer polecenia i poprawna odpowied. sporz
Matematyka:Matematyka I - ćwiczenia/granice funkcji
Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie
ZARZĄDZENIE NR 33/2015 WÓJTA GMINY POKRZYWNICA. z dnia 13 sierpnia 2015 r.
ZARZĄDZENIE NR 33/2015 A GMINY POKRZYWNICA w sprawie powołania komisji do ustalenia norm zużycia paliwa w samochodzie strażackim marki Renault Midliner S160 będącego w dyspozycji Ochotniczej Straży Pożarnej
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
EGZAMIN MAGISTERSKI, 24 czerwca 2013 Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach Rozwiąż następujące zagadnienie programowania liniowego: Zminimalizować 2x 1 x 2 +x 3 +x 4, przy ograniczeniach x 1 x 2 + 2x 3 = 2 x 2 3x 3 = 6 x 1 + x 3 + x 4 =
EGZAMIN MATURALNY 2013 MATEMATYKA
entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie (0 ) Obszar standardów Zadanie (0 ) Opis wymagań pojęcia
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
Instrukcja do ćwiczenia Kompensacja mocy biernej
Instrukcja do ćwiczenia Kompensacja mocy biernej. Dane znamionowe Przed rozpoczęciem pomiarów należy zanotować dane znamionowe badanego silnika oraz dane znamionowe kompensatora pojemnościowego.. kład
2013-10-11. pok. 364 Konsultacje: środa 13 13-15 00. Literatura:
03-0- rof. dr hab. inż. JROSŁW RZEWŁÓCKI pok. 364 Konsutacje: środa 3 3-5 00 Literatura: Bieewicz E.: Wtrzmałość materiałów. Dąg Z., Jakubowicz., Orłoś Z.: Wtrzmałość materiałów. Koendowicz T.: echanika
Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej
Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Równia pochyła jest przykładem maszyny prostej. Jej konstrukcja składa się z płaskiej powierzchni nachylonej pod kątem
14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY
14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
WYKRYWANIE BŁĘDÓW W UKŁADACH OCHRONY PRZECIWPORAŻENIOWEJ Z WYŁĄCZNIKAMI RÓŻNOCOWO PRĄDOWYMI
Ćwiczenie S 25 WYKRYWANIE BŁĘDÓW W UKŁADACH OCHRONY PRZECIWPORAŻENIOWEJ Z WYŁĄCZNIKAMI RÓŻNOCOWO PRĄDOWYMI 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami wykrywania błędów w układach
2.Prawo zachowania masy
2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco