Temat ćwiczenia: Analiza pojedynczego zdjęcia lotniczego
|
|
- Szczepan Czajkowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Analiza pojedynczego zdjęcia lotniczego
2 ZAGADNIENIA 1. Podstawowe elementy geometryczne zdjęcia lotniczego. Własności punktów i linii szczególnyc 3. Zniekształcenia perspektywiczne zdjęcia 3.1 Zniekształcenie liniowe spowodowane deniwelacją terenu spowodowane nacyleniem zdjęcia 3. Zniekształcenie kierunków spowodowane rzeźbą terenu, spowodowane nacyleniem zdjęcia 4. Skala zdjęcia lotniczego 4.1 Skala zdjęcia ściśle poziomego 4. Skala zdjęcia nacylonego, wzdłuŝ poziomyc zdjęcia wzdłuŝ głównej pionowej dla dowolnyc kierunków 4.3 Wyznaczenie średniej lokalnej skali zdjęcia 5. Czynniki izyczne wpływające na zniekształcenie obrazu zdjęcia lotniczego
3 PUNKTY I LINIE SZCZEGÓLNE ZDJĘCIA LOTNICZEGO
4 PUNKTY I LINIE SZCZEGÓLNE ZDJĘCIA LOTNICZEGO
5 WŁASNOŚCI PUNKTÓW I LINII SZCZEGÓLNYCH α - płaszczyzna terenu π - płaszczyzna tłowa zdjęcia ν - płaszczyzna główna prostopadła do płaszczyzny terenu, przecodzi przez środek O Przecięcie ν z α daje νν - linię kierunku zdjęcia. Przecięcie ν z π daje υυ główną pionową zdjęcia lub prostą największego spadku. Płaszczyzna pozioma przecodząca przez środek rzutów - płaszczyzna oryzontu, przecina się z płaszczyzną zdjęcia wzdłuŝ prostej zwanej linią oryzontu lub linią zbiegu.
6 WŁASNOŚCI PUNKTÓW I LINII SZCZEGÓLNYCH Na przecięciu linii υυ i leŝy punkt zbiegu Z. Przecięcie linii pionu przecodzącej przez środek rzutów O, z płaszczyzną zdjęcia π daje punkt nadirowy N i jego odpowiednik w terenie N 1. Kąt ν - kąt dwuścienny pomiędzy płaszczyzną zdjęcia i płaszczyzną terenu określa kąt nacylenia zdjęcia. Dwusieczna kąta nacylenia przecina płaszczyznę zdjęcia w punkcie izocentrycznym I. Punkty Z, I, N, leŝą na linii największego spadku, a ic połoŝenie w stosunku do punktu głównego określamy ze wzoru :
7 WŁASNOŚCI PUNKTÓW I LINII SZCZEGÓLNYCH GZ ctgv Zo sin v GI tg v ON cos v GN tgv O 1 1 N H tgv ZK H sin v
8 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE DENIWELACJĄ TERENU
9 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE DENIWELACJĄ TERENU Dla określenia wielkości zniekształcenia początek układu współrzędnyc (układ biegunowy φ i r ) umieszczamy w punkcie nadirowym N. r sinϕ sinv 1 r δ H r 1 sinϕ sinv H
10 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE DENIWELACJĄ TERENU JeŜeli nacylenie zdjęcia jest niewielkie moŝe on być zapisany w ormie uproszczonej: δ r Y 1 o sinv H
11 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE DENIWELACJĄ TERENU Przy nacyleniac nie przekraczającyc 3 δ r H
12 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE NACHYLENIEM ZDJĘCIA
13 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE NACHYLENIEM ZDJĘCIA
14 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE NACHYLENIEM ZDJĘCIA Dla określenia wykorzystamy zaleŝności pomiędzy współrzędnymi zdjęcia i terenu, umieszczając początek układu współrzędnyc w punkcie izocentrycznym I na zdjęciu i I1 w terenie A zatem odległość punktu a, od punktu izocentrycznego wynosi: v y H y Y i v y H x X sin sin v r H r v y H r R Y X R i y x r sin sin sin ϕ + + v r H r v y H r R Y X R i y x r sin sin sin ϕ + +
15 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE NACHYLENIEM ZDJĘCIA To samo R określone na podstawie zdjęcia poziomego wyniesie: R o r H o Dzieląc R R o 1 r o r ( r sinϕsinν )
16 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE NACHYLENIEM ZDJĘCIA Zamieniając r 0 przez r-δν po przekształceniu otrzymamy: δν r sin ϕ sinν r sin ϕ sinν Po uproszczeniu otrzymujemy postać: δν r sinϕ sinν
17 ZNIEKSZTAŁCENIE LINIOWE SPOWODOWANE NACHYLENIEM ZDJĘCIA
18 ZNIEKSZTAŁCENIE KIERUNKÓW SPOWODOWANE RZEŹBĄ TERENU
19 ZNIEKSZTAŁCENIE KIERUNKÓW SPOWODOWANE RZEŹBĄ TERENU a po podstawieniu za i przekształceniu, otrzymamy o l β δ γ δ δν sin sin sin 1 H r δ ( ) ( ) ( ) ( ) o a b b a o a b b a l l m x y x y l l H x y x y 1 1 δν
20 ZNIEKSZTAŁCENIE KIERUNKÓW SPOWODOWANE RZEŹBĄ TERENU wielkość -1 jest przewyŝszeniem punktu B nad punktem A, a iloczyn m lo odpowiada długości odcinka AB w terenie, dlatego: l o m 1 tgµ µ - kąt nacylenia linii AB w terenie Wtedy ya xb yb xa sinδν tg µ l a poniewaŝ wielkość najczęściej jest nieznaczna to moŝemy zapisać : ya xb yb xa δν µ l
21 ZNIEKSZTAŁCENIE KIERUNKÓW SPOWODOWANE RZEŹBĄ TERENU lub Do wyznaczenia wielkości zniekształcenia na podstawie wzoru konieczne są współrzędne punktów a, b, o początku układu w punkcie N na zdjęciu. Omawiane zniekształcenie moŝe być wyraŝone równieŝ zaleŝnością : tgδν r tgδν δ ( r δ) l 1 ( r δ) sin δ ( r δ) δ r sin l ( ϕ γ ) cos l ( ϕ γ ) ( ϕ γ ) zakładając nieznaczne nacylenie zdjęcia otrzymamy wzór uproszczony tg δν r sin H l ( ϕ γ )
22 ZNIEKSZTAŁCENIE KIERUNKÓW SPOWODOWANE RZEŹBĄ TERENU Dla kierunku przecodzącego przez punkt nadiru zniekształcenie nie wystąpi. JeŜeli analizowane kierunki przecodzą przez inne punkty szczególne, zniekształcenia moŝemy obliczyć z bardziej prostyc zaleŝności: ϕ γ dla kierunku przecodzącego przez punkt główny δν l m tgν cosγ jeŝeli kierunek przecodzi przez punkt izocentryczny ν l m ν tg cosγ
23 ZNIEKSZTAŁCENIE KIERUNKÓW SPOWODOWANE NACHYLENIEM ZDJĘCIA
24 ZNIEKSZTAŁCENIE KIERUNKU SPOWODOWANE NACHYLENIEM ZDJĘCIA Na podstawie rysunku otrzymujemy : tg ν r sinν sin γ sin Maksymalne zniekształcenie wystąpi jeŝeli: ( ϕ γ ) ϕ o ϕ γ lub 90 + r sin ν δ max + ν ( 1 cos ) ϕ
25 ZNIEKSZTAŁCENIE KIERUNKU SPOWODOWANE NACHYLENIEM ZDJĘCIA JeŜeli kierunek przecodzi przez punkty szczególne np. O lub N, to po podstawieniu ic współrzędnyc tj. r i ϕ do powyŝszego wzoru otrzymujemy: dla kierunku przecodzącego przez punkt O ν tg ν sin sin γ dla kierunku przecodzącego przez punkt N ν tg ν sin sin 1 γ cosν
26 ZNIEKSZTAŁCENIE KIERUNKU SPOWODOWANE NACHYLENIEM ZDJĘCIA JeŜeli punkt przez, który przecodzi analizowany kierunek leŝy na linii największego spadku to zaleŝność pomiędzy kierunkiem na zdjęciu i w terenie wyrazi się wzorem : y a sinν tgϕ o tgϕ p cosν Maksymalne zniekształcenie kierunku przecodzącego przez punkt O lub N wyniesie : ν max sin ν
27 ZNIEKSZTAŁCENIE KIERUNKU SPOWODOWANE NACHYLENIEM ZDJĘCIA Maksymalne zniekształcenie dla kierunku przecodzącego przez dowolny punkt leŝący na linii największego spadku wyraŝa się zaleŝnością : ν max r ρ sinν JeŜeli punkty leŝą na poziomej przecodzącej przez punkt izocentryczny I tj. na linii nie zniekształconej skali to: ν max r ρ sinν
28 SKALA ZDJĘCIA LOTNICZEGO Skala zdjęcia w dowolnym punkcie zdjęcia nacylonego wzdłuŝ dowolnego kierunku np. prostej a rozumiana jako : 1 m lim l o l L Skala zdjęcia ściśle pionowego, jeŝeli ν 0 wyraŝa się wzorem : 1 m H
29 SKALA ZDJĘCIA LOTNICZEGO Skala zdjęcia nacylonego wzdłuŝ kierunków radialnyc przecodzącyc przez punkt izocentryczny JeŜeli początek układu przyjąć w punkcie izocentrycznym, to : x y ctgγ a po podstawieniu tej wartości otrzymamy : 1 m 1 H y sinν
30 SKALA ZDJĘCIA LOTNICZEGO JeŜeli początek układu znajduje się w punkcie głównym to : x ( y + GI) ctgγ a po podstawieniu tej wartości otrzymujemy : 1 m cosν H y sinν
31 SKALA ZDJĘCIA LOTNICZEGO Skala wzdłuŝ poziomyc zdjęcia, dla poziomyc γ 0 o 1 m 1 H y sinν JeŜeli początek układu współrzędnyc jest w punkcie I, lub 1 m cosν H y sinν jeŝeli początek układu w G.
32 SKALA ZDJĘCIA LOTNICZEGO Wzory powyŝsze moŝna otrzymać jako stosunek x : X 1 m x X x x H y sinν y sinν 1 H H y sinν przy początku w punkcie I. Z przytoczonyc wzorów wynika, Ŝe skala wzdłuŝ danej poziomej jest wielkością stałą, natomiast ze zmianą połoŝenia poziomej (zmiana y) skala się zmienia i tak na linii oryzontu 1 m 1
33 SKALA ZDJĘCIA LOTNICZEGO WzdłuŜ poziomyc przecodzącyc przez punkty szczególne skala wyraŝa się prostymi zaleŝnościami : dla poziomej przecodzącej przez punkt G 1 m cosν H jeŝeli pozioma przecodzi przez punkt N 1 m H cosν niezaleŝnie od tego, w którym punkcie (G lub N) znajduje się początek układu współrzędnyc.
34 SKALA WZDŁUś GŁÓWNEJ PIONOWEJ ZauwaŜmy, Ŝe wzory wyraŝające skalę wzdłuŝ kierunków radialnyc, wyraŝają równieŝ skalę wzdłuŝ głównej pionowej, gdyŝ przecodzi ona przez punkt izocentryczny a 90 o W punktac szczególnyc otrzymamy : przy punkcie głównym 1 m ν cos H ν przy punkcie nadirowym 1 m ν H cosν
35 SKALA WZDŁUś GŁÓWNEJ PIONOWEJ Dla wyznaczenia średniej skali zdjęcia (to jest wzdłuŝ dowolnie połoŝonego kierunku, γ od 0 do 360 ) w pobli Ŝu dowolnie połoŝonego na zdjęciu punktu, korzystamy ze wzoru : 1 m ν 1 H 3y sinν W praktyce skalę zdjęcia najczęściej określamy na podstawie wielkości pomierzonyc na zdjęciu i w terenie lub na mapie. Takie połoŝenie odcinków, na podstawie któryc określamy skalę, umoŝliwia częściowo wyeliminowanie wpływu zniekształceń spowodowanyc nacyleniem zdjęcia. Skala określona na podstawie elementów a, b, c, d,...jest skalą lokalną - miejscową, a z elementów L 1, L, średnią skalą zdjęcia.
36 CZYNNIKI FIZYCZNE WPŁYWAJĄCE NA ZNIEKSZTAŁCENIE OBRAZU ZDJĘCIA LOTNICZEGO Do grupy czynników izycznyc wpływającyc na zniekształcenie obrazu zdjęć lotniczyc zaliczamy : zdolność rozdzielczą otograiczną, dystorsję, nieprzyleganie negatywu do płaszczyzny ramki tłowej oraz niepłaskość ramki tłowej, deormacje materiału światłoczułego, krzywiznę ziemi, rerakcję otograiczną
37 CZYNNIKI FIZYCZNE WPŁYWAJĄCE NA ZNIEKSZTAŁCENIE OBRAZU ZDJĘCIA LOTNICZEGO Zdjęcia w kraju są wykonywane kamerami Wilda typu RC - 5, RC - 5a, RC - 8, RC zniekształcenia wnoszone przez kamerę nie przekraczają 0,0-0,03 mm, dystorsja obiektywu nie przekracza 0,01 mm nawet na skrajac zdjęcia, niedocisk ilmu nie przekracza 0,015 mm, wpływ krzywizny ziemi i rerakcji przy nalocie wielkoskalowym - 0,00-0,004 mm, deormacja błon irmy Aga Gevaret nie przekracza 0,0 mm, a po uwzględnieniu deormacji jednorodnej, deormacja szczątkowa nie przekracza 0,01 mm.
ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:
BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f() = przy = zakładając, że przyrost zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f() w punkcie
Geometria Wykreślna Wykład 3
Geometria Wykreślna Wykład 3 OBRÓT PUNKTU Z obrotem punktu A związane są następujące elementy obrotu: - oś obrotu - prosta l, - płaszczyzna obrotu - płaszczyzna, - środek obrotu - punkt S, - promień obrotu
PLANIMETRIA. Poziom podstawowy
LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2014/2015 Zadanie I. 1. Według podanych współrzędnych punktów wyznaczyć ich położenie w przestrzeni (na jednym rysunku aksonometrycznym) i określić,
W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych
Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest
MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY
INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 9 FUNKCJE WYKŁADNICZE, LOGARYTMY Dla dowolnej liczby a > 0, liczby
Całka potrójna. Całka potrójna po prostopadłoscianie. f (x i, y i, z i ) x i y i z i. (1)
Całka potrójna Całka potrójna po prostopadłoscianie Rozważmy prostopadłościan = {(x, y, z) R 2 : a x b, c y d, p z q}, gdzie a, b, c, d, p, q R, oraz funkcję trzech zmiennych f : R ograniczoną w tym prostopadłościanie.
Optyka geometryczna i falowa
Pojęcie podstawowe: promień świetlny. Optyka geometryczna i alowa Podstawowa obserwacja: jeżeli promień świetlny pada na granicę dwóch ośrodków to: ulega odbiciu na powierzchni granicznej za!amaniu przy
Matematyka:Matematyka I - ćwiczenia/granice funkcji
Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie
RZUTOWANIE AKSONOMETRYCZNE
Zapis i Podstawy Konstrukcji Rzuty aksonometryczne 1 RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów W metodzie aksonometrycznej rzutnią jest płaszczyzna
TEST WIADOMOŚCI: Równania i układy równań
Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Trenuj przed sprawdzianem! Matematyka Test 4
mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce
1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy.
Granice funkcji Definicja (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f() w punkcie = a, co zapisujemy f() = g (.) a jeżeli dla każdego ε > 0 można wskazać taką liczbę (istnieje
LVI OLIMPIADA FIZYCZNA 2006/2007 Zawody II stopnia
LVI OLIMPIADA FIZYCZNA 2006/2007 Zawody II stopnia Zadanie doświadczalne Energia elektronów w półprzewodniku może przybierać wartości należące do dwóch przedziałów: dolnego (tzw. pasmo walencyjne) i górnego
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
Efektywność nauczania w Gimnazjum w Lutyni
Efektywność nauczania w Gimnazjum w Lutyni Efektywność nauczania w danej szkole często utożsamiana jest z jej wynikami egzaminacyjnymi. Gdyby wszystkie szkoły w Polsce pracowały z uczniami o tym samym
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Pomiary geofizyczne w otworach
Pomiary geofizyczne w otworach Profilowanie w geofizyce otworowej oznacza rejestrację zmian fizycznego parametru z głębokością. Badania geofizyki otworowej, wykonywane dla potrzeb geologicznego rozpoznania
PRZETWORNIK NAPIĘCIE - CZĘSTOTLIWOŚĆ W UKŁADZIE ILORAZOWYM
PRZETWORNIK NAPIĘCIE - CZĘSTOTLIWOŚĆ W UKŁADZIE ILORAZOWYM dr inż. Eligiusz Pawłowski Politechnika Lubelska, Wydział Elektryczny, ul. Nadbystrzycka 38 A, 20-618 LUBLIN E-mail: elekp@elektron.pol.lublin.pl
WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO I MATEMATYCZNEGO
Nr ćwiczenia: 101 Prowadzący: Data 21.10.2009 Sprawozdanie z laboratorium Imię i nazwisko: Wydział: Joanna Skotarczyk Informatyki i Zarządzania Semestr: III Grupa: I5.1 Nr lab.: 1 Przygotowanie: Wykonanie:
Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie
Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie 1. Wprowadzenie W wielu zagadnieniach dotyczących sterowania procesami technologicznymi niezbędne jest wyznaczenie
PAKIET MathCad - Część III
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad
Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
K P K P R K P R D K P R D W
KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe)
Pieczęć KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Witamy Cię na trzecim etapie Konkursu Przedmiotowego z Fizyki i życzymy
XXIX OLIMPIADA FIZYCZNA (1979/1980). Etap II, zadanie doświadczalne D.
9OF_II_D KO OF Szczecin: www.o.szc.pl XXIX OLIMPIADA FIZYCZNA (979/98). Etap II, zadanie doświadczalne D. Źródło: W. Gorzkowski: Olimpiady izyczne XXIII i XXIV. WSiP, Warszawa 977. Autor: Waldemar Gorzkowski,
Programowanie obrabiarek CNC. Nr H8
1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr H8 Programowanie obróbki 5-osiowej (3+2) w układzie sterowania itnc530 Opracował: Dr inż. Wojciech
Wiedza niepewna i wnioskowanie (c.d.)
Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
Statystyki opisowe. Marcin Zajenkowski. Marcin Zajenkowski () Statystyki opisowe 1 / 57
Statystyki opisowe Marcin Zajenkowski Marcin Zajenkowski () Statystyki opisowe 1 / 57 Struktura 1 Miary tendencji centralnej Średnia arytmetyczna Wartość modalna Mediana 2 Miary rozproszenia Roztęp Wariancja
OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE PRZEJŚCIE DLA ZWIERZĄT W KM 24+800 - PRZĘSŁO 1. NORMY, PRZEPISY, LITERATURA.
OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE PRZEJŚCIE DLA ZWIERZĄT W KM 24+800 - PRZĘSŁO 1. NORMY, PRZEPISY, LITERATURA. 1.1. PN-85/S-10030 Obiekty mostowe. Obciążenia. 1.2. PN-91/S-10042 Obiekty mostowe. Konstrukcje
Harmonogramowanie projektów Zarządzanie czasem
Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie
Zadanie 21. Stok narciarski
Numer zadania Zadanie. Stok narciarski KLUCZ DO ZADA ARKUSZA II Je eli zdaj cy rozwi e zadanie inn, merytorycznie poprawn metod otrzymuje maksymaln liczb punktów Numer polecenia i poprawna odpowied. sporz
3b. Rozwiązywanie zadań ze skali mapy
3b. Rozwiązywanie zadań ze skali mapy SKALA MAPY określa stopień zmniejszenia odległości przedstawionej na mapie w stosunku do odpowiedniej odległości w terenie. Wyróżniamy następujące rodzaje skali: SKALA
ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY
ZASADY WYPEŁNIANIA ANKIETY 1. ZMIANA GRUPY PRACOWNIKÓW LUB AWANS W przypadku zatrudnienia w danej grupie pracowników (naukowo-dydaktyczni, dydaktyczni, naukowi) przez okres poniżej 1 roku nie dokonuje
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2011 roku. Warszawa 2011 I. Badana populacja
Zadania z parametrem
Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu
PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc
PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych
Kurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
2.Prawo zachowania masy
2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco
Rozkład materiału klasa 1BW
Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Elektroenergetyki Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: BADANIE SPADKÓW NAPIĘĆ W INSTALACJACH ELEKTRYCZNYCH Ćwiczenie nr: 1 Laboratorium
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
Test F- Snedecora. będzie zmienną losową chi-kwadrat o k 1 stopniach swobody a χ
Test F- nedecora W praktyce często mamy do czynienia z kilkoma niezaleŝnymi testami, słuŝącymi do weryfikacji tej samej hipotezy, prowadzącymi do odrzucenia lub przyjęcia hipotezy zerowej na róŝnych poziomach
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia
Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -
Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski.
Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski. Uczeń: odczytuje z map informacje przedstawione za pomocą różnych metod kartograficznych Mapa i jej przeznaczenie Wybierając się
TWIERDZENIE PITAGORASA
PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01]
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01] 1 2 3 4 5 6 Efektem rozwiązania zadania egzaminacyjnego przez zdającego była praca 7 egzaminacyjna,
KONKURSY MATEMATYCZNE. Treść zadań
KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,
BAZA ZADAŃ KLASA 3 TECHNIKUM LOGARYTMY I FUNKCJA WYKŁADNICZA. 1. Oblicz: a) b) c) d) e)* f) g) h) i) j) k) l) m) n) o) p) r)
BAZA ZADAŃ KLASA 3 TECHNIKUM LOGARYTMY I FUNKCJA WYKŁADNICZA 1 Oblicz: a) b) c) d) e)* f) g) h) i) j) k) l) m) n) o) p) r) s) 2 Wykaż, że liczba jest liczbą wymierną 3Wykaż, że liczba jest liczbą całkowitą
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
Materiały pomocnicze 8 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 8 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Ruch drgający. Drgania harmoniczne opisuje równanie: ( ω + φ) x = Asin t gdzie: A amplituda ruchu ω prędkość
Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D
DRGANIA I FALE 0 0,5 1 1,5
Włodzimierz Wolczyński 48 POWTÓRKA 1 DRGANIA I FALE Zadanie 1 Wykres wykonany w Excelu poniżej przedstawia zależność siły sprężystości w niutonach od wydłużenia sprężyny w metrach dla dwóch sprężyn. 25
Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem
Zadanie 1 - (7 punktów) Latające kartki Ponieważ są 64 liczby od 27 do 90 włącznie, mamy 64 strony, czyli 16 kartek (16= 64 : 4). Pod stroną 26. znajdują się strony 24., 22.,..., 4. i 2. wraz z ich nieparzystymi
Rys. 1. Rysunek do zadania testowego
Test zaliczeniowy Zadanie testowe. Przeanalizuj rysunek 1., przedstawiający odwzorowanie pewnej sytuacji przestrzennej przy pomocy metody Monge a (rzutów prostokątnych na dwie wzajemnie prostopadłe rzutnie
SERI A 93 S E RI A 93 O FLUSH GRID WITHOUT EDGE TAB
SERIA E93 CONIC FRINCTION CONIC 2 SERIA 93 SERIA 93 O FLUSH GRID WITHOUT EDGE TAB Podziałka Powierzchnia 30 mm Flush Grid Prześwit 47% Grubość Minimalny promień skrętu taśmy Układ napędowy Szerokość taśmy
Skraplanie gazów metodą Joule-Thomsona. Wyznaczenie podstawowych parametrów procesu. Podstawy Kriotechniki. Laboratorium
Skralanie gazów metodą Joule-omsona. Wyznaczenie odstawowyc arametrów rocesu. Podstawy Kriotecniki Laboratorium Instytut ecniki Cielnej i Mecaniki Płynów Zakład Cłodnictwa i Kriotecniki 1. Skralarki (cłodziarki)
tel/fax 018 443 82 13 lub 018 443 74 19 NIP 7343246017 Regon 120493751
Zespół Placówek Kształcenia Zawodowego 33-300 Nowy Sącz ul. Zamenhoffa 1 tel/fax 018 443 82 13 lub 018 443 74 19 http://zpkz.nowysacz.pl e-mail biuro@ckp-ns.edu.pl NIP 7343246017 Regon 120493751 Wskazówki
Standardowe tolerancje wymiarowe WWW.ALBATROS-ALUMINIUM.COM
Standardowe tolerancje wymiarowe WWW.ALBATROSALUMINIUM.COM Tolerancje standardowe gwarantowane przez Albatros Aluminium obowiązują dla wymiarów co do których nie dokonano innych uzgodnień podczas potwierdzania
WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji. Laboratorium Obróbki ubytkowej materiałów.
WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Obróbki ubytkowej materiałów Ćwiczenie nr 1 Temat: Geometria ostrzy narzędzi skrawających Cel ćwiczenia Celem ćwiczenia
Wykład 8 - Perturbacje ruchu keplerowskiego Ograniczone zagadnienie trzech ciał
Wykład 8 - Perturbacje ruchu keplerowskiego Ograniczone zagadnienie trzech ciał 03.04.2013 Formalne rozwiązanie równań wariacyjnych Lagrange a Rozwiązania równań wariacyjnych Lagrange a dokonuje się metodą
9. Dyfrakcja światła laserowego na tkaninach i siatce dyfrakcyjnej oraz promieni X na krysztale. Obliczenia dyfrakcyjne.
9. Dyfrakcja światła laserowego na tkaninach i siatce dyfrakcyjnej oraz promieni X na krysztale. Obliczenia dyfrakcyjne. Opracowanie: dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 016 Materiały:
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część modelowanie, drgania swobodne Poniższe materiały
I. LOGICZNE STRUKTURY DRZEWIASTE
I LOGICZNE STRUKTURY DRZEWIASTE Analizując dany problem uzyskuje się zadanie projektowe w postaci pewnego zbioru danych Metoda morfologiczna, która została opracowana w latach 1938-1948 przez amerykańskiego
Warszawska Giełda Towarowa S.A.
KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
7. REZONANS W OBWODACH ELEKTRYCZNYCH
OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód
Proste zginanie belek, łuków, ram. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji
Proste zginanie belek, łuków, ram dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Siły zewnętrzne to siły skupione, momenty oraz obciążenia ciągłe o stałym lub zmiennym natężeniu. Obok sił czynnych
INSTRUKCJA BHP PRZY RECZNYCH PRACACH TRANSPORTOWYCH DLA PRACOWNIKÓW KUCHENKI ODDZIAŁOWEJ.
INSTRUKCJA BHP PRZY RECZNYCH PRACACH TRANSPORTOWYCH DLA PRACOWNIKÓW KUCHENKI ODDZIAŁOWEJ. I. UWAGI OGÓLNE. 1. Dostarczanie posiłków, ich przechowywanie i dystrybucja musza odbywać się w warunkach zapewniających
Transformator Elektroniczny do LED 0W-40W Współpracuje z inteligentnymi ściemniaczami oświetlenia. Instrukcja. Model: TE40W-DIMM-LED-IP64
Elektroniczny do LED 0W-40W Współpracuje z inteligentnymi ściemniaczami oświetlenia Instrukcja Model: TE40W-DIMM-LED-IP64 Zastosowanie: elektroniczny do LED został zaprojektowany do zasilania źródeł światła
Karta pracy: Ćwiczenie 5.
Imię i nazwisko: Grupa: Karta pracy: Ćwiczenie 5. Tytuł ćwiczenia: Optymalizacja geometrii prostych cząsteczek organicznych. Analiza populacyjna i rzędy wiązań. Zagadnienia do przygotowania: Przypomnij
Automatyka. Etymologicznie automatyka pochodzi od grec.
Automatyka Etymologicznie automatyka pochodzi od grec. : samoczynny. Automatyka to: dyscyplina naukowa zajmująca się podstawami teoretycznymi, dział techniki zajmujący się praktyczną realizacją urządzeń
Spis treści Wykład 3. Modelowanie fal. Równanie sine-gordona
Spis treści Wykład 3. Modelowanie fal. Równanie sine-gordona.............. 3 3.1. Równanie sine-gordona.......................... 3 3.1.1. Rozwiązania dla fali biegnącej................... 7 3.2. Równanie
Soczewkowanie grawitacyjne 3
Soczewkowanie grawitacyjne 3 Przypomnienie Mikrosoczewkowania a natura ciemnej materii Źródła rozciągłe Efekt paralaksy Linie krytyczne i kaustyki Przykłady Punktowa soczewka Punktowa soczewka Punktowe
Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych. Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych
Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych Wydajność przenośnika Wydajnością przenośnika określa się objętość lub masę nosiwa przemieszczanego
40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA
ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA Celem tego zadania jest podanie prostej teorii, która tłumaczy tak zwane chłodzenie laserowe i zjawisko melasy optycznej. Chodzi tu o chłodzenia
NOWELIZACJA USTAWY PRAWO O STOWARZYSZENIACH
NOWELIZACJA USTAWY PRAWO O STOWARZYSZENIACH Stowarzyszenie opiera swoją działalność na pracy społecznej swoich członków. Do prowadzenia swych spraw stowarzyszenie może zatrudniać pracowników, w tym swoich
Zagadnienia transportowe
Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt
EGZAMIN MAGISTERSKI, 24 czerwca 2013 Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach Rozwiąż następujące zagadnienie programowania liniowego: Zminimalizować 2x 1 x 2 +x 3 +x 4, przy ograniczeniach x 1 x 2 + 2x 3 = 2 x 2 3x 3 = 6 x 1 + x 3 + x 4 =
Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej
Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Równia pochyła jest przykładem maszyny prostej. Jej konstrukcja składa się z płaskiej powierzchni nachylonej pod kątem
Podstawowe oddziaływania w Naturze
Podstawowe oddziaływania w Naturze Wszystkie w zjawiska w Naturze są określone przez cztery podstawowe oddziaływania Silne Grawitacja Newton Elektromagnetyczne Słabe n = p + e - + ν neutron = proton +
s n = a k (2) lim s n = S, to szereg (1) nazywamy zbieżnym. W przeciwnym przypadku mówimy, że szereg jest rozbieżny.
Szeregi liczbowe Definicja Szeregiem liczbowym nazywamy wyrażenie a n = a + a 2 + a 3 + () Liczby a n, n =, 2,... nazywamy wyrazami szeregu. Natomiast sumę n s n = a k (2) nazywamy n-tą sumą częściową
OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania
Teresa Kutajczyk, WBiA OKE w Gdańsku Okręgowa Komisja Egzaminacyjna w Gdańsku OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania
dyfuzja w płynie nieruchomym (lub w ruchu laminarnym) prowadzi do wzrostu chmury zanieczyszczenia
6. Dyspersja i adwekcja w przepływie urbulennym podsumowanie własności laminarnej (molekularnej) dyfuzji: ciągły ruch molekuł (molekularne wymuszenie) prowadzi do losowego błądzenia cząsek zanieczyszczeń
Polska-Warszawa: Usługi w zakresie doradztwa prawnego i reprezentacji prawnej 2015/S 181-327894
1/5 Niniejsze ogłoszenie w witrynie TED: http://ted.europa.eu/udl?uri=ted:notice:327894-2015:text:pl:html Polska-Warszawa: Usługi w zakresie doradztwa prawnego i reprezentacji prawnej 2015/S 181-327894
PROJEKT BUDOWLANY ZAMIENNY
PROJEKT BUDOWLANY ZAMIENNY TEMAT: ADRES: INWESTOR: BRANśA: Budowa lekkiej hali magazynowej, wiaty do przygotowania i pakowania odpadów opakowań suchych, ustawienie trzech kontenerów socjalnych oraz utwardzenie
D-01.01.01. wysokościowych
D-01.01.01 Odtworzenie nawierzchni i punktów wysokościowych 32 Spis treści 1. WSTĘP... 34 1.1. Przedmiot SST... 34 1.2. Zakres stosowania SST... 34 1.3. Zakres robót objętych SST... 34 1.4. Określenia
w sprawie zawarcia porozumienia międzygminnego z Miastem Konstantynów Łódzki. uchwala, co następuje:
Druk Nr Projekt z dnia UCHWAŁA Nr RADY MIEJSKIEJ w ŁODZI z dnia w sprawie zawarcia porozumienia międzygminnego z Miastem Konstantynów Łódzki. Na podstawie art. 18 ust. 2 pkt. 12 oraz art. 74 ustawy z dnia
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
Podstawy Konstrukcji Maszyn
Podstawy Konstrukcji Maszyn Wykład 11 Przekładnie zębate część 4 Obliczenia wytrzymałościowe Dr inŝ. Jacek Czarnigowski Koła zębate walcowe Koła zębate przenoszą obciąŝenia poprzez wzajemny nacisk powierzchni