Tunelowanie. Pola. Tunelowanie Przykłady: Tunelowanie. bariera. obszar 1 obszar 2. W drugą stronę: Poziomy nieskończonej anty studni! sin. sin.
|
|
- Edyta Kalinowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Pola Tunelowanie bariera obszar obszar 2 0 / / / / W drugą stronę: 0 / / / / 2 Tunelowanie Przykłady: Tunelowanie Poziomy nieskończonej anty studni! 4 4 sin sin sinh 4 sinh exp sin
2 Tunelowanie Gęstość ładunku i prądu Gęstość prądu:, 2 Ψ Ψ ΨΨ W przypadku fali de Broigla: W przypadku fali zanikającej: Ψ, czyli każda fala niesie z sobą prąd Ψ, 4 sin Im Fala klasyczna: Ψ, Tylko złożenie amplitud + i daje rzeczywisty prąd! 5 6 Gęstość ładunku i prądu Gęstość prądu: W przypadku fali de Broigla:, 2 Ψ Ψ ΨΨ W przypadku fali zanikającej: Ψ, czyli każda fala niesie z sobą prąd Ψ, 2 Im 2, 2, 2,, Tylko złożenie amplitud + i daje rzeczywisty prąd! 2, 7 8 2
3 Dla temperatury 0: Dla metali i :,,,, 2,, 2, 2, 2 Opór jest skończony nawet dla idealnego przewodnika! 2, 38,7 25,8 Ω (w simensach) 9 0 2, ,7 Studnia trójkątna Metoda przybliżona WKB (Wentzel Krammers Brillouin) dla potencjału wolnozmiennego To są różne definicje częściej jest z 2: 2 77,4 Wzór Landauera (Landauer formula) gdy mamy do czynienia z wieloma kanałami przewodnictwa Trzeba uważać na definicję! Dla dostajemy prawo Ohma. to suma różnych pełnych kanałów przewodnictwa np. dwa różne spiny dają / 2 / 2 3
4 Studnia trójkątna Metoda przybliżona WKB (Wentzel Krammers Brillouin) dla potencjału wolnozmiennego 2, , / 2 / B. J. van Wees et al. Quantized conductance of point contacts in a two dimensional electron gas Phys. Rev. Lett. 60, (988) B. J. van Wees et al. Quantum ballistic and adiabatic electron transport studied with quantum point contacts Phys. Rev. B 43, (99) 5 M. A. Topinka et al. Coherent branched flow in a two dimensional electron gas Nature 40, 83 (200) 6 4
5 R.M. Westervelt, M. A. Topinka et al. Physica E 24 (2004) R.M. Westervelt, M. A. Topinka et al. Physica E 24 (2004) Experiment Experiment 2 2 M. A. Topinka et al. Nature 40, 83 (200) M. A. Topinka et al. Nature 40, 83 (200) Modeling
6 M. A. Topinka et al. Nature 40, 83 (200) 2 R.M. Westervelt, M. A. Topinka et al. Physica E 24 (2004) Tunelowanie R.M. Westervelt, M. A. Topinka et al. Physica E 24 (2004)
7 Tunelowanie Kropka zachowuje się jak mały kondensator o energii ~ Kropka zachowuje się jak mały kondensator o energii ~ Elektrody kontrolujące tunelowanie 0 0 Bramka Luis Dias UT/ORNL Luis Dias UT/ORNL
8 Kropka zachowuje się jak mały kondensator o energii ~ Kropka zachowuje się jak mały kondensator o energii ~ Kropka zachowuje się jak mały kondensator o energii ~ Kropka zachowuje się jak mały kondensator o energii ~ Inorganica Chimica Acta 36 (2008)
9 and presentations/teaching/undergraduate%20courses/vy305 molecular architecture and evolution offunctions/presentations/presentations 2007/seminar 2/P2.pdf 33 Clive Emary Theory of Nanostructures nanoskript.pdf 34 graz.ac.at/~hadley/ss2/set/transistor/coulombblockade.php
10 Dodatkowe diamenty np. efekty spinowe, stany wzbudzone itp ipcms.u strasbg.fr/spip.php?article49&lang=en Clive Emary Theory of Nanostructures nanoskript.pdf 37 Figure : The differential conductance, calculated in the regime of sequential tunneling through a one dimensional quantum dot, as a function of the gate voltage (to the left) and the transport voltage. Green and red: Positive values. Blue: Close to zero. Pink: Negative differential conductance. The Coulomb blockade diamonds are aligned along the gate voltage axis. In parallel, one observes structures which are due to excited states of the dot. Electronic correlations combined with spin selection rules lead to the regions of negative differential conductance K Condona 5K 7 K Figure 2 Evidence and temperature dependence of vibron assisted transport. a, Differential conductance di sd =dv sd for a subset of the Coulomb diamonds shown in Fig. d, showing the quasi periodic excited vibronic states (see dotted lines). The arrows point to electronic excited states, visible at higher energy
11 Pojedynczy odczyt pojedynczego spinu 4 Elzerman, Nature (2004) 0T, mk Pojedynczy odczyt pojedynczego spinu Spin storage I QP V pulse C empty QD inject & wait read-out spin empty QD -V app AlGaAs Barrier i-gaas Buffer p substrate STORAGE F p + Contact QDs AlGaAs Barrier Metal -ev store I QPC (na) 2 0 Elzerman, Nature (2004) SPIN UP Time (ms) SPIN DOWN Time (ms) Hubert J. Krenner AlGaAs Barrier +V app i-gaas Buffer p substrate Kroutvar, Nature (2004) READ / RESET F +ev reset Hubert J. Krenner
12 Qubity Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots J. R. Petta, et al. Science 30 September 2005: Qubity Qubity
13 Tunelowanie Tunelowanie Tunelowanie Kolokwium WAN IN. Znajdź w literaturze parametry pasmowe InAs (masy efektywne, powinowactwo elektr., ) [0p] 2. Na podstawie danych z rys. wyznacz pojemność kropki kwantowej o średnicy 32 A. [5p] 3. Na podstawie rys. 2 oraz 3 wyznacz rozmiar nanocząstek InAs w przybliżeniu nieskończonej studni potencjału. Porównaj z wartościami mierzonymi oraz z rys. 3. [0p] 4. Na podstawie rys. 2 oraz 3 wyznacz rozmiar nanocząstek InAs w przybliżeniu skończonej studni potencjału. Porównaj z wartościami mierzonymi oraz z rys. 3. [30p] (zadanie numeryczne). 5. Oszacuj powinowactwo elektronowe (electron affinity, energię jonizacji z poziomu studni) oraz pojemność kropek kwantowych z rys. 2. (zadanie numeryczne). Porównaj wyniki z danymi tablicowymi (pkt ) oraz ze wzorem na pojemność kuli i wyznacz nanocząstki. [30p] (powinowactwo) Równania Maxwella w ośrodku materialnym Równania materiałowe (linowe) 0 Równania zapisane w postaci potencjału skalarnego i wektorowego : Wtedy 0 Skoro rotacja gradientu znika, to wprowadzamy czyli
14 Równania Maxwella w ośrodku materialnym Przykładowo: Do potencjałów skalarnych i wektorowych możemy dodawać nie tylko stałe i : Nazywamy to cechowaniem np.: Cechowania Landaua: pole 0,0, Cechowania Coulomba: 0pole 0,0, Cechowania Lorentza: 0 lub (niestety wyróżnia kierunek),,0 (niestety komplikuje obliczenia) Równania Schrodingera w polu i : 2, Pęd kanoniczny Równanie ciągłości,, albo:,, 2 Ψ Suma: pęd kinetyczny,,, 2 Ψ Ψ ΨΨ Ψ, Ψ, Ψ Ψ Studnia trójkątna Przykład: stałe pole elektryczne, STUDNIA trójkątna: 2 2 / 2 Przekształcenie: 2 Podstawiamy: / /,, 2 Równanie typu: Rozwiązaniem są funkcje Airy i. Rozwiązaniami równania są miejsca zerowe funkcji (trzeba tylko najpierw nieco uporządkować równanie)
15 Przykład: stałe pole elektryczne, STUDNIA trójkątna: 2 2 /, 2 Wybieramy cechowanie, Rozwiązania STACJONARNE w postaci funkcji Airy:, 2 / / , Wybieramy cechowanie, 2 Rozwiązania STACJONARNE w postaci funkcji Airy: A gdzie jest ruch elektronu w polu??? Funkcja falowa rozwiązanie przypomina fale stojące! funkcja tuneluje w barierę, zanika szybciej dla rosnącego potencjału, oscyluje dla tym szybciej im, czyli rośnie energia kinetyczna cząsteczki Dodanie stałej do potencjału ZMIENIA funkcje falowe! 59 Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako: Jak widać po scałkowaniu: Przykładowo: / 5
16 Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako: Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako: Lokalna gęstość stanów: Lokalna gęstość stanów: Przykładowo:, ~ ~ 2 2 Przykładowo:, ~ ~ Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako:, ~ 2 Przykładowo:, ~ ~ Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako:, ~ 2 2 Efekt Frantza Kieldysha w polu elektrycznym przejścia optyczne zachodzą w niższych energiach bo przerwa energetyczna się rozmywa przez tunelowanie do niej stanów:
17 , Wybieramy cechowanie, 2 2,,,,, Wybieramy cechowanie, 0, za to,,, 2 Znak, bo Nie ma stanów stacjonarnych Potencjał nie zależy od położenia rozwiązanie typu exp, exp T, 2, 2, 2,, 2 exp T, exp T, 65, exp T,exp exp 2 exp T, 2 exp exp T, 2 Cząstka przyspiesza w czasie z pędem, co odpowiada stałej sile. Pęd cząstki rośnie. Z drugiej strony oczekiwalibyśmy, żeby ta zmiana pędu była widoczna w zmianie przestrzennej exp (zmiana długości fali, czyli zmiana wektora falowego ) a tego nie ma. Gęstość prądu jest OK stała w przestrzeni i zwiększa się w czasie (stałe przyspieszenie), 2 Ψ, Ψ, Trudno też zdefiniować gęstość stanów. Ψ Ψ 66 Tensor przewodnictwa Tensor przewodnictwa: Tensor przewodnictwa: W ośrodku izotropowym Tensor oporności: 67 Równania Maxwella w ośrodku materialnym Równania materiałowe (linowe) 0 Równania zapisane w postaci potencjału skalarnego i wektorowego : Wtedy 0 Skoro rotacja gradientu znika, to wprowadzamy 68 czyli 0 7
18 Równania Maxwella w ośrodku materialnym Przykładowo: Do potencjałów skalarnych i wektorowych możemy dodawać nie tylko stałe i : Nazywamy to cechowaniem np.: Cechowania Landaua: pole 0,0, Cechowania Coulomba: 0pole 0,0, Cechowania Lorentza: 0 lub (niestety wyróżnia kierunek),,0 (niestety komplikuje obliczenia) Równania Schrodingera w polu i : 2, Pęd kanoniczny Równanie ciągłości,, albo:,, 2 Ψ Suma: pęd kinetyczny,,, 2 Ψ Ψ ΨΨ Ψ, Ψ, Ψ Ψ Studnia trójkątna Przykład: stałe pole elektryczne, STUDNIA trójkątna: 2 2 / 2 Przekształcenie: 2 Podstawiamy: / /,, 2 Równanie typu: Rozwiązaniem są funkcje Airy i. Rozwiązaniami równania są miejsca zerowe funkcji (trzeba tylko najpierw nieco uporządkować równanie)
19 Przykład: stałe pole elektryczne, STUDNIA trójkątna: 2 2 /, 2 Wybieramy cechowanie, Rozwiązania STACJONARNE w postaci funkcji Airy:, 2 / / , Wybieramy cechowanie, 2 Rozwiązania STACJONARNE w postaci funkcji Airy: A gdzie jest ruch elektronu w polu??? Funkcja falowa rozwiązanie przypomina fale stojące! funkcja tuneluje w barierę, zanika szybciej dla rosnącego potencjału, oscyluje dla tym szybciej im, czyli rośnie energia kinetyczna cząsteczki Dodanie stałej do potencjału ZMIENIA funkcje falowe! 75 Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako: Jak widać po scałkowaniu: Przykładowo: / 9
20 Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako: Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako: Lokalna gęstość stanów: Lokalna gęstość stanów: Przykładowo:, ~ ~ 2 2 Przykładowo:, ~ ~ Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako:, ~ 2 Przykładowo:, ~ ~ Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako:, ~ 2 2 Efekt Frantza Kieldysha w polu elektrycznym przejścia optyczne zachodzą w niższych energiach bo przerwa energetyczna się rozmywa przez tunelowanie do niej stanów:
21 , Wybieramy cechowanie, 2 2,,,,, Wybieramy cechowanie, 0, za to,,, 2 Znak, bo Nie ma stanów stacjonarnych Potencjał nie zależy od położenia rozwiązanie typu exp, exp T, 2, 2, 2,, 2 exp T, exp T, 8, exp T,exp exp 2 exp T, 2 exp exp T, 2 Cząstka przyspiesza w czasie z pędem, co odpowiada stałej sile. Pęd cząstki rośnie. Z drugiej strony oczekiwalibyśmy, żeby ta zmiana pędu była widoczna w zmianie przestrzennej exp (zmiana długości fali, czyli zmiana wektora falowego ) a tego nie ma., 2 Ψ, Ψ, Trudno też zdefiniować gęstość stanów. Gęstość prądu jest OK stała w przestrzeni i zwiększa się w czasie (stałe przyspieszenie) Ψ Ψ 82 Tensor przewodnictwa Efekt Halla Tensor przewodnictwa: Tensor przewodnictwa: W ośrodku izotropowym Tensor oporności: Siła Lorentza: Model Drudego: czas relaksacji pędowej (scattering time) Dostajemy:
22 Efekt Halla Efekt Halla Zaniedbując i biorąc pod uwagę przewodnictwo elektronów i dziur : 0 Dostajemy tzw. stałą Halla: Np. dla 0 mamy Biorąc / W przypadku efektu Halla,0,0 : Tensor przewodnictwa: Tensor oporności: Efekt Halla Efekt Halla Pełny tensor przewodnictwa Pełny tensor oporności Pełny tensor przewodnictwa Pełny tensor oporności Opór właściwy (Ω) 0 stała Halla Dla różnych kanałów przewodnictwa transport wielonośnikowy analizujemy tensor Pole magnetyczne (T) Roman Stępniewski
23 Efekt Halla Efekt Halla Pełny tensor przewodnictwa Pełny tensor oporności Dla różnych kanałów przewodnictwa transport wielonośnikowy Roman Stępniewski Transport wielonośnikowy w grafenie (M. Gryglas Borysiewicz) Roman Stępniewski Efekt Halla Efekt Halla
24 Efekt Halla kwantowy Efekt Halla kwantowy Efekt Halla kwantowy Efekt Halla kwantowy Horst Stormer, Nobel Lecture 95 Horst Stormer, Nobel Lecture 96 24
25 Efekt Halla kwantowy 97 25
Kwant przewodnictwa. Pola. Studnia trójkątna Metoda przybliżona WKB (Wentzel Krammers Brillouin) dla potencjału wolnozmiennego
Pola Kwant przewodnictwa 2, 2 2 38,7 To są różne definicje częściej jest z 2: 2 77,4 Wzór Landauera (Landauer formula) gdy mamy do czynienia z wieloma kanałami przewodnictwa Trzeba uważać na definicję!
Transport. Fizyka Materii Skondensowanej Równanie Boltzmana II
Fizyka Materii Skondensowanej Równanie Boltzmana II Transport Układy makro i mezoskopowe, reżimy trasportu: Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl Projekt: POKL 04.01.01 00 100/10 00 "Chemia, fizyka
Karol Nogajewski. Wybrane aspekty nanotechnologii. Poziomy Landaua WIELKIE PODSUMOWANIE. Wydział Fizyki UW
Wybrane aspekty nanotechnologii Karol Nogajewski WIELKIE PODSUMOWANIE Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl 2013 02 27 2 Poziomy Landaua Poszerzenie poziomów na skutek rozproszeń Γ / to jednocząstkowy
Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego
Stanisław Bednarek Zespół Teorii Nanostruktur i Nanourządzeń Katedra Informatyki Stosowanej i Fizyki Komputerowej WFiIS AGH Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych
Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:
Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu
Wykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału
Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Pasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów
Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni
2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Przejścia kwantowe w półprzewodnikach (kryształach)
Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK
Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny
Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
Wykład III. Teoria pasmowa ciał stałych
Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Rozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
P R A C O W N I A
P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe
Przerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
Numeryczne rozwiązanie równania Schrodingera
Numeryczne rozwiązanie równania Schrodingera Równanie ruchu dla cząstki o masie m (elektron- cząstka elementarna o masie ~9.1 10-31 kg) Mechanika klasyczna - mechanika kwantowa 1. Druga zasada dynamiki
Modele kp Studnia kwantowa
Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z
Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.
Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Fizyka 2 - pytania do wykładów (wersja r.)
Fizyka 2 - pytania do wykładów (wersja 23.06.2017r.) I. Elektrostatyka. Prawo zachowania ładunku, prawa Coulomba. Pole elektryczne. 1. Wymień kilka zjawisk fizycznych występujących w naturze związanych
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia nieskończona Wewnątrz studni:
Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia nieskończona Wewnątrz studni:, sin 013 0 7 Studnia nieskończona Wewnątrz studni: Studnia nieskończona Wewnątrz studni:, sin, sin 9 9 013 0
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na
Wykład VI. Teoria pasmowa ciał stałych
Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy
S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych
Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Podstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Absorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Zagadnienia na egzamin ustny:
Zagadnienia na egzamin ustny: Wstęp 1. Wielkości fizyczne, ich pomiar i podział. 2. Układ SI i jednostki podstawowe. 3. Oddziaływania fundamentalne. 4. Cząstki elementarne, antycząstki, cząstki trwałe.
GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO.
GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. Funkcja rozkładu Fermiego-Diraca T=0K T>0K 1 f ( E ) = 0 dla dla E E F E > EF f ( E, T ) 1 = E E F kt e + 1 1 T>0K Funkcja rozkładu Fermiego-Diraca
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne
Pasma energetyczne Niedostatki modelu gazu Fermiego elektronów swobodnych Pomimo wielu sukcesów model nie jest w stanie wyjaśnić następujących zagadnień: 1. różnica między metalami, półmetalami, półprzewodnikami
Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13
Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Wykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Efekt Halla i konforemna teoria pola
Efekt Halla i konforemna teoria pola 19.01.2012 / Seminarium UJ O czym będziemy mówić? Efekt Halla Wstępne informacje Klasycznie i kwantowo Rozwiazanie Laughlina Mini wprowadzenie Laughlin w Dalsza perspektywa
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Nanofizyka co wiemy, a czego jeszcze szukamy?
Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
Wykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Elektrodynamika #
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Elektrodynamika Nazwa jednostki prowadzącej przedmiot Kod ECTS 13.2.0052 Instytut Fizyki Teoretycznej
Studnie i bariery. Fizyka II, lato
Studnie i bariery Fizyka II, lato 017 1 Nieskończona studnia potencjału Nieskończenie duży potencjał na krawędziach studni nie pozwala elektronom opuścić obszaru 0
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Projekt FPP "O" Kosma Jędrzejewski 13-12-2013
Projekt FPP "O" Kosma Jędrzejewski --0 Projekt polega na wyznaczeniu charakterystyk gęstości stanów nośników ładunku elektrycznego w obszarze aktywnym lasera półprzewodnikowego GaAs. Wyprowadzenie wzoru
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Równanie Shockley a. Potencjał wbudowany
Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Modele kp wprowadzenie
Modele kp wprowadzenie Komórka elementarna i komórka sieci odwrotnej Funkcje falowe elektronu w krysztale Struktura pasmowa Przybliżenie masy efektywnej Naprężenia: potencjał deformacyjny, prawo Hooka
Model oscylatorów tłumionych
Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II
POGAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II Opracowała: mgr Joanna Kondys Cele do osiągnięcia: etapowe udział w olimpiadzie fizycznej udział w konkursie fizycznym dla szkół średnich docelowe