WYZNACZANIE PARAMETRÓW MODELU ROBOTA PRZEMYSŁOWEGO PRZY POMOCY SIECI NEURONOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYZNACZANIE PARAMETRÓW MODELU ROBOTA PRZEMYSŁOWEGO PRZY POMOCY SIECI NEURONOWYCH"

Transkrypt

1 XIV Krajowa Koferecja Autoatyk Zeloa Góra, -7 czerwca WYZNACZANIE PARAMETRÓW MODEU ROBOTA PRZEMYSŁOWEGO PRZY POMOCY SIECI NEURONOWYCH Jakub MOŻARYN, Cezary WIDNER, Jerzy E KUREK Istytut Autoatyk Robotyk, Poltechka Warszawska ul Chodkewcza 8, -55, Warszawa Streszczee: Model ateatyczy robota rzeysłowego jest dobrze zay w ostac rówań agrage a-eulera Paraetry fzycze robota wykorzystywae w ty odelu są jedak trude do wyzaczea dla rzeczywstego robota W racy rzedstawoo sosób wyzaczaa wsółczyków odelu ateatyczego robota rzy oocy sec euroowych Prooowaa etoda ozwala a wyzaczee odelu rzeczywstego robota bez otrzeby oaru jego araetrów fzyczych takch jak oety ercyje, t Słowa kluczowe: robotyka, sec euroowe, odel robota Wstę Jedy ze sosobów wyzaczaa odelu ateatyczego robota jest wykorzystae wzorów agrage a-eulera Wyagają oe jedak dokładej zajoośc araetrów fzyczych robota takch jak oety ercyje, asy wyary człoów W zarooowaej w artykule etodze do oblczeń odelu ateatyczego robota w ostac rówań agrage a-eulera wykorzystao sec euroowe Dotychczasowe wyk badań w zakrese zastosowaa sztuczych sec euroowych do wyzaczaa odelu robota wskazują a ch otecjale duże ożlwośc [, 5, 6] Podstawową zaletą jest brak wyagań zajoośc araetrów fzyczych robota Neuroowy odel budoway jest z wykorzystae sygałów wejścowych wyjścowych robota, oraz zajoośc struktury jego odelu ateatyczego W racy rzedstawoo odel robota w ostac rówań agrage a-eulera Nastęe zarooowae są odele euroowe robota Na końcu rzedstawoo oówoo wyk badań Model robota agrage a-eulera Model ateatyczy robota oża osać rówaa agrage'a-eulera [] w ostac: M ( θ ) && θ V ( θ, & θ ) G( θ ) = τ () gdze: θ R wektor wsółrzędych uogóloych, lość sto swobody robota, τ R wektor oetów aędowych, M (θ ) R acerz oetów bez- władośc robota, V ( θ, & θ ) R wektor oetów zależych od sł odśrodkowych sł Corolsa, G(θ ) R wektor oetów zależych od sł grawtacj Dokoując astęujących odstaweń & θ ( t ) θ (t T ) θ ( t) & θ & θ ( t T ) & θ ( t), ( t) T M[ θ ( k)][ θ ( k ) θ ( k) θ ( k )] = Tτ ( k) T B[ θ ( k)] = [ T oża wyzaczyć odel robota w czase dyskrety: V[ θ ( k), θ ( k )] T W erwszy rzyadku seć euroowa wyzacza astęujące araetry A, B,C odelu robota (): T ] = M [ θ ( k)] G[ θ ( k)], C[ θ ( k)] = [ cj ] = T M [ θ ( k)] Przyjując, że: ϑ( k) = θ ( k ) θ ( k) θ ( k ), oraz korzystając z () oża asać rówae dyak dla każdego ze sto swobody jako: G[ θ ( k)] gdze T jest okrese róbkowaa oraz k jest czase dyskrety, t = kt Modele euroowe robota () () Do wyzaczaa odelu robota zbudowao dwa układy sec euroowych Model euroowy A[ θ ( k), θ ( k )] = [ a ] = T M [ θ ( k)] V[ θ ( k), θ ( k )], b

2 ϑ ( k) = a = [ θ ( k), θ ( k )] b c [ θ ( k)] τ ( k) [ θ ( k)] (5) Do wyzaczaa araetrów w rówau (5) wykorzystao rzedstawoy a rys układ trójwarstwowych sec euroowych tyu feed-forward o dwóch ukrytych warstwach elowych (N, N) składających sę z różej lczby euroów o fukcj aktywacj: f N ( v ) = ta sg( v ) =, f [,] (6) v e wyjścowej warstwe lowej () z euroa o fukcj aktywacj: f ( v ) = v (7) k = v Model : J ( d) = [ ϑ ( k, d) ϑnn ( k, d)] (8) Υ a = a θ k θ k = gdze: d ozacza uer teracj, v ozacza lość róbek uczących, ϑ NN ozacza wyjśce z sec odelujących dyakę -tego stoa swobody (rys) Model euroowy Każda z sec jest kolete ołączoa, tz wejśca do kolejych warstw ołączoe są ze wszystk euroa w tych warstwach Sygała wejścowy do sec są θ (k) θ ( k ) W ty rzyadku oddzely układ sec euroowych odtwarza araetry dla każdego ze sto swobody Dla tego odelu rzyjęto wskaźk jakośc uczea sec euroowych w astęującej ostac: Drug odel do wyzaczaa araetrów A, B,C wykorzystuje rzedstawoy a rys układ trójwarstwowych sec euroowych tyu feed-forward Każda z sec a strukturę aalogczą jak w osay wcześej odelu W ty rzyadku układ sec euroowych odtwarza jedocześe araetry wszystkch sto swobody Dla tego odelu rzyjęto astęujący wskaźk jakośc uczea sec euroowych: v J ( d) = [ θ j ( k, d) θ NNj ( k, d)] (9) k = j= gdze: wektor wyjść z sec odelujący dyakę θ NNj wszystkch sto swobody (rys) Syulacje kouterowe Sec uczoo wykorzystując etodę roagacj wsteczej gradetową etodę alzacj kerukowej erwszego rzędu [8] Przedstawoą owyżej etodykę odelowaa sec euroowych do odtwarzaa araetrów odelu ateatyczego robota wykorzystao w syulacjach kouterowych Dae uczące testujące uzyskao z kouterowych syulacj robota PUMA 56 o 6 stoach swobody rzegubach obrotowych w których zastosowao sterowae o zeej strukturze [], lub teracyje sterowae uczące [] Paraetry robota odao w tabel W celu auczea sec wygeerowao 5 zborów daych uczących, syulując zachowae robota odczas którego ał o oruszać sę o zadaej trajektor w czase [s] z czase róbkowaa wyoszący T = [ s] Przerowadzoo badaa dla różych lośc euroów w warstwach elowych Na oczątku auk sec wyberao w sosób losowy wag rzesuęca Sec uczoo wykoując teracj uczących Przykładowe rezultaty uzyskae w wyku uczea sec dla wszystkch sto swobody rzedstawoo a rys W rzyadku dotyczący odelu każda z sec w układze ała euroy w erwszej warstwe elowej, euroy w drugej warstwe elowej, oraz jede euro w warstwe wyjścowej Natoast w odelu każda z sec ała (czarek) Zadae trajektore uczące rzedstawoo a rysuku Różce oędzy dwoa odela zobrazowao dla stoa swobody a rysuku, gdze zajdują sę wykresy błędu lczoego jako: Model : Υ = a θ k ( ϑ k θ k θ ( k () a k = ( ) ( ) ( ) )) ( ) ( k)) NN W tabel rzedstawoo wartośc aksyalego błędu o teracjach 5 Wosk Podczas wykoywaa syulacj dotyczących erwszego odelu zauważoo, że sec odowadające róży stoo swobody uczoe są z różą dokładoścą Dobrą aroksyację fukcj osującej dyakę uzyskao dla, 5 stoa swobody o teracjach W ozostałych rzyadkach różce oędzy fukcją zadaą a wyjśce z sec euroowej są wększe Dodatkowo a rys wdać, że ajwększe różce są a końcach trajektor Po uczeu sec rzerowadzao także róby dla trajektor ych ż trajektore uczące, aby srawdzć ożlwośc redykcyje tak auczoych sec Nestety e uzyskao zadowalających rezultatów Korzystając z uzyskaych wyków oża stwerdzć, że dla daych uczących owyższe odele ogą odtwarzać zadae fukcje osujące dyakę oszczególych sto swobody robota Należy wykoać jedak węcej badań, tak aby zotyalzować czas uczea sec, oraz orawć jej właścwośc redykcyje 6 teratura [] Corke P I, Matlab Robotcs Toolbo (release 5), CSIRO, Australa, 999 [] Fu K S, Gozalez R C, ee C S G, Robotcs: cotrol, sesg, vso, ad telgece, McGraw- Hll Book Coay, 987

3 [] Gao W, Wag Y, Hoafa A, Dscrete-Te Varable Structure Cotrol Systes, IEEE Trasactos o Idustral Electrocs, vol, o, str7-, Arl 995 [] Kurek J E Iteracyje uczące sę sterowae dla układu z czase dyskrety z zakłócea, XIII Krajowa Koferecja Autoatyk, Oole 999 [5] Kurek J E, "Calculato of Robot Maulator- Model Usg Neural Net", Euroea Cotrol Coferece ECC '99, Karlsruhe, Geray 999 [6] Kurek J E, "Neural Net Model of Robot Maulator", Neural Coutato NC '98, Vea, Austra, 998 [7] Kurek J E, "Calculato of a Robot Maulator Model a for of a Recurret Neural Net", [8] Osowsk S, Sec Neuroowe, OWPW, Warszawa, 99 CACUATION OF THE INDUSTRIA ROBOT MODE PARAMETERS USING NEURA NETWORKS Abstract: I the aer there are reseted ethods of calculato of the araeters of the dustral robot atheatcal odel usg eural etworks We reset the ossble archtectures of eural etworks ad the obtaed results fro the couter sulatos of PUMA 56 robot ar A NN θ(k-) θ(k) N N a NN (k) B NN N N b NN (k) ϑ NN(k) C NN τ (k) N N c NN (k) C NN N N c NN (k) τ (k) Rys Struktura układu sec euroowych służąca do detyfkacj araetrów odelu ()

4 θ( k), θ( k ), τ ( k) N N (k) C NN N N A NN (k) θ ( k ) NN N N (k) B NN - Rys Struktura układu sec euroowych odtwarzających araetry odelu (9) Tabela Paraetry Robota PUMA 56 wg[] ( α - kąt skręcea, a - długość człou, θ - kąt kofguracj, d - odsuęce człoów I,, I yy, I zz,- asowe oety bezwładośc, I y,i yz, I z asowe oety dewacj, M- asa człou, r=[r r y r z ] T - jedorody wektor wsółrzędych środka asy ) ołączee α a [] θ d [] I [kg ] I yy [kg ] I zz [kg ] I y = I yz = I z [kg ] M [kg] r [] r y [] r z []

5 6 υnn, υ [deg] - υnn, υ [deg] rkroku rkroku υnn, υ [deg] - υnn, υ [deg] rkroku rkroku 8 υnn5, υ5 [deg] υnn6, υ6 [deg] rkroku rkroku egeda: υnn υ Rys Wyjśca z sec ϑ NN (k) fukcja zadaa ϑ (k) dla wszystkch sto swobody robota PUMA 56 o teracjach TABEA Maksyaly błąd uzyskay o teracjach (dae uczące) Υ a [ ] Υ a [ ] Υ a [ ] Υ a [ ] Υ 5a [ ] Υ 6a [ ] Model TABEA 5Maksyaly błąd uzyskay o teracjach (dae testowe) Υ a [ ] Υ a [ ] Υ a [ ] Υ a [ ] Υ 5a [ ] Υ 6a [ ] teracj

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII RODUKCJI I TECHNOLOGII MATERIAŁÓW OLITECHNIKA CZĘSTOCHOWSKA RACOWNIA DETEKCJI ROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-6 BADANIE STATYSTYCZNEJ CZYSTOŚCI OMIARÓW

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

WPŁYW ZMIENNOŚCI MASY JEDNEGO Z POJAZDÓW NA NIEBEZPIECZEŃSTWO ZEJŚCIA KOŁA Z SZYNY PODCZAS ZDERZENIA CZOŁOWEGO

WPŁYW ZMIENNOŚCI MASY JEDNEGO Z POJAZDÓW NA NIEBEZPIECZEŃSTWO ZEJŚCIA KOŁA Z SZYNY PODCZAS ZDERZENIA CZOŁOWEGO Dr ż. erzy Pawlus WPŁYW ZMIENNOŚCI MAY EDNEGO Z POAZDÓW NA NIEBEZPIECZEŃTWO ZEŚCIA KOŁA Z ZYNY PODCZA ZDERZENIA CZOŁOWEGO PI TREŚCI. Wrowadzee. Aalza daych statystyczych dotyczących zderzeń czołowych zderzeń

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

KALIBRACJA NIE ZAWSZE PROSTA

KALIBRACJA NIE ZAWSZE PROSTA KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym. Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f( : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f() : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 70 Politechniki Wrocławskiej Nr 70

Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 70 Politechniki Wrocławskiej Nr 70 Prace Naukowe Istytutu Maszy, Napędów Poarów Elektryczych Nr 7 Poltechk Wrocławskej Nr 7 Studa Materały Nr 34 4 Krzysztof DRÓŻDŻ* estyacja, fltr Kalaa, układ dwuasowy, tłuee drgań PORÓWNANIE JAKOŚCI ESYMACJI

Bardziej szczegółowo

ť Ü Ĺ ä Ů Ú Í Í Ť ř Ě Í ü Í ń đ ń ď ď ń Ż Ł í á í É Ĺ Ü Í Ť Ĺ Ĺ ű Í Í ť Í ŕ Ĺ Í Ü Ü ü Ż Ż ń ť Ą Ą ŕ Ą ń ń Ż ń Ż ń ý Ż ń í Á É É Ýá Í ä í Ĺ Ĺ í Í ů ť Ĺ ť Ź Ť Ť Ł ń ź Ź ń ń ć ń ć ń Ż í ť ń Ż Ĺ ŕ í Ú íí ť

Bardziej szczegółowo

Prognozowanie wielkości sprzedaży z wykorzystaniem sztucznych sieci neuronowych na przykładzie przedsiębiorstwa branży kwiatowej

Prognozowanie wielkości sprzedaży z wykorzystaniem sztucznych sieci neuronowych na przykładzie przedsiębiorstwa branży kwiatowej Krzysztof Jurczyk 1 AGH Akademia Góriczo-Huticza Agata Kutyba 2 AGH Akademia Góriczo-Huticza Progozowaie wielkości sprzedaży z wykorzystaiem sztuczych sieci euroowych a przykładzie przedsiębiorstwa braży

Bardziej szczegółowo

METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI. LABORATORIUM nr 01. dr inż. Robert Tomkowski

METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI. LABORATORIUM nr 01. dr inż. Robert Tomkowski METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI LABORATORIUM r 01 Temat: PERCEPTRON dr iż. Robert Tomkowski pok. 118 bud. C robert.tomkowski@tu.koszali.pl tel. 94 3178 251 Metody i zastosowaia sztuczej iteligecji

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji

Bardziej szczegółowo

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu Poltechka Pozańska WMRT ZST Tytuł: 05 Lokalzaca obektów. Model PoPr Zastosowae prograowaa lowego Autor: Potr SAWICKI Zakład Systeów Trasportowych WMRT PP potr.sawck@put.poza.pl www.put.poza.pl/~potr.sawck

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty Zeo Zwerzewcz Szczec Zeo Zwerzewcz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty W artyle

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

OGÓLNE SFORMUŁOWANIE ZADANIA IDENTYFIKACJI NIELINIOWEGO MODELU DYNAMICZNEGO

OGÓLNE SFORMUŁOWANIE ZADANIA IDENTYFIKACJI NIELINIOWEGO MODELU DYNAMICZNEGO acta mechaca et automatca, vol.3 o.2 (2009) OGÓLNE SFORMUŁOWANIE ZADANIA IDENTYFIKACJI NIELINIOWEGO MODELU DYNAMICZNEGO Zbgew DĄBROWSKI * Wydzał Samochodów Maszy Roboczych, Istytut Podstaw Budowy Maszy,

Bardziej szczegółowo

... MATHCAD - PRACA 1/A

... MATHCAD - PRACA 1/A Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.

Bardziej szczegółowo

Tablice wzorów Przygotował: Mateusz Szczygieł

Tablice wzorów Przygotował: Mateusz Szczygieł Tablce zoó Pzygotoał: Mateusz Szczygeł DKATORFIASOWY.COM.PL . Oczekaa stoa zotu - adoodobeństo zaśca daego zdazea ożla do zealzoaa stoa zotu. Waaca aaca stoy zotu oczekaa stoa zotu [ ] 3. Odchylee stadadoe

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 1 Ćwczene 2: Perceptron WYMAGANIA 1. Sztuczne sec neuronowe budowa oraz ops matematyczny perceptronu (funkcje przejśca perceptronu), uczene perceptronu

Bardziej szczegółowo

ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI

ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI ĆWICZENIE 0 OPTYMALIZACJA STUKTUY CZUJKI TEMPEATUY W ASPEKCIE NIEZWODNOŚCI Cel ćwczea: zapozae z metodam optymalzac wewętrze struktury mozakowe czuk temperatury stosowae w systemach sygalzac pożaru; wyzaczee

Bardziej szczegółowo

SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA

SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA Załączk r do Regulamu I kokursu GIS PROGRAM PRIORYTETOWY: SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA. Cel opracowaa Celem opracowaa jest spója metodyka oblczaa efektu ograczaa emsj gazów ceplaraych,

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

05 Klasyfikacja modeli planowania sieci dostaw Model: 1Po_1Pr_KT

05 Klasyfikacja modeli planowania sieci dostaw Model: 1Po_1Pr_KT Nr Tytuł: Autor: 05 Klasyfkacja odel plaowaa sec dostaw Model: 1Po_1Pr_KT Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

Wykład 10 Wnioskowanie o proporcjach

Wykład 10 Wnioskowanie o proporcjach Wykład 0 Wioskowaie o roorcjach. Wioskowaie o ojedyczej roorcji rzedziały ufości laowaie rozmiaru róby dla daego margiesu błędu test istotości dla ojedyczej roorcji Uwaga: Będziemy aalizować roorcje odobie

Bardziej szczegółowo

Dynamika układu punktów materialnych

Dynamika układu punktów materialnych Daka układu puktów ateralch Układ puktów ateralch jest to bór puktów ateralch, w któr ruch każdego puktu jest ależ od ruchu ch puktów. P P,,,,,,,,,,,, sł wewętre P P P sł ewętre Układ puktów ateralch sł

Bardziej szczegółowo

Prognozowanie obciążeń 24-godzinnych w systemie elektroenergetycznym z użyciem zespołu sieci neuronowych

Prognozowanie obciążeń 24-godzinnych w systemie elektroenergetycznym z użyciem zespołu sieci neuronowych Krzysztof SIWEK 1, STANISŁAW OSOWSKI 1,2 1 Politechika Warszawska, 2 Wojskowa Akademia Techicza Progozowaie obciążeń 24-godziych w systemie elektroeergetyczym z użyciem zespołu sieci euroowych Streszczeie.

Bardziej szczegółowo

EMIL PANEK STABILNO STANU RÓWNOWAGI NA RYNKU KONKURENCYJNYM Z NIEKLASYCZNYM RÓWNANIEM DYNAMIKI CEN I CZASEM DYSKRETNYM 1. WST P

EMIL PANEK STABILNO STANU RÓWNOWAGI NA RYNKU KONKURENCYJNYM Z NIEKLASYCZNYM RÓWNANIEM DYNAMIKI CEN I CZASEM DYSKRETNYM 1. WST P PRZEGL D STATYSTYCZNY R. LVII ZESZYT -3 00 EMIL PANEK STABILNO STANU RÓWNOWAGI NA RYNKU KONKURENCYJNYM Z NIEKLASYCZNYM RÓWNANIEM DYNAMIKI CEN I CZASEM DYSKRETNYM. WST P W racy [] rzedstawoy zosta model

Bardziej szczegółowo

BADANIE UKŁADÓW ZAWIERAJĄCYCH WZMACNIACZE OPERACYJNE

BADANIE UKŁADÓW ZAWIERAJĄCYCH WZMACNIACZE OPERACYJNE ADANI UKŁADÓW ZAWIAJĄCYCH WZMACNIACZ OPACYJN CL ĆWICZNIA: Pozae zasady dzałaa wzmacacza operacyjego w zakrese skch częstotlwośc. Aalza kładów zawerających wzmacacze operacyje pracjące w zakrese lowym elowym.

Bardziej szczegółowo

(a) Jednowarstwowa sieć Hopfielda, z n neuronami (źródło [2]) (b) Bipolarna funkcja przejścia

(a) Jednowarstwowa sieć Hopfielda, z n neuronami (źródło [2]) (b) Bipolarna funkcja przejścia Sieci rekurecyje Przedmiot: Sieci euroowe i ich zastosowaie Sieci rekurecyje posiadają sprzężeie zwrote, co ma istoty wpływ a ich możliwości uczeia. Mają symulować asocjacyjy charakter ludzkiej pamięci.

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. MODELE SYSTEMU IEEE RTS

MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. MODELE SYSTEMU IEEE RTS POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 82 Electrical Engineering 2015 Jerzy TCHÓRZEWSKI* Maciej PYTEL ** MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. MODELE SYSTEMU

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

Badania niezawodnościowe i statystyczna analiza ich wyników

Badania niezawodnościowe i statystyczna analiza ich wyników Badaa ezawodoścowe statystycza aalza ch wyków. Co to są badaa ezawodoścowe jak sę je przeprowadza?. Metody prezetacj opsu daych pochodzących z eksperymetu 3. Sposoby wyzaczaa rozkładu zmeej losowej a podstawe

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki Welokategoralne systemy uząe sę h zastosowane w bonformatye Rafał Grodzk Welokategoralny system uząy sę (multlabel learnng system) Zbór danyh weśowyh: d X = R Zbór klas (kategor): { 2 } =...Q Zbór uząy:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

1.3. STAN NAPRĘŻENIA STRONA STATYCZNA

1.3. STAN NAPRĘŻENIA STRONA STATYCZNA J. Wyrwał, Wykłady z echak aterałów.. STAN NAPRĘŻENA STRONA STATYCZNA... Klasyfkaca sł Sły wyrażaą wzaee oddzaływaa ędzy obekta ateraly lub ch częśca. Są oe rezultate dzałaa ól słowych a asy ładuk krocząstek

Bardziej szczegółowo

METODY ROZWIĄZYWANIA DUŻYCH UKŁADÓW RÓWNAŃ LINIOWYCH

METODY ROZWIĄZYWANIA DUŻYCH UKŁADÓW RÓWNAŃ LINIOWYCH DODATEK NR 2. METODY ROZWIĄZYWANIA DUŻYCH UKŁADÓW RÓWNAŃ LINIOWYCH Układy rówań występujące w etodze eleetów skończoych charakteryzują sę duży rzadk dodato określoy acerza. Metody rozwązywaa układów rówań

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU SZTUCZNA INTELIGENCJA DLA ISD. Zrealzować uład terowaa w oparcu o logę rozytą dla jedego z atępujących odel obetów. Wyorzytać paet arzędzowy Fuzzy Logc

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU EWOLUCYJNE METODY OPTYMALIZACJI. Rozwązać zadae zadaa załaduku (plecakowego z ograczeam a dopuszczale wymary oraz cężar []: a algorytmem symulowaego wyżarzaa.

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORAORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX Probley prograowae celowego lorazowego to probley prograowae ateatyczego elowego, który oża sktecze zlearyzować

Bardziej szczegółowo