WYBRANE ASPEKTY STEROWANIA ZESPOŁ EM OKRĘ TOWYM POJAZD PODWODNY Ł ADUNEK

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYBRANE ASPEKTY STEROWANIA ZESPOŁ EM OKRĘ TOWYM POJAZD PODWODNY Ł ADUNEK"

Transkrypt

1 ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVI NR 3 (162) 25 WYBRANE ASPEKTY STEROWANIA ZESPOŁ EM OKRĘ TOWYM POJAZD PODWODNY Ł ADUNEK STRESZCZENIE W opracowaniu omówiono wybrane problemy pojawiające się w przypadku sterowania zespołem okrętowym, jaki stanowi pojazd podwodny oraz przenoszony przez niego ładunek. Przedstawiono przykładowe wyniki badań symulacyjnych modelu matematycznego pojazdu podwodnego wraz z przenoszonym przy wykorzystaniu manipulatora ładunkiem. Zawarto również projekt systemu automatycznego sterowania zespołem okrętowym po zadanym torze. WSTĘP Przykładem zespołu okrętowego pojazd podwodny ładunek w Marynarce Wojennej jest zdalnie sterowany pojazd podwodny typu Ukwiał przenoszący ładunek wybuchowy, wykorzystywany do niszczenia zlokalizowanych wcześniej min podwodnych (rys. 1.). Pojazd ten jest zasilany i sterowany poprzez kablolinę z pokładu okrętu niszczyciela min. Realizowana przez system głębinowy Ukwiał misja przeciwminowa składa się z dwóch etapów: 1. Wstępnej identyfikacji obiektów minowych przez okrętowe systemy hydrolokacyjne i szczegółowej identyfikacji przeprowadzonej przy zastosowaniu wyposażenia technicznego zamontowanego na pojeździe. 2. Niszczenia wykrytej miny przy wykorzystaniu ładunku niszczącego przenoszonego przez pojazd podwodny. Realizacja wymienionych zadań z udziałem robota podwodnego związana jest z dokładnym sterowaniem jego ruchem, zazwyczaj po zadanym torze. Natomiast automatyczne sterowanie po zadanym torze polega na regulacji i stabilizacji 135

2 parametrów ruchu: kąta kursu, współrzędnych położenia x, y, z, kąta przegłębienia i kąta przechyłu. W przypadku wykorzystania manipulatora pojazdu podwodnego do przenoszenia ładunku z ujemną pływalnością zaobserwować można efekt przegłębienia i przechyłu robota, co ma niekorzystny wpływ na możliwości jego sterowania, np. zwiększanie kąta przegłębienia zmniejsza możliwości regulacji głębokości zanurzenia. Wielkość niekorzystnego kąta przegłębienia i przechyłu zależy od: stosunku masy ładunku względem pojazdu; położenia środka masy ładunku względem środka masy robota; wielkości tłumienia hydrodynamicznego uzależnionego od opływu ładunku. MODEL MATEMATYCZNY ZESPOŁU OKRĘTOWEGO W celu zasymulowania ruchu pojazdu podwodnego przyjęto jego model matematyczny o sześciu stopniach swobody w dwóch układach odniesienia, czyli w układzie nieruchomym związanym z Ziemią oraz w układzie ruchomym związanym z pojazdem (rys. 1.). O - początek ruchomego ukł. współrz. myszkowanie N, r Ψ - k ąt kursu kołysanie postępowe (dziobowanie) X, u K, p x o kołysanie boczne (przechylanie) Θ - kąt przegłębienia y x z z o Φ - kąt przechyłu zanurzanie Z, w początek nieruchomego ukł. współrz. kiwanie M, q kołysanie burtowe - Y, - v (burtowanie) - y o Rys. 1. Pojazd podwodny typu Ukwiał w dwóch układach odniesienia: związanym z Ziemią i związanym z pojazdem 136 Zeszyty Naukowe AMW

3 Wybrane aspekty sterowania zespołem okrętowym pojazd podwodny ładunek Do opisu ruchu pojazdu podwodnego wykorzystano tzw. równania ruchu, które w postaci macierzowej przyjmują następującą postać [1]: Mν& + C(ν)ν + D(ν)ν + g(η) + U(ν)ν = τ, (1) gdzie: ν wektor prędkości liniowych i kątowych w układzie związanym z pojazdem, czyli ν = [u, v, w, p, q, r]; η wektor współrzędnych pozycji pojazdu podwodnego oraz kątów Eulera w układzie związanym z Ziemią, czyli η = [x, y, z, φ, θ, ψ]; M macierz inercji (równa sumie macierzy ciała sztywnego i macierzy mas towarzyszących; C(ν) macierz sił odśrodkowych i dośrodkowych Coriolisa (równa sumie macierzy Coriolisa pojazdu traktowanego jako ciało sztywne i macierzy uwzględniającej masy towarzyszące); D(ν) macierz tłumienia hydrodynamicznego; g(η) macierz sił przywracających (siły ciężkości i siły wyporu); U(ν) macierz tłumienia generowanego przez kablolinę; τ wektor sił i momentów oddziałujących na pojazd, tj. τ = [X, Y, Z, K, M, N] T. Dla dalszej analizy modelu zespołu okrętowego pojazd podwodny ładunek istotne jest przedstawienie otrzymanej w wyniku obliczeń i przekształceń macierzy sił przywracających g(η), czyli: g ( η) = ( P B) sinθ ( P B) cosθ sinϕ ( P B) cosθ cosϕ ( zg P + yb B) cosθ cosϕ ( yg P + zb B) ( z P + z B) sinθ cosϕ + ( x P + x B) G B G B, (2) cosθ sinϕ cosθ cosϕ gdzie: P ciężar pojazdu równy iloczynowi jego masy i przyspieszenia ziemskiego; B wypór pojazdu równy iloczynowi wypartej masy wody i przyspieszenia ziemskiego; x G, y G, z G współrzędne środka ciężkości; x B, y B, z B współrzędne środka wyporu. 3 (162)

4 Szerzej problem nieliniowego modelu matematycznego pojazdu podwodnego rozpatrzony został w [1, 2, 5]. Przenoszony przez pojazd podwodny ładunek zamodelowany został jako punkt materialny o określonej masie m, którego środek ciężkości jest przesunięty względem środka ciężkości pojazdu o odległość [x m, y m, z m ]. W wyniku oddziaływania ładunku na pojazd podwodny przesunięciu ulega jego środek ciężkości [4]. Wypadkowe położenie środka ciężkości zespołu okrętowego można obliczyć z następującej zależności: x y z G G G x = y z gdzie: M masa pojazdu podwodnego; m masa przenoszonego ładunku. m m m m, (3) M + m Z przedstawionych zależności (1), (2) i (3) wynika, że zmianie położenia środka ciężkości zespołu okrętowego towarzyszyć będzie zmiana wartości elementów macierzy sił przywracających: g 41 i g 51. W efekcie końcowym da to zmianę wartości momentów sił względem osi x i y, odpowiedzialnych odpowiednio za przechył i przegłębienie pojazdu (rys. 1.). W przedstawionej wyżej analizie pominięto wielkość tłumienia hydrodynamicznego uzależnionego od opływu ładunku, co stanowić będzie tematykę dalszych badań. WYBRANE WYNIKI BADAŃ SYMULACYJNYCH Badania symulacyjne zespołu okrętowego, czyli pojazdu podwodnego typu Ukwiał wraz z przenoszonym ładunkiem niszczącym przeprowadzono w środowisku Matlab na platformie Windows/PC. Symulacje komputerowe wykonano dla ruchu pojazdu do przodu przy sile działającej w kierunku osi x, czyli wzdłużnej osi symetrii pojazdu podwodnego. Zastosowano wymuszenie w postaci skoku jednostkowego (rys. 2a). 138 Zeszyty Naukowe AMW

5 Wybrane aspekty sterowania zespołem okrętowym pojazd podwodny ładunek a) 25 siła X [N] b) przegłębienie [deg] Rys. 2. Wyniki symulacji pojazdu podwodnego nieobciążonego ładunkiem przy ruchu do przodu: a) sygnał wymuszenia; b) zmiany kąta przegłębienia Przy poruszaniu się pojazdu podwodnego nieobciążonego ładunkiem obserwuje się stabilizację kąta przegłębienia na poziomie 5 (rys. 2.). W przypadku przenoszenia przez pojazd podwodny ładunku przy wykorzystaniu manipulatora obserwuje się efekt zwiększenia wartości kąta przegłębienia (rys. 3.). Jest on tym większy, im bardziej zwiększa się masa ładunku oraz długość czynna manipulatora. Natomiast z każdą większą wartością kąta przegłębienia zmniejsza się wartość naporu generowanego w kierunku osi z, czyli pionowej osi symetrii pojazdu podwodnego. 3 (162)

6 a) b) przegłębienie [deg] przegłębienie [deg] c) przegłębienie [deg] d) przegłębienie [deg] Rys. 3. Wyniki symulacji pojazdu podwodnego poruszającego się do przodu: z ładunkiem 1 kg przenoszonym na manipulatorze o długości a) 2,2 m i b),5 m oraz z ładunkiem 2 kg przenoszonym na manipulatorze o długości c) 2,2 m i d),5 m W wyniku przeprowadzonych badań symulacyjnych zespołu okrętowego nie zaobserwowano znaczących zmian kąta przechyłu, tzn. zmian większych od ± 5. Stwarza to przesłankę do pominięcia tego problemu, tym bardziej iż powszechnie stosowane w pojazdach podwodnych systemy napędowe nie umożliwiają generowania momentu siły względem wzdłużnej osi symetrii x, potrzebnego do regulacji kąta przechyłu. KOMPENSACJA ODDZIAŁYWANIA ŁADUNKU W celu kompensacji zakłócającego oddziaływania na ruch pojazdu podwodnego przenoszonego ładunku istotne jest opracowanie systemu automatycznego sterowania, który poza sterowaniem po zadanym torze będzie stabilizował kąt przegłębienia. 14 Zeszyty Naukowe AMW

7 Wybrane aspekty sterowania zespołem okrętowym pojazd podwodny ładunek Przedstawiony na rysunku 4. system bazuje na zrealizowanym wcześniej systemie automatycznego sterowania pojazdem podwodnym [5]. System ten rozbudowany został o regulator przegłębienia, którego zadaniem jest minimalizowanie niekorzystnego oddziaływania ładunku. Całość systemu sterowania ma umożliwić regulację wszystkich niezbędnych parametrów ruchu pojazdu podwodnego przenoszącego ładunek w trakcie automatycznego poruszania się po zadanym torze. Układ sterowania nadrzędnego N regulator kursu X regulator przesunięcia w osi X regulator głębokości zanurzenia Z regulator przesunięcia w osi Y -Y M regulator przegłębienia Rys. 4. Propozycja systemu automatycznego sterowania zespołem okrętowym pojazd podwodny ładunek po zadanym torze Warunkiem koniecznym regulacji kąta przegłębienia jest system napędowy pojazdu podwodnego, przy którego wykorzystaniu możliwe jest generowanie momentu siły M względem osi y (rys. 4.). Pojazd podwodny typu Ukwiał charakteryzuje się systemem napędowym składającym się z sześciu pędników: czterech usytuowanych w płaszczyźnie poziomej oraz dwóch usytuowanych w płaszczyźnie pionowej (rys. 5.). Układ dwóch pędników pionowych stwarza możliwość generacji momentu siły M. Dodatkowym problemem, który pojawia się w tym przypadku, jest rozdział mocy na pędniki pionowe. Dotychczas w pojeździe całość wymaganego w osi z naporu była rozdzielana równo po połowie na każdy z pędników. Dla potrzeb generacji momentu siły względem osi y istotne jest opracowanie nowych algorytmów. Potencjalnie istnieją dwa sposoby rozdziału mocy na pędniki pionowe: 3 (162)

8 1. Napór generowany przez jeden z pędników pionowych jest uzależniony od zadanej siły Z, natomiast napór generowany przez drugi pędnik jest uzależniony od zadanej siły Z i zadanego momentu siły M. 2. Napory generowane przez oba pędniki są uzależnione od zadanej siły Z i zadanego momentu siły M. Pierwszy algorytm rozdziału mocy będzie prostszy, ponieważ dla stałej zadanej siły Z i zmiennego zadanego momentu siły M będzie zmieniała się jedynie prędkość obrotowa jednego z pędników. Natomiast drugi algorytm będzie charakteryzował się większą aktywnością obu pędników, gdyż przy zmianie zadanych wartości siły Z lub momentu siły M zmieniać się będą prędkości obrotowe obu pędników. Większa aktywność pędników powinna jednak dać większą efektywność stabilizacji kąta przegłębienia. a) b) α 14 = α 14 α 14 Y α 14 α 14 Z X X Rys. 5. System napędowy pojazdu podwodnego typu Ukwiał : a) pędniki usytuowane w płaszczyźnie poziomej; b) pędniki usytuowane w płaszczyźnie pionowej Dla potrzeb regulacji przegłębienia proponuje się wykorzystać rozmyty regulator proporcjonalno-różniczkujący FPD, którego zasada działania oparta jest na metodach logiki rozmytej [4]. W regulatorze FPD sygnały: proporcjonalny uchybu błędu oraz różniczkujący zmiany uchybu błędu regulowanego parametru poddawane są rozmytemu przetwarzaniu danych, co zwiększa odporność regulatora na nieliniowość obiektu i zakłócenia środowiska o stochastycznym charakterze [3]. Tego typu regulatory przeszły już weryfikację eksperymentalną na zdalnie sterowanym pojeździe podwodnym typu Ukwiał z wynikiem pozytywnym [5]. 142 Zeszyty Naukowe AMW

9 Wybrane aspekty sterowania zespołem okrętowym pojazd podwodny ładunek PODSUMOWANIE Zmodyfikowany model matematyczny pojazdu podwodnego w sześciu stopniach swobody uwzględnia również oddziaływanie przenoszonego ładunku, co umożliwiło przeprowadzenie badań symulacyjnych zespołu okrętowego. Na podstawie przeprowadzonych symulacji można wnioskować, że w przypadku systemów automatyki ruchu pojazdu podwodnego istnieje potrzeba stabilizacji dodatkowego, dotąd nierozpatrywanego, parametru ruchu, tj. kąta przegłębienia. Zaprojektowany w trakcie realizacji wcześniejszych prac badawczych [5] system automatycznego sterowania pojazdem podwodnym, składający się z regulatorów: kursu, głębokości zanurzenia, przesunięcia w osi X i w osi Y, wzbogacony o dodatkowy regulator przegłębienia, stwarza możliwości sterowania zespołem okrętowym po zadanym torze przy zakłócającym oddziaływaniu przenoszonego ładunku. Planowane badania symulacyjne uwzględniać powinny kolejne aspekty oddziaływania przenoszonego ładunku, czyli wpływ ładunków niszczących o różnych masach i kształcie oraz wpływ prądów morskich o różnym kierunku oddziaływania i różnej prędkości na możliwości i jakość automatycznego sterowania zespołem okrętowym. BIBLIOGRAFIA [1] Fossen T. I., Guidance and Control of Ocean Vehicles, John Wiley and Sons Inc., Chichester [2] Kitowski Z., Szymak P., Modelowanie ruchu sterowanego automatycznie obiektu podwodnego, Prace naukowe Politechniki Radomskiej, 24, nr 2. [3] Piegat A., Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa [4] Szymak P., Projekt zastosowania metod logiki rozmytej do sterowania zespołem okrętowym pojazd podwodny ładunek, [w:], Perspektywy i rozwój systemów ratownictwa, bezpieczeństwa i obronności w XXI wieku, Gdańsk 25, s [5] Szymak P., Wykorzystanie metod sztucznej inteligencji dla sterowania pojazdem podwodnym w inspekcji obiektów oceanotechnicznych, rozprawa doktorska, Akademia Marynarki Wojennej, Gdynia (162)

10 ABSTRACT The paper discusses selected aspects of control of a ship unit: underwater vehicle- -payload. It presents some simulation results of a mathematical model of an underwater vehicle with payload carried by a manipulator. It also contains a design of an automatic control system of the ship unit over a pre-set trajectory. Recenzent kmdr dr hab. inż. Bogdan Żak, prof. nadzw. AMW 144 Zeszyty Naukowe AMW

STEROWANIE ROZMYTE KURSEM I ZANURZENIEM POJAZDU PODWODNEGO BADANIA SYMULACYJNE I EKSPERYMENTALNE

STEROWANIE ROZMYTE KURSEM I ZANURZENIEM POJAZDU PODWODNEGO BADANIA SYMULACYJNE I EKSPERYMENTALNE ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLV NR 2 (157) 24 Jerzy Garus Piotr Szymak STEROWANIE ROZMYTE KURSEM I ZANURZENIEM POJAZDU PODWODNEGO BADANIA SYMULACYJNE I EKSPERYMENTALNE STRESZCZENIE

Bardziej szczegółowo

Podstawy Automatyzacji Okrętu

Podstawy Automatyzacji Okrętu Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, specjalności okrętowe Podstawy Automatyzacji Okrętu 1 WPROWADZENIE M. H. Ghaemi Luty 2018 Podstawy automatyzacji

Bardziej szczegółowo

Marzec Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Oceanotechnika, ZiMwGM

Marzec Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Oceanotechnika, ZiMwGM Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Oceanotechnika, ZiMwGM Podstawy automatyzacji okrętu 1 WPROWADZENIE M. H. Ghaemi Marzec 2016 Podstawy automatyzacji

Bardziej szczegółowo

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport. Luty 2015. Automatyzacja statku 1.

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport. Luty 2015. Automatyzacja statku 1. Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport Automatyzacja statku 1 WPROWADZENIE M. H. Ghaemi Luty 2015 Automatyzacja statku 1. Wprowadzenie 1 Kierunek:

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

MIROSŁAW TOMERA WIELOOPERACYJNE STEROWANIE RUCHEM STATKU W UKŁADZIE O STRUKTURZE PRZEŁĄCZALNEJ

MIROSŁAW TOMERA WIELOOPERACYJNE STEROWANIE RUCHEM STATKU W UKŁADZIE O STRUKTURZE PRZEŁĄCZALNEJ MIROSŁAW TOMERA WIELOOPERACYJNE STEROWANIE RUCHEM STATKU W UKŁADZIE O STRUKTURZE PRZEŁĄCZALNEJ Gdynia 2018 RECENZENCI: prof. dr hab. inż. Roman Śmierzchalski dr hab. inż. Witold Gierusz, prof. nadzw. AMG

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

WYKRYWANIE USZKODZEŃ W LITYCH ELEMENTACH ŁĄCZĄCYCH WAŁY

WYKRYWANIE USZKODZEŃ W LITYCH ELEMENTACH ŁĄCZĄCYCH WAŁY ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LI NR 4 (183) 2010 Radosł aw Pakowski Mirosł aw Trzpil Politechnika Warszawska WYKRYWANIE USZKODZEŃ W LITYCH ELEMENTACH ŁĄCZĄCYCH WAŁY STRESZCZENIE W artykule

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Inżynieria Rolnicza 8(117)/2009 KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Ewa Wachowicz, Piotr Grudziński Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Sterowanie układem zawieszenia magnetycznego

Sterowanie układem zawieszenia magnetycznego Politechnika Śląska w Gliwicach Wydział: Automatyki, Elektroniki i Informatyki Kierunek: Automatyka i Robotyka Specjalność: Komputerowe systemy sterowania Sterowanie układem zawieszenia magnetycznego Maciej

Bardziej szczegółowo

POLISH HYPERBARIC RESEARCH 3(60)2017 Journal of Polish Hyperbaric Medicine and Technology Society STRESZCZENIE

POLISH HYPERBARIC RESEARCH 3(60)2017 Journal of Polish Hyperbaric Medicine and Technology Society STRESZCZENIE POLISH HYPERBARIC RESEARCH 3(60)2017 ANALIZA UKŁADÓW NAPĘDOWYCH BEZZAŁOGOWYCH POJAZDÓW GŁĘBINOWYCH W KIERUNKU ZIDENTYFIKOWANIA SPOSOBU PRZENIESIENIA NAPĘDU CZĘŚĆ 2 Bartłomiej Jakus, Adam Olejnik Akademia

Bardziej szczegółowo

OCENA STATECZNOŚ CI DYNAMICZNEJ OKRĘ TU NA PODSTAWIE WYMAGAŃ PRZEPISÓW POLSKIEGO REJESTRU STATKÓW

OCENA STATECZNOŚ CI DYNAMICZNEJ OKRĘ TU NA PODSTAWIE WYMAGAŃ PRZEPISÓW POLSKIEGO REJESTRU STATKÓW ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LI NR 4 (183) 2010 Adam Pawlę dzio Akademia Marynarki Wojennej OCENA STATECZNOŚ CI DYNAMICZNEJ OKRĘ TU NA PODSTAWIE WYMAGAŃ PRZEPISÓW POLSKIEGO REJESTRU

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA OBLICZANIE POCZĄTKOWEJ WYSOKOŚCI METACENTRYCZNEJ PODCZAS OPERACJI BALASTOWYCH Zajęcia laboratoryjne z przedmiotu:

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH

Bardziej szczegółowo

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy robotyki wykład VI. Dynamika manipulatora Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu

Bardziej szczegółowo

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi Podstawy automatyki Energetyka Sem. V Wykład 1 Sem. 1-2016/17 Hossein Ghaemi Hossein Ghaemi Katedra Automatyki i Energetyki Wydział Oceanotechniki i Okrętownictwa Politechnika Gdańska pok. 222A WOiO Tel.:

Bardziej szczegółowo

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono

Bardziej szczegółowo

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO ZESZYTY NAUKOWE POLITECHNIKA ŚLĄSKA 2012 Seria: TRANSPORT z. 77 Nr kol.1878 Łukasz KONIECZNY WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO Streszczenie.

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Symulacja pracy silnika prądu stałego

Symulacja pracy silnika prądu stałego KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Symulacja pracy silnika prądu stałego Opracował: Dr inż. Roland Pawliczek Opole 016

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

MODEL STANOWISKA DO BADANIA OPTYCZNEJ GŁOWICY ŚLEDZĄCEJ

MODEL STANOWISKA DO BADANIA OPTYCZNEJ GŁOWICY ŚLEDZĄCEJ Mgr inż. Kamil DZIĘGIELEWSKI Wojskowa Akademia Techniczna DOI: 10.17814/mechanik.2015.7.232 MODEL STANOWISKA DO BADANIA OPTYCZNEJ GŁOWICY ŚLEDZĄCEJ Streszczenie: W niniejszym referacie zaprezentowano stanowisko

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

Porównanie wyników symulacji wpływu kształtu i amplitudy zakłóceń na jakość sterowania piecem oporowym w układzie z regulatorem PID lub rozmytym

Porównanie wyników symulacji wpływu kształtu i amplitudy zakłóceń na jakość sterowania piecem oporowym w układzie z regulatorem PID lub rozmytym ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 15 Special Issue 4/2015 133 138 28/4 Porównanie wyników

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

MODEL SYMULACYJNY BEZZAŁ OGOWEGO ROBOTA PODWODNEGO

MODEL SYMULACYJNY BEZZAŁ OGOWEGO ROBOTA PODWODNEGO ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLV NR 3 (158) 2004 Andrzej Ż ak MODEL SYMULACYJNY BEZZAŁ OOWEO ROBOTA PODWODNEO STRESZCZENIE W pracy przedstawiono koncepcję środowiska symulacyjnego dla

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych kinematyka równoległa, symulacja, model numeryczny, sterowanie mgr inż. Paweł Maślak, dr inż. Piotr Górski, dr inż. Stanisław Iżykowski, dr inż. Krzysztof Chrapek Wyznaczanie sił w przegubach maszyny o

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk, Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

J. Szantyr - Wykład 5 Pływanie ciał

J. Szantyr - Wykład 5 Pływanie ciał J. Szantyr - Wykład 5 Pływanie ciał Prawo Archimedesa Na każdy element pola ds działa elementarny napór Napór całkowity P ρg S nzds Główny wektor momentu siły naporu M ρg r nzds S dp Αρχίµηδης ο Σΰρακοσιος

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

PROPOZYCJA INNOWACYJNEJ TECHNOLOGII. Urządzenie do stabilizacji pozycji pacjenta zwłaszcza podczas transportu

PROPOZYCJA INNOWACYJNEJ TECHNOLOGII. Urządzenie do stabilizacji pozycji pacjenta zwłaszcza podczas transportu PROPOZYCJA INNOWACYJNEJ TECHNOLOGII Urządzenie do stabilizacji pozycji pacjenta zwłaszcza podczas transportu 1. WSTĘP Przedmiotem wynalazku jest urządzenie do stabilizacji pozycji pacjenta zwłaszcza podczas

Bardziej szczegółowo

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu

Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu Ruch obrotowy 016 Spis treści Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu bezwładności Ruch obrotowo-postępowy

Bardziej szczegółowo

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu 1. WSTĘP Serwomechanizmy są to przeważnie układy regulacji położenia. Są trzy główne typy zadań serwomechanizmów: - ruch point-to-point,

Bardziej szczegółowo

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP

Bardziej szczegółowo

MODELOWANIE WPŁYWU NIEZALEŻNEGO STEROWANIA KÓŁ LEWYCH I PRAWYCH NA ZACHOWANIE DYNAMICZNE POJAZDU

MODELOWANIE WPŁYWU NIEZALEŻNEGO STEROWANIA KÓŁ LEWYCH I PRAWYCH NA ZACHOWANIE DYNAMICZNE POJAZDU Maszyny Elektryczne - Zeszyty Problemowe Nr 3/2016 (111) 73 Karol Tatar, Piotr Chudzik Politechnika Łódzka, Łódź MODELOWANIE WPŁYWU NIEZALEŻNEGO STEROWANIA KÓŁ LEWYCH I PRAWYCH NA ZACHOWANIE DYNAMICZNE

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) suma momentów działających na bryłę - prędkość kątowa J moment bezwładności d dt ( J ) d dt J d dt dj dt J d dt dj d Równanie ruchu obrotowego

Bardziej szczegółowo

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie

Bardziej szczegółowo

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów

Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów Laboratorium Metod Optymalizacji 216 Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów 1. Za pomocą funkcji lsqcurvefit dobrać parametry a i b funkcji: Posiadając następujące dane pomiarowe:

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 1 m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1 (1 punkt) Spadochroniarz opada ruchem jednostajnym. Jego masa wraz z wyposażeniem wynosi 85 kg Oceń prawdziwość

Bardziej szczegółowo

AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ

AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electrical Engineering 2013 Łukasz NIEWIARA* Krzysztof ZAWIRSKI* AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ Zagadnienia

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Sreszczenie. Słowa kluczowe: sterowanie, poziom cieczy, regulator rozmyty

Sreszczenie. Słowa kluczowe: sterowanie, poziom cieczy, regulator rozmyty Ewa Wachowicz Katedra Systemów Sterowania Politechnika Koszalińska STEROWANIE POZIOMEM CIECZY W ZBIORNIKU Z WYKORZYSTANIEM REGULATORA ROZMYTEGO Sreszczenie W pracy omówiono układ regulacji poziomu cieczy,

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń

Bardziej szczegółowo

(54) (13)B1 PL B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)165054

(54) (13)B1 PL B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)165054 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)165054 (13)B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 289981 (22) Data zgłoszenia: 19.04.1991 (51) IntCl5: B63B 39/14 (54)

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA Zeszyty Problemowe Maszyny Elektryczne Nr 4/2014 (104) 89 Zygfryd Głowacz, Henryk Krawiec AGH Akademia Górniczo-Hutnicza, Kraków ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział

Bardziej szczegółowo

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem

Bardziej szczegółowo

J. Szantyr Wykład 3 Oddziaływanie ciał stałych z płynem - masa towarzysząca

J. Szantyr Wykład 3 Oddziaływanie ciał stałych z płynem - masa towarzysząca J. Szantyr Wykład 3 Oddziaływanie ciał stałych z płynem - masa towarzysząca W roku 188 Friedrich Bessel zauważył, że wahadło zanurzone w wodzie zmienia (wydłuża) okres wahań w porównaniu do wartości w

Bardziej szczegółowo

Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora

Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym

Bardziej szczegółowo

Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu

Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu Wstęp do Robotyki c W. Szynkiewicz, 29 1 Jakobiany Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu ( t )z(t)=k(x(t)) Ponieważ funkcje w powyższym równaniu są

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

NUMERYCZNE WYZNACZENIE WSPÓŁ CZYNNIKÓW MASY WODY TOWARZYSZĄ CEJ OKRĘ TU PODWODNEGO

NUMERYCZNE WYZNACZENIE WSPÓŁ CZYNNIKÓW MASY WODY TOWARZYSZĄ CEJ OKRĘ TU PODWODNEGO ZEZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVI NR 2 (161) 25 Adam Pawlę dzio NUMERYCZNE WYZNACZENIE WPÓŁ CZYNNIKÓW MAY WODY TOWARZYZĄ CEJ OKRĘ TU PODWODNEGO TREZCZENIE W pracy przedstawiono wyniki

Bardziej szczegółowo