MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. MODELE SYSTEMU IEEE RTS
|
|
- Błażej Stefaniak
- 6 lat temu
- Przeglądów:
Transkrypt
1 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 82 Electrical Engineering 2015 Jerzy TCHÓRZEWSKI* Maciej PYTEL ** MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. MODELE SYSTEMU IEEE RTS W pracy zamieszczono wybrane wyniki badań dotyczące modelowania neuralnego rozwoju systemu elektroenergetycznego na bazie danych testowych IEEE RTS 96., m.in.: sposób tworzenia macierzy danych wejściowych oraz wyjściowych, sposób doboru parametrów sieci, itp. W wyniku projektowania i uczenia SSN uzyskano modele rozwoju SEE, które poddano badaniom wrażliwości m.in. na zmianę liczby warstw ukrytych oraz liczby neuronów w warstwie. SŁOWA KLUCZOWE: sztuczne sieci neuronowe, dane testowe IEEE RTS, rozwój systemu elektroenergetycznego, środowisko MATLABA i Simulinka, badanie wrażliwości 1. BAZA DANYCH TESTOWYCH IEEE RTS Istnieją różne metody modelowania, m.in.: analityczne, identyfikacyjne, neuronalne, ewolucyjne, rozmyte, itp. [2, 5-7]. W niniejszej pracy do modelowania wykorzystano metodę modelowania neuronalnego polegającą na projektowaniu i uczeniu sztucznej sieci neuronowej (SSN) modelu rozwoju systemu elektroenergetycznego (SEE lub system EE). Dobór architektury SSN oraz metody jej uczenia w rozważanym przypadku zależały od natury rozwoju systemu EE. W celu przeprowadzenia eksperymentów badawczych przygotowano dane uczące i testujące na bazie danych liczbowych pierwszego obszaru systemu testowego IEEE RTS 96 1, który zbudowany jest z 73 węzłów, 120 gałęzi oraz 96 jednostek wytwórczych, o łącznej mocy MW [1, 3, 6]. Jako wielkości wejściowe przyjęto: u 1 długość linii elektroenergetycznej [km], u 2 częstość zakłóceń trwałych [1/h], u 3 - czas trwania zakłócenia trwałego [h], u 4 częstość zakłóceń przemijających [1/h], u 5 impedancja 1 System RTS w swojej początkowej wersji (RTS 79) składał się tylko z jednego obszaru. W roku 1986 jego dane uzupełniono w wyniku czego powstał system RTS 79/86, posiadał on 38 gałęzi i 24 węzły. System ten jednak był zbyt słabo rozbudowany,. z tych przyczyn podjęto decyzję o opracowaniu nowszej wersji systemu, która nosi nazwę RTS 96. * Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach. ** Koło Naukowe Informatyków GENBIT, UPH w Siedlcach.
2 40 Jerzy Tchórzewski, Maciej Pytel gałęzi [Ω], u 6 impedancja gałęzi [Ω], u 7 susceptancja bocznika (składowa bierna admitancji bocznika) [S], u 8 obciążalność znamionowa ciągła [MVA], u 9 obciążalność awaryjna długotrwała [MVA], u 10 obciążalność awaryjna krótkotrwała [MVA], u 11 moc jednostki wytwórczej [MW], u 12 generowana moc czynna [MW], u 13 generowana moc bierna [MVA], u 14 maksymalne ograniczenie mocy biernej [MVA], u 15 minimalne ograniczenie mocy biernej [MVA], u 16 - napięcie zadane w węźle generatorowym [kv]. Natomiast jako wielkości wyjściowe przyjęto: y 1 obciążenie czynne [MW], y 2 obciążenie bierne [MVA] oraz y 3 napięcie znamionowe [kv]. Przy budowie schematu połączeń każdego węzła generacyjnego oraz węzła odbiorczego, parametry węzłów bilansujących występujących pomiędzy węzłem generacyjnym i węzłem odbiorczym oraz parametry węzła początkowego i końcowego traktowano jako parametry wspólne - rys. 1. Ilość węzłów Nr Z węzła Do węzła L Dur R X B Con LTE STE Nr węzła Typ jednostki wytwórcz ej [km] [1/a] [h] [1/a] [pu] [pu] [pu] [MV A] [MV A] [MV A] [nr] [U] [MW] [Mvar] [Mvar] [Mvar] [pu] [MW] [Mvar] ,41 0, ,2 0,022 0,085 0, , ,5 1, ,01 0, ,2 0,023 0,088 0, ,75 0, ,014 0,061 2, , , ,4 0,059 0,234 2, , , ,5 1, Rys. 1. Przykład opracowania parametrów na potrzeby uczenia SSN modele rozwoju SEE. Oznaczenia w tekście. Źródło: [1, 3, 4, 6-7] Sumowano ze sobą długości wszystkich połączeń między węzłami składających się na cały węzeł generacyjno-odbiorczy, a pozostałe parametry uśredniano biorąc pod uwagę liczbę węzłów składających się na dane połączenie. Przygotowane dane poddano normaizacji i jako dwie macierze (tzw. pary trenujące) zostały aimportowane do przestrzeni roboczej Workspace. 2. PROJEKTOWANIE I UCZENIE SSN Projektowanie SSN przeprowadzono z wykorzystaniem programu Neural Network Toolbox (NNT). Przyjęto 16 wielkości wejściowych oraz 3 wielkości wyjściowe. Dysponowano 60 parami danych trenujących. W przestrzeni roboczej były to macierze o strukturze 16 x 60 (macierz wielkości wejściowych) oraz macierz o strukturze 3x60 (macierz wielkości wyjściowych) tabela 1. Dobrano do eksperymentu dwie struktury SSN, to jest: Cascade-Forward Backpropagation oraz Feed Forward Backpropagation, wykorzystujące metodę wstecznej propagacji błędu. Obciążenie Napięcie znamiono we [kv]
3 Modelowanie neuralne rozwoju systemu elektroenergretycznego Tabela 1. Dane wejściowe oraz dane wyjściowe do uczenia SSN. Źródło [4]
4 42 Jerzy Tchórzewski, Maciej Pytel W wyniku uczenia SSN o liczbie neuronów wejściowych oraz wyjściowych odpowiadającej liczbom wielkości macierzy uczącej wejściowej i macierzy wyjściowej otrzymano przebiegi jak na rys. 2. Błąd uczenia SSN (Train) spadł o jeden rząd wielkości po 6 epokach uczenia, a testowanie i walidacja niewiele poprawiły efekt uczenia. W celu zbadania wrażliwości uczenia SSN przeprowadzono eksperymenty związane ze zmianą takich parametrów jak np.: liczbę warstw ukrytych, liczbę neuronów w każdej warstwie ukrytej, funkcję aktywacji, regułę uczenia, itp. W wyniku uczenia otrzymano katalog modeli, spośród których wybrane modele zamieszczono w tabeli 1. Najlepsze wyniki otrzymano w przypadku sieci neuronowej o strukturze z jedną warstwą ukrytą posiadającą 10 neuronów. W przypadku sieci neuronowych, którym jako dane uczące wejściowe, oraz nade uczące wyjściowe podawano dane przed normalizacją wyniki uczenia oraz wielkości popełnianych błędów były nie do przyjęcia. Po zmianie danych uczących na dane poddane normalizacji proces uczenia okazał się dużo efektywniejszy, a błąd uczenia w przypadku niektórych SSN, które uczone były na danych znormalizowanych macierzach wielkości wejściowych i wyjściowych osiągał dokładność rzędu Mean Squared Error (mse) 10-3 Best Validation Performance is e-05 at epoch Train Validation Test Best Epochs Rys. 2. Przykład przebiegu błędu uczenia, błedu testowania oraz błędu walidacji. Oznaczenia: Epochs - epoki uczenia, Mean Squared Error błąd średniokwadratowy, Train przebieg błędu uczenia, Validation przebieg błędu walidacji, Test przebieg błędu testowania, Best najlepszy wynik.w tekście. Źródło: [4] Przykłady SSN uczonych na danych poddanych normalizacji zamieszczono w tabeli 2.
5 Modelowanie neuralne rozwoju systemu elektroenergretycznego Tabela 2. Parametry sieci, wykresy przebiegu uczenia, oraz wartości wyjściowe sieci po zestawieniu z wartościami wyjściowymi uczącymi. Źródło: [4]
6 44 Jerzy Tchórzewski, Maciej Pytel 3. UWAGI KOŃCOWE Projektowanie i uczenie SSN wymaga ustalenia odpowiednio dobranych do modelowanego zjawiska wielkości wejściowych oraz wielkości wyjściowych, a także m.in. funkcji aktywacji i reguły uczenia SSN. W efekcie końcowym modelem neuronalnym jest model rozwoju SEE, na który składają się: sumator iloczynów macierzy wag i wielkości wejściowych oraz funkcja aktywacji o argumencie ww. sumatora. Badania wrażliwości modelu rozwoju wskazują na kierunki poprawy parametrów i struktury modelu. Szczególnie wrażliwy jest model na zmianę liczby warstw ukrytych oraz liczby neuronów w warstwie. LITERATURA [1] Billinton R., Jonnavithula S., A Test System for Teaching Overall Power System Reliability Assessment, IEEE Transactions on Power System, Vol.14, No 4/99. [2] Osowski S., Sieci neuronowe do przetwarzania informacji, OW PW. Warszawa [3] Paska J., Niezawodność systemów elektroenergetycznych, OW PW. Warszawa [4] Pytel M., Neuronowy model rozwoju systemu elektroenergetycznego i jego implementacja w środowisku MATLABA i Simulinka na przykładzie danych testowych IEEE RTS. Praca inżynierska napisana w Zakładzie Modelowania i Projektowania Systemów Informatycznych na Wydziale Nauk Ścisłych. UPH. Siedlce [5] Tadeusiewicz R., Sieci Neuronowe. AOW, Warszawa [6] Tchórzewski J., Roman P., Żurawski T., Modelowanie neuronalne rozwoju systemu elektroenergetycznego na bazie danych testowych IEEE RTS, Wiadomości Elektrotechniczne. Nr. 2/2014, NOT SIGMA. [7] Tchórzewski J., Model and Knowledge Maps of Electricity Market Using MATLAB and Neural Network Toolbox. Proceedings of IEEE European Energy Market. Xplore Belgia 2009 NEURONAL MODELING OF POWER SYSTEM DEVELOPMENT. PART 2. MODELS OF IEEE RTS SYSTEM The paper presents selected results of research on the modeling of neural development of the power system test data based on the IEEE RTS 96, m.in.: how to create a matrix of data input and output, how to select the network parameters and the like. As a result of learning design and development of the ANN models were obtained SEE, which has been tested sensitivity among to change the number of hidden layers and the number of neurons in a layer.
MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 1. OBSZARY MODELOWANIA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 82 Electrical Engineering 2015 Jerzy TCHÓRZEWSKI* MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 1. OBSZARY MODELOWANIA W pracy
DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Stanisław PŁACZEK* DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI W artykule
MODELOWANIE PROCESÓW PRZETWÓRCZYCH Z UŻYCIEM SZTUCZNYCH SIECI NEURONOWYCH
Inżynieria Rolnicza 7(125)/2010 MODELOWANIE PROCESÓW PRZETWÓRCZYCH Z UŻYCIEM SZTUCZNYCH SIECI NEURONOWYCH Jerzy Langman, Norbert Pedryc Katedra Inżynierii Mechanicznej i Agrofizyki, Uniwersytet Rolniczy
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach
KWANTOWA SZTUCZNA SIEĆ NEURONOWA. CZĘŚĆ 2. MODEL RUCHU RAMIENIA ROBOTA PR-02
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 96 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.96.0003 Jerzy TCHÓRZEWSKI *, Przemysław DOMAŃSKI * KWANTOWA SZTUCZNA SIEĆ NEURONOWA. CZĘŚĆ
Politechnika Warszawska
Politechnika Warszawska Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski grudzień 03 Instytut Informatyki Nowowiejska 5 / 9, 00-665 Warszawa Programowa realizacja sieci neuronowych
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Podstawy Sztucznej Inteligencji
Politechnika Łódzka Katedra Informatyki Stosowanej Podstawy Sztucznej Inteligencji Laboratorium Ćwiczenie 2 Wykorzystanie środowiska Matlab do modelowania sztucznych sieci neuronowych Opracowali: Dr hab
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski
ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH
Inżynieria Rolnicza 9(118)/2009 ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH Sławomir Francik Katedra Inżynierii Mechanicznej
ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO LOKALIZACJI ZWARĆ W LINIACH ELEKTROENERGETYCZNYCH
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Mirosław ŁUKOWICZ* Mateusz PUSTUŁKA* sieci neuronowe, systemy elektroenergetyczne,
MATLAB Neural Network Toolbox przegląd
MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study
ĆWICZENIE 5: Sztuczne sieci neuronowe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 5: Sztuczne sieci neuronowe opracował: dr inż. Witold
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN
Inżynieria Rolnicza 2(9)/7 WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Akademia
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
WYKORZYSTANIE SIECI NEURONOWYCH DO ODWZOROWANIA DEFORMACJI POWIERZCHNI NA TERENACH GÓRNICZYCH
IZABELA SKRZYPCZAK, DAWID ZIENTEK WYKORZYSTANIE SIECI NEURONOWYCH DO ODWZOROWANIA DEFORMACJI POWIERZCHNI NA TERENACH GÓRNICZYCH THE APPLICATION OF NEURAL NETWORKS FOR PROJECTION OF SURFACES DEFORMATIONS
MATLAB Neural Network Toolbox uczenie sieci (dogłębnie)
MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) WYKŁAD Piotr Ciskowski Neural Network Toolbox: NEURAL NETWORK TOOLBOX NOTACJA Neural Network Toolbox - notacja: pojedynczy neuron: z jednym wejściem
MOŻLIWOŚCI INFORMATYKI KWANTOWEJ DO POPRAWY DOKŁADNOŚCI MODELOWANIA. CZĘŚĆ 2 KAE NA PRZYKŁADZIE RUCHU ROBOTA PR-02
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 88 Electrical Engineering 2016 Jerzy TCHÓRZEWSKI* Łukasz WOŁYNKA* MOŻLIWOŚCI INFORMATYKI KWANTOWEJ DO POPRAWY DOKŁADNOŚCI MODELOWANIA. CZĘŚĆ 2 KAE
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski
Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania
SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Piotr FRĄCZAK* SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD
Sztuczne siei neuronowe - wprowadzenie
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OPISU PRZENIKALNOŚCI ELEKTRYCZNEJ MĄKI
Inżynieria Rolnicza 2(120)/2010 ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OPISU PRZENIKALNOŚCI ELEKTRYCZNEJ MĄKI Deta Łuczycka Instytut Inżynierii Rolniczej, Uniwersytet Przyrodniczy we Wrocławiu Katarzyna
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
PARADYGMATY ROZWOJOWE W MODELACH SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. KOMPARATYSTYKA METOD IDENTYFIKACJI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 74 Electrical Engineering 2013 Jerzy TCHÓRZEWSKI* Marcin HOŁOWIENKO* PARADYGMATY ROZWOJOWE W MODELACH SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 2. KOMPARATYSTYKA
Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych sieci neuronowych 4
Wojciech Sikora 1 AGH w Krakowie Grzegorz Wiązania 2 AGH w Krakowie Maksymilian Smolnik 3 AGH w Krakowie Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 100 Electrical Engineering DOI /j
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 100 Electrical Engineering 2019 DOI 10.21008/j.1897-0737.2019.100.0011 Jerzy TCHÓRZEWSKI *, Dariusz RUCIŃSKI * ALGORYTM EWOLUCYJNY INSPIROWANY INFORMATYKĄ
DOBÓR POMP CIEPŁA Z WYKORZYSTANIEM SZTUCZNYCH SIECI NEURONOWYCH DLA DOMÓW JEDNORODZINNYCH DLA PEŁNYCH I NIEPEŁNYCH ZBIORÓW DANYCH
Inżynieria Rolnicza 11(109)/2008 DOBÓR POMP CIEPŁA Z WYKORZYSTANIEM SZTUCZNYCH SIECI NEURONOWYCH DLA DOMÓW JEDNORODZINNYCH DLA PEŁNYCH I NIEPEŁNYCH ZBIORÓW DANYCH Maciej Neugebauer, Piotr Sołowiej, Tomasz
SZTUCZNE SIECI NEURONOWE W MODELOWANIU PROCESÓW Z OGRANICZONYM ZBIOREM DANYCH W INŻYNIERII ROLNICZEJ
Inżynieria Rolnicza /005 Jędrzej Trajer Katedra Podstaw Inżynierii Szkoła Główna Gospodarstwa Wiejskiego w Warszawie SZTUCZNE SIECI NEURONOWE W MODELOWANIU PROCESÓW Z OGRANICZONYM ZBIOREM DANYCH W INŻYNIERII
PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH
InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza 5(114)/2009 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ I. ALGORYTMY WYZNACZANIA MODELI ROZMYTYCH Jerzy
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM
ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Laboratorium nr 2. Identyfikacja systemu i detekcja uszkodzeń na podstawie modelu
Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Diagnostyka procesów i systemów Prowadzący: Marcel Luzar 1 Laboratorium nr 2 Identyfikacja systemu i detekcja uszkodzeń na podstawie
WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO ANALIZY WPŁYWU WYBRANYCH PARAMETRÓW NA ŚREDNICE KOLUMN INIEKCYJNYCH
Maciej OCHMAŃSKI * Politechnika Śląska WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO ANALIZY WPŁYWU WYBRANYCH PARAMETRÓW NA ŚREDNICE KOLUMN INIEKCYJNYCH 1. Wprowadzenie Kolumny iniekcyjne jet grouting
Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych
InŜynieria Rolnicza 11/2006 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie METODA PROGNOZOWANIA WARTOŚCI PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH MASZYN ROLNICZYCH
MINIMALIZACJA STRAT MOCY CZYNNEJ W SIECI PRZESYŁOWEJ WYBRANE ASPEKTY PROBLEMATYKI OBLICZENIOWEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Marek WANCERZ* Piotr KACEJKO* MINIMALIZACJA STRAT MOCY CZYNNEJ W SIECI PRZESYŁOWEJ WYBRANE ASPEKTY PROBLEMATYKI OBLICZENIOWEJ
Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
Podstawy sztucznej inteligencji
wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza (114)/29 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ II OPRACOWANIE PREDYKCYJNYCH MODELI RELACYJNYCH
SZTUCZNE SIECI NEURONOWE W OSZACOWANIU ZUŻYCIA TECHNICZNEGO PREFABRYKOWANYCH BUDYNKÓW MIESZKALNYCH
Udostępnione na prawach rękopisu, 8.04.2014r. Publikacja: Knyziak P., "Sztuczne sieci neuronowe w oszacowaniu zużycia technicznego prefabrykowanych budynków mieszkalnych" (Artificial Neuronal Networks
Algorytmy sztucznej inteligencji
Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia
OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 84 Electrical Engineering 2015 Damian BISEWSKI* Janusz ZARĘBSKI* OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU W pracy przedstawiono
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
KRÓTKOTERMINOWE PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH PRZY WYKORZYSTANIU MODELI MAMDANIEGO
Problemy Inżynierii Rolniczej nr 3/2007 Małgorzata Trojanowska Katedra Energetyki Rolniczej Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie KRÓTKOTERMINOWE PROGNOZOWANIE
APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 Damian BURZYŃSKI* Leszek KASPRZYK* APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA
DETEKCJA USZKODZEŃ NA PRZYKŁADZIE DWUKONDYGNACYJNEJ RAMY PORTALOWEJ Z WYKORZYSTANIEM SZTUCZNYCH SIECI NEURONOWYCH
CZASOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNAL OF CIVIL ENGINEERING, ENVIRONMENT AND ARCHITECTURE JCEEA, t. XXXIII, z. 63 (3/16), lipiec-wrzesień 2016, s. 579-588 Dominika ZIAJA 1 Bartosz
Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
WPŁYW KOMPRESJI BARW NA DZIAŁANIE NEURONOWEGO MODELU IDENTYFIKACYJNEGO
Inżynieria Rolnicza 3(121)/2010 WPŁYW KOMPRESJI BARW NA DZIAŁANIE NEURONOWEGO MODEU IDENTYFIKACYJNEGO Krzysztof Nowakowski, Piotr Boniecki, Andrzej Przybylak Instytut Inżynierii Rolniczej, Uniwersytet
Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 3 Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja
BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM W artykule przedstawiono badania przeprowadzone na modelu
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW
ZASTOSOWANIE PROGRAMU SMATH W ANALIZIE STANÓW USTALONYCH W OBWODACH ELEKTRYCZNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 2016 Mirosław WOŁOSZYN* Joanna WOŁOSZYN* ZASTOSOWANIE PROGRAMU SMATH W ANALIZIE STANÓW USTALONYCH W OBWODACH ELEKTRYCZNYCH
Dobór funkcji aktywacji sieci neuronowej realizującej odtwarzanie wielkości wejściowej przetwornika pomiarowego
Dobór funkcji sieci neuronowej realizującej odtwarzanie wielkości wejściowej przetwornika pomiarowego Piotr Makowski Jerzy Roj* W artykule przedstawiono wyniki badań wybranych struktur sieci neuronowych
SYSTEMOWY ALGORYTM EWOLUCYJNY DO POPRAWY PARAMETRÓW ROBOTA PRZEMYSŁOWEGO PR-02
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 77 Electrical Engineering 2014 Jerzy TCHÓRZEWSKI* Piotr LEWANDOWSKI* SYSTEMOWY ALGORYTM EWOLUCYJNY DO POPRAWY PARAMETRÓW ROBOTA PRZEMYSŁOWEGO PR-02
MODEL NEURONOWY ZMIAN TEMPERATURY PODCZAS KONWEKCYJNEGO SUSZENIA ZRĘBKÓW WIERZBY ENERGETYCZNEJ
Inżynieria Rolnicza 11(109)/2008 MODEL NEURONOWY ZMIAN TEMPERATURY PODCZAS KONWEKCYJNEGO SUSZENIA ZRĘBKÓW WIERZBY ENERGETYCZNEJ Bogusława Łapczyńska-Kordon, Sławomir Francik, Zbigniew Ślipek Katedra Inżynierii
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
WARUNKI ZWARCIOWE W ROZDZIELNI SPOWODOWANE ZAKŁÓCENIAMI NA RÓŻNYCH ELEMENTACH SIECI ELEKTROENERGETYCZNEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Piotr PIECHOCKI* Ryszard FRĄCKOWIAK** WARUNKI ZWARCIOWE W ROZDZIELNI SPOWODOWANE ZAKŁÓCENIAMI NA RÓŻNYCH ELEMENTACH
RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex.
Projekt współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wiedza Techniczna Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów
IDENTYFIKACJA I INTERPRETACJA ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ II - MODEL SS
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 0 Electrical Engineering 0 Jerzy TCHÓRZEWSKI* IDENTYFIKACJA I INTERPRETACJA ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ II - MODEL SS W przypadku
METODA PROGNOZOWANIA SZEREGÓW CZASOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI NEURONOWYCH
Inżynieria Rolnicza 6(115)/2009 METODA PROGNOZOWANIA SZEREGÓW CZASOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI NEURONOWYCH Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Uniwersytet Rolniczy w Krakowie
WPŁYW TYPU SIECI NEURONOWEJ NA DOKŁADNOŚĆ PROGNOZOWANIA PRZEKAZYWANIA DRGAŃ POCHODZENIA GÓRNICZEGO Z GRUNTU NA BUDYNEK
ŁUKASZ CHUDYBA WPŁYW TYPU SIECI NEURONOWEJ NA DOKŁADNOŚĆ PROGNOZOWANIA PRZEKAZYWANIA DRGAŃ POCHODZENIA GÓRNICZEGO Z GRUNTU NA BUDYNEK THE INFLUENCE OF NEURAL NETWORK TYPE ON THE PREDICTION ACCURACY OF
MODELOWANIE PROCESU OMŁOTU PRZY WYKORZYSTANIU SZTUCZNYCH SIECI NEURONOWYCH
Inżynieria Rolnicza 13/2006 Andrzej Złobecki *, Ryszard Macura **, Magdalena Michalczyk ** * Katedra Inżynierii Mechanicznej i Agrofizyki ** Katedra Chłodnictwa i Koncentratów Spożywczych Akademia Rolnicza
ALGORYTM ROZPOZNAWANIA OBRAZÓW MATERIAŁÓW BIOLOGICZNYCH
InŜynieria Rolnicza 7/2005 Bogusława Łapczyńska-Kordon, Jerzy Langman, Norbert Pedryc Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie ALGORYTM ROZPOZNAWANIA OBRAZÓW MATERIAŁÓW
Widzenie komputerowe
Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2014/2015
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2014/2015 Sieci neuronowe Sieci neuronowe w SAS Enterprise Miner Węzeł Neural Network Do
Przykładowa analiza danych
Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
WARTOŚCI CZASU TRWANIA ZWARCIA PODCZAS ZAKŁÓCEŃ W ROZDZIELNIACH NAJWYŻSZYCH NAPIĘĆ W ŚWIETLE BADAŃ SYMULACYJNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Ryszard FRĄCKOWIAK* Piotr PIECHOCKI** WARTOŚCI CZASU TRWANIA ZWARCIA PODCZAS ZAKŁÓCEŃ W ROZDZIELNIACH NAJWYŻSZYCH
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
STRATEGIA DOBORU PARAMETRÓW SIECI NEURONOWEJ W ROZPOZNAWANIU PISMA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2016 Seria: ORGANIZACJA I ZARZĄDZANIE z. 96 Nr kol. 1963 Wiktor WALENTYNOWICZ wiktorwalentynowicz@hotmail.com Ireneusz J. JÓŹWIAK Politechnika Wrocławska Wydział Informatyki
WPŁYW INFORMACJI O ZMIENNYCH STANU OBIEKTU NA JAKOŚĆ STEROWANIA PRZEZ NEUROSTEROWNIK
ELEKTRYKA 2012 Zeszyt 3-4 (223-224) Rok LVIII Marcin LIS Instytut Elektrotechniki i Elektroniki Przemysłowej, Politechnika Poznańska Piotr KOZIERSKI Instytut Automatyki i Inżynierii Informatycznej, Politechnika
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
Wprowadzenie do sieci neuronowych i zagadnień deep learning
Wprowadzenie do sieci neuronowych i zagadnień deep learning Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Deep learning Anna Sztyber 1 / 28 Deep learning
Temat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 016 Krzysztof KRÓL* NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU W artykule zaprezentowano
Deep Learning na przykładzie Deep Belief Networks
Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning
WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII
WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII Autor: Katarzyna Halicka ( Rynek Energii nr 1/2010) Słowa kluczowe: giełda energii, prognozowanie cen energii elektrycznej,
Oprogramowanie Systemów Obrazowania SIECI NEURONOWE
SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,
Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od -1 do 1.
Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Mateusz Błażej Nr albumu: 130366 Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od
Podstawowe funkcje biblioteki narzędziowej Neural Network Toolbox. Version 5 pakietu MATLAB v. 6
Podstawowe funkcje biblioteki narzędziowej Neural Network Toolbox. Version 5 pakietu MATLAB v. 6 I. Funkcje przeznaczone do tworzenia jednokierunkowej sieci neuronowej newff newp newlin - tworzenie wielowarstwowej
Sztuczne sieci neuronowe. Uczenie, zastosowania
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe. Uczenie, zastosowania Inteligencja Sztuczne sieci neuronowe Metody uczenia Budowa modelu Algorytm wstecznej propagacji błędu
Sztuczne sieci neuronowe w zastosowaniu do modelowania fazy wznoszenia samolotu
Paulina Stańczyk 1, Anna Stelmach 2 Wydział Transportu Politechniki Warszawskiej Sztuczne sieci neuronowe w zastosowaniu do modelowania fazy wznoszenia samolotu 1. WPROWADZENIE W ostatnich latach na świecie,
AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electrical Engineering 2013 Łukasz NIEWIARA* Krzysztof ZAWIRSKI* AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ Zagadnienia
Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych
ZARZĄDZANIE ENERGIĄ I TELEINFORMATYKA, ZET 03 Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych Jacek Wasilewski Politechnika Warszawska
ODWZOROWANIE PRZEBIEGU PULSACJI METODAMI SZTUCZNEJ INTELIGENCJI
Inżynieria Rolnicza 9(107)/2008 ODWZOROWANIE PRZEBIEGU PULSACJI METODAMI SZTUCZNEJ INTELIGENCJI Katedra Energetyki Rolniczej, Uniwersytet Rolniczy w Krakowie Streszczenie. Przedstawiono metodykę odwzorowania
Optymalizacja decyzji o przyłączeniu rozproszonych źródeł energii do sieci elektroenergetycznej z wykorzystaniem optymalizacji po współrzędnych
Anna KOWALSKA-PYZALSKA DFME Sp. z o.o., Wrocław, Polska Email: anna.kowalska@pwr.wroc.pl Pre-print artykułu: Kowalska-Pyzalska A. (2010), Optymalizacja decyzji o przyłączeniu rozproszonych źródeł energii
Aproksymacja danych doświadczalnych z badań trójosiowego ściskania gruntu przy użyciu perceptronu wielowarstwowego
Aproksymacja danych doświadczalnych z badań trójosiowego ściskania gruntu przy użyciu perceptronu wielowarstwowego Mgr inż. Dariusz Słowiński Uniwersytet Warmińsko-Mazurski w Olsztynie, Wydział Nauk Technicznych
ALGORYTM IDENTYFIKACJI SKŁADOWYCH SINUSOIDALNYCH ZŁOŻONEGO SYGNAŁU NA PODSTAWIE JEGO LOSOWO POBRANYCH PRÓBEK
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 0 Piotr KARDASZ* ALGORYTM IDENTYFIKACJI SKŁADOWYCH SINUSOIDALNYCH ZŁOŻONEGO SYGNAŁU NA PODSTAWIE JEGO LOSOWO POBRANYCH
MODELOWANIE FAZ ZNI ANIA I L DOWANIA SAMOLOTU BOEING 767-300ER PRZY U YCIU SZTUCZNYCH SIECI NEURONOWYCH
P R A C E N A U K O W E P O L I T E C H N I K I W A R S Z A W S K I E J z. 102 Transport 2014 Aleksandra Stycunów, Jerzy Manerowski Politechnika Warszawska, Wydzia Transportu MODELOWANIE FAZ ZNI ANIA I