WIELOMIANOWA APROKSYMACJA STRUMIENIA MAGNETYCZNEGO W MASZYNIE ASYNCHRONICZNEJ Z UWZGLĘDNIENIEM PIERWSZEJ I TRZECIEJ HARMONICZNEJ SMM

Wielkość: px
Rozpocząć pokaz od strony:

Download "WIELOMIANOWA APROKSYMACJA STRUMIENIA MAGNETYCZNEGO W MASZYNIE ASYNCHRONICZNEJ Z UWZGLĘDNIENIEM PIERWSZEJ I TRZECIEJ HARMONICZNEJ SMM"

Transkrypt

1 Zeszyty Problemowe Maszyy Elektrycze Nr 88/ 5 Adam Warzecha Poltechka Krakowska WIELOMIANOWA APROKSYMACJA STRUMIENIA MAGNETYCZNEGO W MASZYNIE ASYNCHRONICZNEJ Z UWZGLĘDNIENIEM PIERWSZEJ I TRZECIEJ HARMONICZNEJ SMM POLYNOMIAL APPROXIMATION OF MAGNETIC FLUX IN ASYNCHRONOUS MACHINE INCLUDING THE FIRST AND THE THIRD MMF HARMONIC Abstract: The aer descrbes a recse method of aroxmato the relatos betwee the flux lkages of the wdgs ad the frst ad the thrd harmoc of MMF geerated by the wdgs currets. These olear fuctos are aroxmated by a Fourer seres of the frst harmoc osto ad by the two-varable olyomals of the amltudes of the both harmocs. They were formulated basg o the co-eergy fucto of ma magetc feld. The arameters of the olyomals are estmated base o the results of the feld modellg. Show results of the drect ad drect estmato method cofrm the correctess of the roosed ways of the calculatos. Preseted method s desged to more recse modellg wth crcut methods the saturato effects asychroous mache.. Wstę Modelowae efektów asyceowych w maszye asychroczej zaslaej w sosób douszczający obecość składowej zerowej rądów fazowych wymaga uwzględea w modelu matematyczym harmoczych rzeływu wyadkowego uzwojeń rzyajmej rzędu oraz. [].[]. Główe strumee skojarzoe z uzwojeam aleŝy wtedy traktować jako fukcje ęcu zmeych: amltudy fazy erwszej trzecej harmoczej wyadkowej SMM w szczele oraz kąta ołoŝea os magetyczej uzwojea []. Celem racy jest rzedstawee metody aroksymacj tych fukcj a baze erwotej fukcj koeerg główego ola magetyczego oraz zlustrowae ch własośc a rzykładze slka erśceowego małej mocy o elowym obwodze magetyczym. Pola rozroszeń będą uwzględae oddzele rzy załoŝeu lowośc ch obwodów magetyczych.. Określee fukcj aroksymujących strumee skojarzoe uzwojeń względem zmeych kątowych Ogólą ostać szeregu trygoometryczego aroksymującego fukcję koeerg główego ola magetyczego w maszyach cyldryczych o elowym obwodze magetyczym odaje raca []. Jego ajrostsza ostać uwzględająca tylko erwszy składk modelujący elowość jest astęująca: E E E ( ϕ... N Eco ( α α ( ( ( α α co ( gdze ozaczają rąd magesujący harmoczej rzędu oraz rówowaŝy odowedo harmoczej odstawowej harmoczej trzecej rzeływu wyadkowego atomast kąty α α określają fazy tych harmoczych względem stojaa. Te zastęcze zmee są zaym fukcjam zmeych odstawowych ϕ... N. Szereg aroksymujące strumee skojarzoe z uzwojeam są ochodym cząstkowym fukcj koeerg ola główego: ( α α gdze α ( α co (α ( α ( α α s (α ( α α ( (ab

2 5 Zeszyty Problemowe Maszyy Elektrycze Nr 88/ ( α ( α α s ( α α (ab rzy czym wk wk. Symbole w k k ozaczają lczbę zwojów oraz wsółczyk uzwojea dla harmoczej oraz. α γ α δ O s α γ Rys.. Przyjęte ozaczea kątowe dla harmoczych rzędu wyadkowej SMM Na tej odstawe o wrowadzeu ozaczeń: ; co co (5ab α co co ; (ab α główy strumeń skojarzoy z -tym uzwojeem moŝa zasać w zwartej ostac: gdze [ γ s γ ] [ γ s γ ] (7 ( a a γ ( a a γ ; Uwzględając sumę ( we wzorach (5 ( otrzymuje sę: s δ s δ δ δ gdze ( a a wsółczyk oraz (8ab (9ab δ. Wrowadzoe osadają wymar strumea są fukcjam obu rądów magesujących sełającym astęujące waruk wykające z własośc fzyczych: ( ( ( ( ( ( ( ( (ab (ab (ab atomast w szczególośc e moŝa wykluczyć: ( (. (ab Po uwzględeu w (7 wzorów (8 (9 otrzymuje sę ajrostszą ostać szeregu aroksymującego strumee główe: [ ( α α ( ( α α α ( ( α α α [ ( α α ( ( α α α ( ( α α ( zawerającą harmocze rzędów względem zmeej kątowej α. rzy stałych wartoścach. W szczególośc gdy trzeca harmocza wyadkowej SMM e wystęuje to szereg ( redukuje sę do ostac:

3 Zeszyty Problemowe Maszyy Elektrycze Nr 88/ 55 ( α α [ ( α α ( α α ] (5 wskazującej a moŝlwość geerowaa trzecej harmoczej asyceowej strumea skojarzoego rzez harmoczą odstawową SMM.. Określee fukcj aroksymujących strumee skojarzoe uzwojeń względem rądów magesujących Do aroksymacj składków fukcj koeerg wydzeloych we wzorze ( względem dwóch rądów magesujących moŝa zastosować welomay arzyste względem wektora rądów w astęującej ogólej ostac: E co (! ( W! ( W W W W W W W... ( Postac zredukowae dla uwzględea waruków ( ( ( są astęujące: E ( ( D D ( D D D ( D D D D D... Eco ( ( G G 5 ( G G G 5 G... (7 (8 Na tej odstawe formułuje sę welomay aroksymujące fukcje strume (5ab (ab które uwzględają zwązk omędzy m wykające z własośc erwotej fukcj koeerg. Welomay osadające wsóle wsółczyk układają sę w dwe gruy: (9ab E Eco (abcd Wsółczyk tych welomaów mogą być wyzaczoe a odstawe wdm amltudowych strume fazowych lub koeerg ola główego w maszye.. Procedura wyzaczaa wdma fukcj koeerg ola strume skojarzoych uzwojeń Przyjęte w modelu maszyy o elowym obwodze magetyczym wdmo amltudowe fukcj koeerg ola ( zawera dwuargumetowe fukcje rądów ; E E magesujących ( ( W wdme amltudowym strume ( wystęują dwe skorelowae fukcje (9 cztery skorelowae fukcje ( tych samych zmeych. Do wyzaczea tych fukcj wykorzystuje sę wyk oblczeń olowych koeerg ola całkowtego lub fazowych strume skojarzoych względem trzech zmeych α. Oblczea te α są wykoywae dla zadaych rądów w uzwojeach wytwarzających wyadkową SMM w szczele o rówomere rozłoŝoych ozycjach harmoczej odstawowej rzy zadaych wartoścach harmoczej trzecej o ustaloej ozycj kątowej α t. []. Rys.. Przykładowy rozkład ola wytwarzaego rzez trójfazowe rądy stojaa w slku erśceowym małej mocy

4 5 Zeszyty Problemowe Maszyy Elektrycze Nr 88/ Aalza FFT oblczoej fukcj koeerg omejszoej o koeergę ól rozroszea E E. wyzacza fukcje ( ( Aalogcza aalza fazowego strumea skojarzoego wyzacza amltudy szeregu aroksymującego (. Wybrae wyk otrzymae dla slka erśceowego. kw rzy zaslau uzwojeń stojaa rądam susodalym ze składową stałą rówą ołowe amltudy składowej zmeej rzedstawają rysuk. E co [J] α [deg] Rys.a. Fukcja koeerg ola główego względem ozycj os harmoczej odstawowej wyadkowej SMM E coρ [-] ρ/ Rys.b. Wdmo amltudowe fukcj koeerg odesoe do składowej stałej α [deg] Rys.a. Fukcja główego strumea skojarzoego względem ozycj os harmoczej odstawowej wyadkowej SMM ρ [-] ρ/ Rys.b. Wdmo amltudowe strumea główego odesoe do harmoczej odstawowej Obecość harmoczych arzystych w wdme strumea wyka z wrowadzea do rądów fazowych składowej stałej w celu detyfkacj fukcj (9 (. 5. Estymacja arametrów welomaów aroksymujących Welomay (9 ( aroksymujące amltudy szeregu strumea ( są ze sobą skorelowae orzez wsóle wsółczyk. Te same wsółczyk wystęują w welomaach ( (7 aroksymujących składk szeregu koeerg (. Z tych owązań wykają dwe metody estymacj arametrów fukcj aroksymujących strumee: ośreda bezośreda. Metoda ośreda bazująca a wdmach koeerg obejmuje tylko dwe eskorelowae fukcje ale wykorzystuje tylko ewelką część daych uzyskwaych z oblczeń olowych. Wymaga teŝ duŝej recyzj oblczeń aby wyzaczyć orawe fukcje ochode. Metoda bezośreda bazuje a wdmach strume fazowych obejmuje dwe skorelowae fukcje aroksymujące odowedo składową stałą harmoczą odstawową strume fazowych oraz cztery skorelowae fukcje aroksymujące amltudy harmoczych tych strume. Zagadee aroksymacj fukcj koeerg ola E co względem zmeych ( za omocą fukcj f o arametrach W jest osae rówaem: ( W ε E co f ( Aalogcze zagadee aroksymacj N fukcj skorelowaych strume skojarzoych za omocą fukcj f osuje układ rówań []:

5 Zeszyty Problemowe Maszyy Elektrycze Nr 88/ 57 M N f f f N ( W ( W M ( W N ε ε M ε N ( Oblczae wsółczyków W mmalzujących błędy aroksymacj ε olega a mmalzacj fukcj celu określoej jako błąd średokwadratowy odowedo dla fukcj koeerg układu fukcj strume: ε ε E ( W ( W P ( Eco ( f ( W N P ( ( f ( W ( W racy do tych oblczeń wykorzystao algorytm Gaussa-Newtoa stosoway w detyfkacj obektów dyamczych. Przyjęto aroksymację koeerg welomaem stoa oraz aroksymację strume welomaam 5 stoa. Bazę do oblczeń staowły wyk oblczeń olowych w (5x5x uktach rzestrze arametrów α dla α.. Prezetacja dwuwymarowych charakterystyk magesowaa Fukcje aroksymujące rerezetatywe charakterystyk strume względem rądów o wsółczykach oblczoych metodą ośredą rzestawają rysuk 5abcd. Składk strume wykające z wystęowaa trzecej harmoczej koeerg e rzekraczają 5% wartośc harmoczej odstawowej. Z tego względu dokładość loścowa tej metody e jest wystarczająca. Poadto rzy wększych asyceach ujawają sę wady aroksymacj welomaowej których e da sę usuąć rzez odesee stoa welomaów. Rysuk ab ozwalają oceć dokładość aroksymacj o wsółczykach wyzaczoych metodą bezośredą. Rozroszee uktów odwzorowujących trzecą harmoczą strume a rys.b rzy róŝych wartoścach rądu staow marę edokładośc daych źródłowych ochodzących z oblczeń ola..5 Rys.5a. Aroksymacja fukcj..5 Rys.5b. Aroksymacja fukcj..5 Rys.5c. Aroksymacja fukcj.. Rys.5d. Aroksymacja fukcj

6 58 Zeszyty Problemowe Maszyy Elektrycze Nr 88/ rzy Rys.a. Aroksymacja fukcj ( t. o - ukty z oblczeń olowych rzy Rys.b. Aroksymacja fukcj ( t o - ukty z oblczeń olowych 7. Podsumowae Model obwodowy maszyy asychroczej uwzględający elowość główego obwodu magetyczego oraz erwszą trzecą harmoczą rozkładu wyadkowej SMM w szczele zawera dwuwymarowe charakterystyk główych strume skojarzoych z uzwojeam określoe względem amltud tych harmoczych. Porawą ostać fukcj aroksymujących strumee otrzymuje sę a odstawe aroksymacj erwotej fukcj koeerg główego ola magetyczego względem kąta omędzy osam erwszej trzecej harmoczej SMM oraz względem ch amltud wyraŝaych rzez odowede rądy magesujące. Trudośc w sformułowau fukcj bazowych dostosowaych do aroksymacj tych charakterystyk owodują Ŝe koecze jest zastosowae aroksymacj welomaowej względem rądów ommo ograczoego rzedzału jej orawośc. Wyzaczae wsółczyków tych welomaów bazuje a wykach ser oblczeń olowych strume skojarzoych uzwojeń lub koeerg ola w maszye zaslaej symetryczym układem rądów ze składową stałą. Daym dla rocedury estymującej arametry są wdma amltudowe strumea fazowego w metodze bezośredej lub wdma koeerg ola w metodze ośredej. Oblczea wykoae dla slka małej mocy wykazały Ŝe metoda ośreda jest zdecydowae rostsza ale jej dokładość jest wystarczająca tylko dla charakterystyk modelujących harmoczą odstawową strume. Wyka to z ewelkego udzału charakterystyk wyŝszych harmoczych. Przedstawoy sosób formułowaa wyzaczaa dwuwymarowych charakterystyk magesowaa jest dedykoway dla model obwodowych maszy z rówomerą szczelą uwzględających odkształcee ola szczelowego w skutek elowośc obwodu magetyczego obecośc trzecej harmoczej SMM w szczele Lteratura [] Morera J.C. Lo T.A. Modellg of Saturated AC Maches Icludg Ar Ga Flux Harmoc Comoets IEEE Trasactos o Idustry Alcatos Vol. 8 No [] Sobczyk T.J. Mathematcal Model of Iducto Maches Accoutg for Saturato due to the Frst ad the Thrd MMF Harmocs Proceedgs of ICEM 98 Vol. / Istabul [] Warzecha A. Comutato of co-eergy fucto for o-lear model of woud rotor ducto motor Czasosmo Techcze sera Elektrotechka zeszyt /98 Wydawctwo Poltechk Krakowskej Kraków 998 s. 5. [] Korbaś G. Macek-Kamńska K. Badae rzydatośc wybraych gradetowych bezgradetowych metod mmalzacj do wyzaczaa arametrów modelu matematyczego slka dukcyjego Materały Koferecyje SME Gdańsk. [5] Kudła J. Modele matematycze maszy elektryczych rądu rzemeego uwzględające asycee magetycze rdze Wydawctwo Poltechk Śląskej Glwce 5. Autor dr Ŝ. Adam Warzecha Poltechka Krakowska Istytut Elektromechaczych Przema Eerg tel. ( 8 ewarzec@cyf-kr.edu.l Recezet Dr Ŝ. Wojcech Petrowsk

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Paliwa stałe, ciekłe i gazowe

Paliwa stałe, ciekłe i gazowe Palwa stałe, cekłe gazowe Podstawowe właścwośc alw gazowych Wydzał Eergetyk Palw Katedra Techolog Palw Gaz Gaz doskoały jest to hotetyczy gaz, którego droby e rzycągają sę wzajeme, są eskończee małe sztywe

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

ZANURZANIE W REGRESJI LINIOWEJ

ZANURZANIE W REGRESJI LINIOWEJ MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XII/, 011, str. 0 09 ZANURZANIE W REGRESJI LINIOWEJ Małgorzata Kobylńska Katedra Metod Iloścowych Uwersytet Warmńsko-Mazursk w Olsztye e-mal: agosak@oczta.oet.l

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera)

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera) Wyład 4 Blas rówań teor srężystośc Dooamy zestawea wszystch rówań teor srężystośc Gra rówań. Różczowe rówaa rówowag (war Navera Lczba rówań Lczba ewadomych X 6 (. Zwąz geometrycze (rówaa Cachy ego ( 6

Bardziej szczegółowo

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Ćwiczeie 5 OKREŚLENIE CARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Wykaz ważiejszych ozaczeń c 1 rędkość bezwzględa cieczy a wlocie do wirika, m/s c rędkość bezwzględa cieczy a wylocie

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Matematyka II. x 3 jest funkcja

Matematyka II. x 3 jest funkcja Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F

Bardziej szczegółowo

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII RODUKCJI I TECHNOLOGII MATERIAŁÓW OLITECHNIKA CZĘSTOCHOWSKA RACOWNIA DETEKCJI ROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-6 BADANIE STATYSTYCZNEJ CZYSTOŚCI OMIARÓW

Bardziej szczegółowo

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme

Bardziej szczegółowo

KALIBRACJA NIE ZAWSZE PROSTA

KALIBRACJA NIE ZAWSZE PROSTA KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel

Bardziej szczegółowo

WYZNACZANIE PARAMETRÓW MODELU ROBOTA PRZEMYSŁOWEGO PRZY POMOCY SIECI NEURONOWYCH

WYZNACZANIE PARAMETRÓW MODELU ROBOTA PRZEMYSŁOWEGO PRZY POMOCY SIECI NEURONOWYCH XIV Krajowa Koferecja Autoatyk Zeloa Góra, -7 czerwca WYZNACZANIE PARAMETRÓW MODEU ROBOTA PRZEMYSŁOWEGO PRZY POMOCY SIECI NEURONOWYCH Jakub MOŻARYN, Cezary WIDNER, Jerzy E KUREK Istytut Autoatyk Robotyk,

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

WPŁYW KORELACJI KRYTERIÓW NA WIELOKRYTERIALNĄ SELEKCJĘ WALORÓW GIEŁDOWYCH

WPŁYW KORELACJI KRYTERIÓW NA WIELOKRYTERIALNĄ SELEKCJĘ WALORÓW GIEŁDOWYCH Studa Ekoomcze. Zeszyty Naukowe Uwersytetu Ekoomczego w Katowcach ISSN 2083-8611 Nr 301 2016 Ewa Pośech Uwersytet Ekoomczy w Katowcach Wydzał Zarządzaa Katedra Matematyk ewa.osech@ue.katowce.l Adraa Mastalerz-Kodzs

Bardziej szczegółowo

Tekst oraz ilustracje do niniejszego opracowania zaczerpnięto z następujących podręczników, publikacji i wydawnictw popularno naukowych:

Tekst oraz ilustracje do niniejszego opracowania zaczerpnięto z następujących podręczników, publikacji i wydawnictw popularno naukowych: UZUPEŁNIAJĄCE MATERIAŁY DYDAKTYCZNE DLA UCZNIÓW TECHNIKUM MECHANICZNEGO PRZYGOTOWUJĄCYCH SIĘ DO ZEWNĘTRZNEGO EGZAMINU KWALIFIKACYJNEGO METROLOGIA TECHNICZNA (materały wybrae) Materały zebrał : mgr ż. Aatol

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej Materały omoccze do e-leargu Progozowae symulacje Jausz Górczyńsk Moduł. Podstawy rogozowaa. Model regresj lowej Wyższa Szkoła Zarządzaa Marketgu Sochaczew Od Autora Treśc zawarte w tym materale były erwote

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem Kostrukcje budowle zeme OBLICZENIA WSPÓŁCZYNNIKA STATECZNOŚCI SKAPY ODWODNEJ METODĄ FELLENIUSA DLA ZAPOY ZIEMNEJ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DENAŻEM Zapora zema posadowoa a podłożu przepuszczalym

Bardziej szczegółowo

WPŁYW ZMIENNOŚCI MASY JEDNEGO Z POJAZDÓW NA NIEBEZPIECZEŃSTWO ZEJŚCIA KOŁA Z SZYNY PODCZAS ZDERZENIA CZOŁOWEGO

WPŁYW ZMIENNOŚCI MASY JEDNEGO Z POJAZDÓW NA NIEBEZPIECZEŃSTWO ZEJŚCIA KOŁA Z SZYNY PODCZAS ZDERZENIA CZOŁOWEGO Dr ż. erzy Pawlus WPŁYW ZMIENNOŚCI MAY EDNEGO Z POAZDÓW NA NIEBEZPIECZEŃTWO ZEŚCIA KOŁA Z ZYNY PODCZA ZDERZENIA CZOŁOWEGO PI TREŚCI. Wrowadzee. Aalza daych statystyczych dotyczących zderzeń czołowych zderzeń

Bardziej szczegółowo

Badania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć

Badania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć Algorytm smpleks adaa operacyje Wykład adaa operacyje dr hab. ż. Joaa Józefowska, prof.pp Istytut Iformatyk Orgazacja zajęć 5 godz wykładów dr hab. ż. J. Józefowska, prof. PP Obecość a laboratorach jest

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METROLOGIA Dr ż. Elgusz PAWŁOWSKI Poltechka Lubelska Wydzał Elektrotechk Iformatyk Prezetacja do wykładu dla EINS Zjazd 4, wykład r 7, 8 Prawo autorske Nejsze materały podlegają ochroe zgode z Ustawą o

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f( : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

8.1 Zbieżność ciągu i szeregu funkcyjnego

8.1 Zbieżność ciągu i szeregu funkcyjnego Rozdzał 8 Cąg szereg fukcyje 8.1 Zbeżość cągu szeregu fukcyjego Dla skrócea zapsu przyjmjmy pewe ozaczee. Defcja. Nech X, Y. Przez Y X ozaczamy zbór wszystkch fukcj określoych a zborze X o wartoścach w

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym Obwody trójfazowe... / OBWODY TRÓJFAZOWE Zikaie sumy apięć ïród»owych i sumy prądów w wielofazowym układzie symetryczym liczba faz układu, α 2π / - kąt pomiędzy kolejymi apięciami fazowymi, e jα, e -jα

Bardziej szczegółowo

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana

Bardziej szczegółowo

POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO WERYFIKACJA POMIAROWA

POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO WERYFIKACJA POMIAROWA Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56 Studia i Materiały Nr 24 2004 Janusz BIALIK *, Jan ZAWILAK * elektrotechnika, maszyny elektryczne,

Bardziej szczegółowo

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f() : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

Podstawy informatyki. Wykład nr 7 ( ) Plan wykładu nr 7. Politechnika Białostocka - Wydział Elektryczny. Całkowanie numeryczne

Podstawy informatyki. Wykład nr 7 ( ) Plan wykładu nr 7. Politechnika Białostocka - Wydział Elektryczny. Całkowanie numeryczne Wyład r 7 /38 odstawy formaty olteca Bałostoca - Wydzał Eletryczy Eletroteca, semestr II, studa estacjoare Ro aademc 6/7 la wyładu r 7 Metody całowaa umeryczego metoda rostoątów metoda traezów metoda arabol

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

Polaryzacja i ośrodki dwójłomne. Częśd II

Polaryzacja i ośrodki dwójłomne. Częśd II Polaryzacja ośrodk dwójłome Częśd II Dwójłomość wymuszoa Dwójłomośd wymuszoa zjawsko powstawaa lub zmay dwójłomośc ośrodka zotropowego lub azotropowego pod wpływem zewętrzych czyków fzyczych. Czyk zewętrze:

Bardziej szczegółowo

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION JEMIELITA Grzegorz 1 KOZYRA Zofia drgaia, belka, odłoŝe sręŝyste DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM Praca dotyczy wyzaczaia drgań belki a dwuarametrowym odłoŝu sręŝystym obciąŝoej symetryczie

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

Bezrdzeniowy silnik tarczowy wzbudzany magnesami trwałymi w układzie Halbacha

Bezrdzeniowy silnik tarczowy wzbudzany magnesami trwałymi w układzie Halbacha Bezrdzeniowy silnik tarczowy wzbudzany magnesami trwałymi w układzie Halbacha Sebastian Latosiewicz Wstęp Współczesne magnesy trwałe umożliwiają utworzenie magnetowodu maszyny elektrycznej bez ciężkiego

Bardziej szczegółowo

Badania niezawodnościowe i statystyczna analiza ich wyników

Badania niezawodnościowe i statystyczna analiza ich wyników Badaa ezawodoścowe statystycza aalza ch wyków. Co to są badaa ezawodoścowe jak sę je przeprowadza?. Metody prezetacj opsu daych pochodzących z eksperymetu 3. Sposoby wyzaczaa rozkładu zmeej losowej a podstawe

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI

PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI Adrzej POWNUK *) PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI. Wprowadzee Mechaka lowa staow jak dotąd podstawowy obszar zateresowań żyerskch. Isteje jedak

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA TERMODYNAMIKA PROCESOWA I TECHNICZNA Wykład IX Fugatywość substacj czystych Układy weloskładkowe - roztwory FUGATYWNOŚĆ SUBSTANCJI CZYSTYCH - defcja Pojęce tzw. fugatywośc jest bardzo użyteczym sosobem

Bardziej szczegółowo

UWAGI O BILANSIE MASY I PĘDU W GRADIENTOWEJ TERMOMECHANICE

UWAGI O BILANSIE MASY I PĘDU W GRADIENTOWEJ TERMOMECHANICE ROCZNIKI INŻYNIERII BUDOWLANEJ ZEZYT 15/2015 Komsa Iżyer Budowlae Oddzał Polse Aadem Nau w Katowcach UWAGI O BILANIE MAY I PĘDU W GRADIENTOWEJ TERMOMECHANICE Ja KUBIK Wydzał Budowctwa Archtetury, Poltecha

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

IV. ZMIENNE LOSOWE DWUWYMIAROWE

IV. ZMIENNE LOSOWE DWUWYMIAROWE IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję

Bardziej szczegółowo

Rozdział 4 Model teoretyczny 40

Rozdział 4 Model teoretyczny 40 4. Model teoretyczy ozdział 4 Model teoretyczy 4 4. ówaia fizycze. Klasycze odele teoretycze oisujące zachowaie się betou zwye ostulują istieie lastyczości tego ateriału [7, 5]. W ostatich latach coraz

Bardziej szczegółowo

[ ] WSPÓŁCZYNNIK EKSCESU WEKTORA LOSOWEGO. Wprowadzenie. Katarzyna Budny =, (1)

[ ] WSPÓŁCZYNNIK EKSCESU WEKTORA LOSOWEGO. Wprowadzenie. Katarzyna Budny =, (1) Katarzya Budy Uwersytet Ekoomczy w Krakowe WSPÓŁCZYNNIK EKSCESU WEKTORA LOSOWEGO Wprowadzee Jedą z podstawowych mar spłaszczea czy też kocetrac rozkładu zmee losowe edowymarowe wokół średe est kurtoza

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Analiza właściwości rezonansowych kaskad cewek ze względu na zwiększanie odległości przesyłu

Analiza właściwości rezonansowych kaskad cewek ze względu na zwiększanie odległości przesyłu Zbgew KACZMARCZYK 1, Krysta FRANIA 1, Krzysztof BODZEK 1, Adam RUSZCZYK Poltechka Śląska, Katedra Eergoelektrok, Napędu Elektryczego Robotyk (1), Korporacyje Cetrum Badawcze ABB () do:1015199/4801814 Aalza

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

Podstawy Informatyki. Jednostki informacji. Metalurgia, I rok. Systemy pozycyjne. Konwersja kodu dziesiętnego na dwójkowy. System dwójkowy (binarny)

Podstawy Informatyki. Jednostki informacji. Metalurgia, I rok. Systemy pozycyjne. Konwersja kodu dziesiętnego na dwójkowy. System dwójkowy (binarny) Podstawy Iformatyk Metalurga, I rok Wykład 3 Lczby w komuterze Jedostk formacj Bt (ag. bt) (Shao, 948) Najmejsza lość formacj otrzeba do określea, który z dwóch rówe rawdoodobych staów rzyjął układ. Jedostka

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

MOMENT ORAZ SIŁY POCHODZENIA ELEKTROMAGNETYCZNEGO W DWUBIEGOWYM SILNIKU SYNCHRONICZNYM

MOMENT ORAZ SIŁY POCHODZENIA ELEKTROMAGNETYCZNEGO W DWUBIEGOWYM SILNIKU SYNCHRONICZNYM Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 59 Politechniki Wrocławskiej Nr 59 Studia i Materiały Nr 26 2006 Janusz BIALIKF *F, Jan ZAWILAK * elektrotechnika, maszyny elektryczne,

Bardziej szczegółowo

POLOWO - OBWODOWY MODEL BEZSZCZOTKOWEJ WZBUDNICY GENERATORA SYNCHRONICZNEGO

POLOWO - OBWODOWY MODEL BEZSZCZOTKOWEJ WZBUDNICY GENERATORA SYNCHRONICZNEGO Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 60 Politechniki Wrocławskiej Nr 60 Studia i Materiały Nr 27 2007 maszyny synchroniczne,wzbudnice, modelowanie polowo-obwodowe Piotr KISIELEWSKI

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

O pewnej metodzie oceny jakości napędu przekształtnikowego

O pewnej metodzie oceny jakości napędu przekształtnikowego Jacek GROCHOWALSKI Poltechka Szczecńska, Istytut Elektrotechk O pewej metodze ocey jakośc apędu przeksztatkowego Streszczee. W artykule przedstawoo sposób wyzaczaa przestrzeej sy magetomotoryczej (SMM)

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

WPŁYW ROZMIESZCZENIA MAGNESÓW NA WŁAŚCIWOŚCI EKSPOATACYJNE SILNIKA TYPU LSPMSM

WPŁYW ROZMIESZCZENIA MAGNESÓW NA WŁAŚCIWOŚCI EKSPOATACYJNE SILNIKA TYPU LSPMSM Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 64 Politechniki Wrocławskiej Nr 64 Studia i Materiały Nr 3 21 Tomasz ZAWILAK* silnik synchroniczny, magnesy trwałe, rozruch bezpośredni,,

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

2. Rozkład zawartości popiołu w węglu jako mieszanina rozkładów

2. Rozkład zawartości popiołu w węglu jako mieszanina rozkładów Górctwo Geożyera Rok 3 Zeszyt 4 007 Tomasz Nedoba* OCENA ZAWARTOŚCI POPIOŁU W POKŁADACH WĘGLA ZA POMOCĄ NIEPARAMETRYCZNYCH METOD STATYSTYCZNYCH**. Wprowadzee W procese przeróbk węgla ezwykle ważym problemem

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

ANALIZA BŁĘDÓW METOD WYZNACZANIA MIAR NIEZAWODNOŚCI OBIEKTÓW KOMUNALNYCH NA PRZYKŁADZIE SYSTEMU ZAOPATRZENIA W WODĘ

ANALIZA BŁĘDÓW METOD WYZNACZANIA MIAR NIEZAWODNOŚCI OBIEKTÓW KOMUNALNYCH NA PRZYKŁADZIE SYSTEMU ZAOPATRZENIA W WODĘ RYZARDA IWANEJKO ANALIZA BŁĘDÓW METOD WYZNACZANIA MIAR NIEZAWODNOŚCI OBIEKTÓW KOMUNALNYCH NA PRZYKŁADZIE YTEMU ZAOPATRZENIA W WODĘ ANALYI OF ERROR FROM RELIABILITY MEAURE ETIMATION METHOD FOR MUNICIPAL

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

OGÓLNE SFORMUŁOWANIE ZADANIA IDENTYFIKACJI NIELINIOWEGO MODELU DYNAMICZNEGO

OGÓLNE SFORMUŁOWANIE ZADANIA IDENTYFIKACJI NIELINIOWEGO MODELU DYNAMICZNEGO acta mechaca et automatca, vol.3 o.2 (2009) OGÓLNE SFORMUŁOWANIE ZADANIA IDENTYFIKACJI NIELINIOWEGO MODELU DYNAMICZNEGO Zbgew DĄBROWSKI * Wydzał Samochodów Maszy Roboczych, Istytut Podstaw Budowy Maszy,

Bardziej szczegółowo