Kwant przewodnictwa. Pola. Studnia trójkątna Metoda przybliżona WKB (Wentzel Krammers Brillouin) dla potencjału wolnozmiennego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kwant przewodnictwa. Pola. Studnia trójkątna Metoda przybliżona WKB (Wentzel Krammers Brillouin) dla potencjału wolnozmiennego"

Transkrypt

1 Pola Kwant przewodnictwa 2, ,7 To są różne definicje częściej jest z 2: 2 77,4 Wzór Landauera (Landauer formula) gdy mamy do czynienia z wieloma kanałami przewodnictwa Trzeba uważać na definicję! Dla dostajemy prawo Ohma. to suma różnych pełnych kanałów przewodnictwa np. dwa różne spiny dają 2 2 Studnia trójkątna Metoda przybliżona WKB (Wentzel Krammers Brillouin) dla potencjału wolnozmiennego Studnia trójkątna Metoda przybliżona WKB (Wentzel Krammers Brillouin) dla potencjału wolnozmiennego / 2 / / 2 / 3 4 1

2 Kwant przewodnictwa Kwant przewodnictwa 2, ,5 2 B. J. van Wees et al. Quantized conductance of point contacts in a two dimensional electron gas Phys. Rev. Lett. 60, (1988) 5 B. J. van Wees et al. Quantum ballistic and adiabatic electron transport studied with quantum point contacts Phys. Rev. B 43, (1991) 6 Blokada Kulombowska Blokada Kulombowska Kropka zachowuje się jak mały kondensator o energii ~ 0 Luis Dias UT/ORNL

3 Blokada Kulombowska Blokada Kulombowska Kropka zachowuje się jak mały kondensator o energii ~ 0 Kropka zachowuje się jak mały kondensator o energii ~ Blokada Kulombowska Tunelowanie Kropka zachowuje się jak mały kondensator o energii ~ Inorganica Chimica Acta 361 (2008)

4 Tunelowanie Tunelowanie Kolokwium WAN IN 1. Znajdź w literaturze parametry pasmowe InAs (masy efektywne, powinowactwo elektr., ) [0p] 2. Na podstawie danych z rys. 1 wyznacz pojemność kropki kwantowej o średnicy 32 A. [5p] 3. Na podstawie rys. 2 oraz 3 wyznacz rozmiar nanocząstek InAs w przybliżeniu nieskończonej studni potencjału. Porównaj z wartościami mierzonymi oraz z rys. 3. [10p] 4. Na podstawie rys. 2 oraz 3 wyznacz rozmiar nanocząstek InAs w przybliżeniu skończonej studni potencjału. Porównaj z wartościami mierzonymi oraz z rys. 3. [30p] (zadanie numeryczne). 5. Oszacuj powinowactwo elektronowe (electron affinity, energię jonizacji z poziomu studni) oraz pojemność kropek kwantowych z rys. 2. (zadanie numeryczne). Porównaj wyniki z danymi tablicowymi (pkt 1) oraz ze wzorem na pojemność kuli i wyznacz nanocząstki. [30p] (powinowactwo) Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako: Jak widać po scałkowaniu: Przykładowo: / Rozwiązanie w cechowaniu Landaua: 1 2,,,,, Cechowania Landaua: pole 0,0, (niestety wyróżnia kierunek) 0,, 0 czyli Przyjmujemy, że w płaszczyźnie nie ma innego potencjału 1 2 co daje: 2 2 Ślad siły Lorentza Potencjał paraboliczny!

5 Symetria względem odwrócenia czasu (time reversal invariance, T symmetry): jeśli rozwiązaniem równania Schrodingera jest funkcja Ψ, to rozwiązaniem musi być także Ψ tylko w przypadku hamiltonianu rzeczywistego. Dla pola magnetycznego musimy także odwrócić kierunek pola magnetycznego: Ψ, Ψ, (musimy odwrócić znak pędu kinetycznego,. Urojona wartość brak symetrii względem odwrócenia czasu Potencjał w funkcji jest niezależny od pozostałych zmiennych (faktoryzacja) rozważamy więc problem 2D Potencjał wektorowy nie zależy od, można założyć postać funkcji: exp Częstość cyklotronowa 2 Promień cyklotronowy co daje: 2 2 Wektor falowy. Co ciekawe w NIE MA. Potencjał paraboliczny przesunięty o / Ślad siły Lorentza Potencjał paraboliczny! Potencjał wektorowy nie zależy od, można założyć postać funkcji: exp Potencjał wektorowy nie zależy od, można założyć postać funkcji: exp Długość magnetyczna: Typowa wartość dla 1.0 T to 26nm. nie zależy od masy cząstki, a TYLKO od pola! Rozwiązania (nie zależą od )., exp exp 2 1, 2, 3 to kolejne poziomy Landaua Przypadek 2D Rozwiązania (nie zależy od )., exp exp 2 Funkcje falowe to funkcje oscylatora (wzdłuż, rozmiaru rzędu / 2) i fali biegnącej (wzdłuż ) dziwne, prawda? Dlaczego? Energia nie zależy od wektora stany o różnym maja tą samą energię, są więc zdegenerowane (a więc dowolna ich kombinacja nie zmienia energii). Gęstość stanów redukuje się ze stałej do serii dyskretnych wartości danych przez równanie na są to tzw. poziomy Landaua. Pełna energia (łącznie z potencjałem wiążącym w kierunku ): 1 2 1, 2, 3 1, 2,

6 Przypadek 2D Rozwiązania (nie zależy od )., exp exp 1, 2, 3 2 Przypadek 2D Rozwiązania (nie zależy od )., exp exp 1, 2, Przypadek 3D (brak potencjału ) Rozwiązania : , 2, 3 to kolejne poziomy Landaua. DOS przypomina 1D bo jest możliwy ruch tylko w kierunku Rozwiązanie w cechowaniu symetrycznym: 1 2,,,,, Cechowania symetryczne: pole 0,0,, 0, ,,,, 8 Tym razem niezmiennikiem jest obrót o kąt, co można powiązać z momentem pędu i funkcją w postaci exp 1, 2, 3 0, 1, 2, Potencjał symetryczny też ma swoje wady gdzie zaczynają się WSZYSTKIE orbity cyklotronowe?, exp exp Stowarzyszony wielomian Laguerra 6

7 W polu magnetycznym nie możemy zapomnieć o spinie Spin elektronu: (magneton Bohra = wielkość momentu magnetycznego elektronu na orbicie o całkowitym momencie pedu 1) W ogólności g czynnik może być tensorem Wracamy do cechowania Landaua Rozwiązania (nie zależy od )., exp exp 1, 2, 3 2 Pytanie: dla danego (czyli poziomu Landaua) ile jest różnych stanów, o tej samej energii czyli jaka jest degeneracja poziomów Landaua? Policzmy ile jest różnych funkcji o liczbach kwantowych (tylko liczy się, bo w cechowaniu Landaua zależy od ) podobne rozważania można zrobić w dowolnym cechowaniu. W przypadku elektronu swobodnego 2,0023, ale w ciele stałym może mieć bardzo różne wartości (np. 0.44w GaAs i 0.4w Al 0.3 Ga 0.7 As) Wracamy do cechowania Landaua Rozwiązania (nie zależy od )., exp exp 1, 2, 3 2 Pytanie: dla danego (czyli poziomu Landaua) ile jest różnych stanów, o tej samej energii czyli jaka jest degeneracja poziomów Landaua? Policzmy ile jest różnych funkcji o liczbach kwantowych (tylko liczy się, bo w cechowaniu Landaua zależy od ) podobne rozważania można zrobić w dowolnym cechowaniu. Jaka jest ilość stanów przypadająca na jeden poziom? Próbka S, w cechowaniu Landaua dla współrzędnej mamy warunek fali płaskiej 2/ ( to liczba całkowita). Ile jest wszystkich stanów o różnych? Poziomy Landaua Rozwiązanie równania Schrödingera w polu magnetycznym daje widmo dyskretne. Jaka jest ilość stanów przypadająca na jeden poziom? Próbka S, w cechowaniu Landaua dla współrzędnej mamy warunek fali płaskiej 2/ ( to liczba całkowita). Dla współrzędnej funkcja falowa jest centrowana w 2 /. Warunek na to, by było w próbce (a nie poza nią): 2 0 czyli 0 (wartość bezwzględna) Nie ma czynnika 2 związanego z degeneracją spinową (bo w polu magnetycznym spin nie jest zdegenerowany) Wymiar to ilość na jednostkę powierzchni Dla współrzędnej funkcja falowa jest centrowana w 2 /. Jeśli będzie zbyt duże, może wyjść poza próbkę. degeneracja poziomów Landaua ilość DOZWOLONYCH stanów na każdym z poziomów Landaua na jednostkę powierzchni rośnie z polem

8 Poziomy Landaua Rozwiązanie równania Schrödingera w polu magnetycznym daje widmo dyskretne. Jaka jest ilość stanów przypadająca na jeden poziom? Próbka S, w cechowaniu Landaua dla współrzędnej mamy warunek fali płaskiej 2/ ( to liczba całkowita). Dla współrzędnej funkcja falowa jest centrowana w 2 /. Warunek na to, by było w próbce (a nie poza nią): 2 0 czyli 0 Φ Φ flux Φ Wb [Wb]=[T m 2 ] kwant strumienia magnetycznego (w nadprzewodniku /2, więc to nie kwant) Φ całkowity strumień pola magnetycznego w próbce S 0 Φ Φ Ilość dozwolonych stanów łączy się wiec z ilością fluksów przechodzących przez próbkę! Lokalna gęstość stanów Gęstość stanów (ogólnie) można zdefiniować jako: Jak widać po scałkowaniu: Przykładowo: / Poziomy Landaua Poszerzenie poziomów na skutek rozproszeń Γ / to jednocząstkowy (albo kwantowy) czas życia to NIE jest ten sam czas, który omawialiśmy w modelu Drudego (transportowy) Poziomy Landaua degeneracja poziomów Landaua ilość DOZWOLONYCH stanów na każdym z poziomów Landaua na jednostkę powierzchni rośnie z polem Koncentracja nośników 2D: na ilu poziomach Landaua zmieszczą się te nośniki? Współczynnik wypełnienia filling factor (zwykle nie jest to liczba całkowita) Φ 2 (z uwzględnieniem degeneracji spinów) Licząc 2 spiny: Każdy ze stanów na poziome Landaua zajmuje powierzchnię 2 Zwiększając pole magnetyczne kolejno zapełniamy poziomy Landaua. Można całkowicie zapełnić ty poziom ( ) i wtedy /, aż osiągniemy 1, czyli wszystkie elektrony będą na tym samym poziomie Landaua (tzw. limit kwantowy). Dla 1zaczynają się dziać ciekawe rzeczy (do których zaraz wrócimy!)

9 Poziomy Landaua degeneracja poziomów Landaua ilość DOZWOLONYCH stanów na każdym z poziomów Landaua na jednostkę powierzchni rośnie z polem Koncentracja nośników 2D: na ilu poziomach Landaua zmieszczą się te nośniki? Współczynnik wypełnienia filling factor (zwykle nie jest to liczba całkowita) Φ 2 (z uwzględnieniem degeneracji spinów) Poziomy Landaua Poziom Fermiego leży pomiędzy poziomami Landaua nie ma tam DOS, zmiana nie zmienia DOS stany nieściśliwe (incompressible) Poziom Fermiego leży wewnątrz poziomu Landaua duża DOS, zmiana mocno wpływa na DOS stany ściśliwe (compressible) Poziomy Landaua Poziomy Landaua Poziom Fermiego w polu magnetycznym: Φ 2 Poziom Fermiego w polu magnetycznym: Φ 2 Fig. 16. Landau level fan diagram for the magnetic 2DEG sample described in Fig. 15. Solid (dashed) lines correspond to spin down (spin up) states. The dark solid line shows the variation of the Fermi energy with magnetic field. Parameters used in this calculation are: E F =7 mev at B=0, and T=360 mk. The spin splitting parameters used are obtained by fitting the magneto optical data in Fig. 3: T 0 =2.1 K and a saturation conduction band spin splitting of 12.9 mev. Spin dynamics and quantum transport in magnetic semiconductor quantum structures D.D Awschalom, N. Samarth, Journal of Magnetism and Magnetic Materials 200 (1999)

10 Efekt Shubnikova de Haasa Shubnikov de Haas effect Efekt Shubnikova de Haasa Shubnikov de Haas effect Gęstość stanów oscyluje spada do 0 dla i jest największa dla najprościej to zmierzyć w magnetooporze. Oscylacje zależą od stodunku energii Fermiego do częśtości cyklotronowej /. Oscylacje są periodyczne w funkcji 1/. Φ 2 Z SdH można także wyznaczyć masę efektywną oraz czas kwantowy. Amplituda oscylacji jest dana przez Δ 4 cos 4 exp sinh / Zależność temperaturowa daje, tłumienie Efekt Shubnikova de Haasa Shubnikov de Haas effect Efekt Shubnikova de Haasa Shubnikov de Haas effect Gęstość stanów oscyluje spada do 0 dla i jest największa dla najprościej to zmierzyć w magnetooporze. Oscylacje zależą od stodunku energii Fermiego do częśtości cyklotronowej /. Oscylacje są periodyczne w funkcji 1/. Φ 2 Z SdH można także wyznaczyć masę efektywną oraz czas kwantowy. Amplituda oscylacji jest dana przez Δ 4 cos 4 exp sinh 2 / Zależność temperaturowa daje, tłumienie. A. Nainani et al. Solid State Electronics 62 (2011) Aneesh Nainani et al. Solid State Electronics 62 (2011)

11 Efekt Shubnikova de Haasa Shubnikov de Haas effect Efekt Shubnikova de Haasa Shubnikov de Haas effect 2 / Aneesh Nainani et al. Solid State Electronics 62 (2011) Aneesh Nainani et al. Solid State Electronics 62 (2011) Efekt Shubnikova de Haasa Shubnikov de Haas effect Efekt Shubnikova de Haasa Shubnikov de Haas effect Gęstość stanów oscyluje spada do 0 dla i jest największa dla najprościej to zmierzyć w magnetooporze. Henriques et al. Brazil. J. of Phys. 29, 707 (1999) 43 K. Nogajewski et al., Appl. Phys. Lett. 99, (2011) 44 11

12 Efekt Shubnikova de Haasa Shubnikov de Haas effect Gęstość stanów oscyluje spada do 0 dla i jest największa dla najprościej to zmierzyć w magnetooporze. Kwantowy (całkowity) efekt Halla (IQHE) Integer Quantum Hall effect (IQHE) dla gazu 2D jeśli poziom Fermiego znajduje się w obszarze stanów zlokalizowanych opór hallowski jest skwantowany Kwantowy (całkowity) efekt Halla (IQHE) Integer Quantum Hall effect (IQHE) dla gazu 2D jeśli poziom Fermiego znajduje się w obszarze stanów zlokalizowanych opór hallowski jest skwantowany 1 Tensor przewodnictwa Przewodnictwo Gęstość prądu: w ogólności może być tensorem: oraz W ogólności np. oraz itp. Model Drudego z polem magnetycznym: czas relaksacji pędowej (scattering time) Stromer, Nobel Lecture

13 Efekt Halla Efekt Halla Siła Lorentza: Model Drudego: czas relaksacji pędowej (scattering time) Dostajemy: Zaniedbując 1i biorąc pod uwagę przewodnictwo elektronów i dziur : 0 Dostajemy tzw. stałą Halla: 1 Np. dla 0 mamy Efekt Halla Efekt Halla Biorąc / W przypadku efektu Halla,0,0 : 1 1 Tensor przewodnictwa: Tensor oporności: Pełny tensor przewodnictwa Pełny tensor oporności stała Halla

14 Efekt Halla Efekt Halla Pełny tensor przewodnictwa Pełny tensor oporności Opór właściwy (Ω) Pełny tensor przewodnictwa Pełny tensor oporności Dla różnych kanałów przewodnictwa Pole magnetyczne (T) Dla różnych kanałów przewodnictwa transport wielonośnikowy analizujemy tensor Roman Stępniewski 1 transport wielonośnikowy Roman Stępniewski Efekt Halla Efekt Halla Transport wielonośnikowy w grafenie (M. Gryglas Borysiewicz) Roman Stępniewski

15 Efekt Halla kwantowy Efekt Halla kwantowy Efekt Halla kwantowy Efekt Halla kwantowy Horst Stormer, Nobel Lecture 59 Horst Stormer, Nobel Lecture 60 15

16 Efekt Halla kwantowy Efekt Halla kwantowy Pełny tensor przewodnictwa Pełny tensor oporności Dla dużych pól magnetycznych 1 / 1/ 1/ / wtedy ~! Efekt Halla Kwant przewodnictwa 2, 2 38,7 B. J. van Wees et al. Quantized conductance of point contacts in a two dimensional electron gas Phys. Rev. Lett. 60, (1988)

17 Kwant przewodnictwa 2 Pole elektrycznie i magnetyczne Ruch elektronu w skrzyżowanych polach elektrycznym, 0,0 i magnetycznym 0,0, opisany jest cykloidą: 1cos sin Szczegóły ruchu zależą od warunków początkowych B. J. van Wees et al. Quantum ballistic and adiabatic electron transport studied with quantum point contacts Phys. Rev. B 43, (1991) Prędkość dryfu w polu B: Potencjał wektorowy nie zależy od, można założyć postać funkcji: exp Pole elektrycznie i magnetyczne 2 2 Potencjał wektorowy nie zależy od, można założyć postać funkcji: exp Częstość cyklotronowa Promień cyklotronowy Człony dołożone żeby suma w kwadracie dawała Wektor falowy. Co ciekawe w NIE MA. Potencjał paraboliczny przesunięty o / Potencjał paraboliczny przesunięty o / / (klasyczny efekt Halla)

18 Pole elektrycznie i magnetyczne Potencjał paraboliczny zależy od pola i od Pole elektrycznie i magnetyczne Potencjał paraboliczny zależy od pola i od Pole elektrycznie i magnetyczne Pole elektrycznie i magnetyczne Potencjał paraboliczny zależy od pola i od Clive Emary Theory of Nanostructures nanoskript.pdf

19 Kwantowy (całkowity) efekt Halla (IQHE) Integer Quantum Hall Effect (IQHE) dla gazu 2D jeśli poziom Fermiego znajduje się w obszarze stanów zlokalizowanych opór hallowski jest skwantowany 1 Kwantowy ułamkowy efekt Halla (FQHE) Fractional Quantum Hall Effect (FQHE) dla gazu 2D jeśli poziom Fermiego znajduje się w obszarze stanów zlokalizowanych opór hallowski jest skwantowany 1 Yu, Cardona Stromer, Nobel Lecture Stromer, Nobel Lecture Kwantowy ułamkowy efekt Halla (FQHE) Fractional Quantum Hall Effect (FQHE) dla gazu 2D jeśli poziom Fermiego znajduje się w obszarze stanów zlokalizowanych opór hallowski jest skwantowany Kwantowy ułamkowy efekt Halla (FQHE) Fractional Quantum Hall Effect (FQHE) dla gazu 2D jeśli poziom Fermiego znajduje się w obszarze stanów zlokalizowanych opór hallowski jest skwantowany 1 Semiconductor_Devices/semiconductor_devices.html 1 Stromer, Nobel Lecture

20 Composite fermions Fractional Quantum Hall Effect (FQHE) composite fermions, fractionally charged quasiparticles Kropki kwantowe Stromer, Nobel Lecture Potencjał harmoniczny 2D Potencjał harmoniczny 2D 1 2 w kierunku i taka sama w 1 2 w kierunku i taka sama w Degeneracja? Degeneracja? 1, 0 (0,0) 1 (1,0) (0,1) 2 (2,0) (1,1) (0,2) 3 (3,0) (2,1) (1,2) (0,3)

21 Potencjał harmoniczny 2D Kropki kwantowe Energy [ev] d+ p+ d 0 p- d- s n, m = 0,1,2... L = n m (elektron) Angular Momentum -L Adam Babiński Hofstadter butterfly The Hofstadter butterfly is the energy spectrum of an electron, restricted to move in twodimensional periodic potential under the influence of a perpendicular magnetic field. The horizontal axis is the energy and the vertical axis is the magnetic flux through the unit cell of the periodic potential. The flux is a dimensionless number when measured in quantum flux units (will call it a). It is an example of a fractal energy spectrum. When the flux parameter a is rational and equal to p/q with p and q relatively prime, the spectrum consists of q nonoverlapping energy bands, and therefore q+1 energy gaps (gaps number 0 and q are the regions below and above the spectrum accordingly). When a is irrational, the spectrum is a cantor set De Haas van Asphen

22 De Haas van Asphen Moment magnetyczny czystego monokryształu metalu oscyluje w zmiennym polu magnetycznym De Haas van Asphen Moment magnetyczny czystego monokryształu metalu oscyluje w zmiennym polu magnetycznym Namagnesowanie 1/ Ashcroft, Mermin 85 Ashcroft, Mermin 86 De Haas van Asphen De Haas van Asphen Ashcroft, Mermin 87 Ashcroft, Mermin 88 22

23 89 23

2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki

Bardziej szczegółowo

Tunelowanie. Pola. Tunelowanie Przykłady: Tunelowanie. bariera. obszar 1 obszar 2. W drugą stronę: Poziomy nieskończonej anty studni! sin. sin.

Tunelowanie. Pola. Tunelowanie Przykłady: Tunelowanie. bariera. obszar 1 obszar 2. W drugą stronę: Poziomy nieskończonej anty studni! sin. sin. Pola Tunelowanie bariera obszar obszar 2 0 / / / / 0 0 0 0 0 0 W drugą stronę: 0 / / / / 2 Tunelowanie Przykłady: Tunelowanie Poziomy nieskończonej anty studni! 4 4 sin sin 4 4 4 sinh 4 sinh exp 2 2 4

Bardziej szczegółowo

Karol Nogajewski. Wybrane aspekty nanotechnologii. Poziomy Landaua WIELKIE PODSUMOWANIE. Wydział Fizyki UW

Karol Nogajewski. Wybrane aspekty nanotechnologii. Poziomy Landaua WIELKIE PODSUMOWANIE. Wydział Fizyki UW Wybrane aspekty nanotechnologii Karol Nogajewski WIELKIE PODSUMOWANIE Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl 2013 02 27 2 Poziomy Landaua Poszerzenie poziomów na skutek rozproszeń Γ / to jednocząstkowy

Bardziej szczegółowo

Transport. Fizyka Materii Skondensowanej Równanie Boltzmana. Transport. Rozpraszanie. Wydział Fizyki UW

Transport. Fizyka Materii Skondensowanej Równanie Boltzmana. Transport. Rozpraszanie. Wydział Fizyki UW 203 06 02 Fizyka Materii Skondensowanej Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl Transport Jednoelektronowe równanie Schrödingera: 2 Jeśli potencjał jest periodyczny, to dobrymi rozwiązaniami są funkcje

Bardziej szczegółowo

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu

Bardziej szczegółowo

Mody sprzężone plazmon-fonon w silnych polach magnetycznych

Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Efekt Halla i konforemna teoria pola

Efekt Halla i konforemna teoria pola Efekt Halla i konforemna teoria pola 19.01.2012 / Seminarium UJ O czym będziemy mówić? Efekt Halla Wstępne informacje Klasycznie i kwantowo Rozwiazanie Laughlina Mini wprowadzenie Laughlin w Dalsza perspektywa

Bardziej szczegółowo

Fizyka Materii Skondensowanej Transport, równanie Boltzmana

Fizyka Materii Skondensowanej Transport, równanie Boltzmana Fizyka Materii Skondensowanej Transport, równanie Boltzmana Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl Domieszki idefekty dziury elektrony Nośniki: + Domieszki: Akceptory (typ p) Donory (typ n) Półprzewodniki

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne

S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne Pasma energetyczne Niedostatki modelu gazu Fermiego elektronów swobodnych Pomimo wielu sukcesów model nie jest w stanie wyjaśnić następujących zagadnień: 1. różnica między metalami, półmetalami, półprzewodnikami

Bardziej szczegółowo

Model elektronów swobodnych w metalu

Model elektronów swobodnych w metalu Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa

Bardziej szczegółowo

Transport. Fizyka Materii Skondensowanej Równanie Boltzmana II

Transport. Fizyka Materii Skondensowanej Równanie Boltzmana II Fizyka Materii Skondensowanej Równanie Boltzmana II Transport Układy makro i mezoskopowe, reżimy trasportu: Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl Projekt: POKL 04.01.01 00 100/10 00 "Chemia, fizyka

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Model oscylatorów tłumionych

Model oscylatorów tłumionych Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

Przejścia kwantowe w półprzewodnikach (kryształach)

Przejścia kwantowe w półprzewodnikach (kryształach) Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Modele kp Studnia kwantowa

Modele kp Studnia kwantowa Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w

Bardziej szczegółowo

Modele kp wprowadzenie

Modele kp wprowadzenie Modele kp wprowadzenie Komórka elementarna i komórka sieci odwrotnej Funkcje falowe elektronu w krysztale Struktura pasmowa Przybliżenie masy efektywnej Naprężenia: potencjał deformacyjny, prawo Hooka

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy

Bardziej szczegółowo

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni

Bardziej szczegółowo

Wprowadzenie do struktur niskowymiarowych

Wprowadzenie do struktur niskowymiarowych Wprowadzenie do struktur niskowymiarowych W litym krysztale ruch elektronów i dziur nie jest ograniczony przestrzennie. Struktury niskowymiarowe pozwalają na ograniczenie (częściowe lub całkowite) ruchu

Bardziej szczegółowo

Efekt naskórkowy (skin effect)

Efekt naskórkowy (skin effect) Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

P R A C O W N I A

P R A C O W N I A P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Zadania z mechaniki kwantowej

Zadania z mechaniki kwantowej Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego

Bardziej szczegółowo

Projekt FPP "O" Kosma Jędrzejewski 13-12-2013

Projekt FPP O Kosma Jędrzejewski 13-12-2013 Projekt FPP "O" Kosma Jędrzejewski --0 Projekt polega na wyznaczeniu charakterystyk gęstości stanów nośników ładunku elektrycznego w obszarze aktywnym lasera półprzewodnikowego GaAs. Wyprowadzenie wzoru

Bardziej szczegółowo

17 Naturalne jednostki w fizyce atomowej

17 Naturalne jednostki w fizyce atomowej 7 Naturalne jednostki w fizyce atomowej W systemie CGS wszystkie wielkości fizyczne wyrażane są jako potęgi trzech fundamentalnych jednostek:. długości (l) cm,. masy (m) g, 3. czasu (t) s. Wymiary innych

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

11 Przybliżenie semiklasyczne

11 Przybliżenie semiklasyczne 11 Przybliżenie semiklasyczne W tym rozdziale rozważymy rachunek przybliżony, który opiera się na rozwinięciu funkcji falowej w szereg potęg stałej Plancka. Zakłada się przy tym jawnie, że h jest małym

Bardziej szczegółowo

Zjawisko magnetooporu

Zjawisko magnetooporu Maciej Misiorny Seminarium do przedmiotu Teoria Ciała Stałego Wydział Fizyki UAM Zakład Fizyki Mezoskopowej Poznań, 31.03.2005 Celem tego seminarium jest zaprezentowanie podstaw teoretycznych zjawiska

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne

Bardziej szczegółowo

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego Stanisław Bednarek Zespół Teorii Nanostruktur i Nanourządzeń Katedra Informatyki Stosowanej i Fizyki Komputerowej WFiIS AGH Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0 Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego

Bardziej szczegółowo

Pole elektrostatyczne

Pole elektrostatyczne Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie

Bardziej szczegółowo

Harmonic potential 2D. Nanostructures. Fermi golden rule Transition rate (probability of transition per unit time) : Harmonic oscillator model: CB p

Harmonic potential 2D. Nanostructures. Fermi golden rule Transition rate (probability of transition per unit time) : Harmonic oscillator model: CB p Nanotructure Harmonic otential 2D Harmonic ocillator model: CB,, d, hell Allowed interband tranition VB PL Intenity d f Wetting layer 0.mW mw 0.5 mw 5mW 0mW GaA ubtrate 200 250 300 350 400 450 500 550

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

ZASADY ZALICZANIA PRZEDMIOTU:

ZASADY ZALICZANIA PRZEDMIOTU: WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania III

Cząstki elementarne i ich oddziaływania III Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Modele jądra atomowego

Modele jądra atomowego Modele jądra atomowego Model to uproszczona wersja teoretycznego opisu, która: 1.) Tworzona jest biorąc pod uwagę tylko wybrane fakty doświadczalne 2.) Przewiduje dalsze fakty, które mogą być doświadczalnie

Bardziej szczegółowo

Wykład III. Teoria pasmowa ciał stałych

Wykład III. Teoria pasmowa ciał stałych Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

i elementy z półprzewodników homogenicznych część II

i elementy z półprzewodników homogenicznych część II Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO.

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. Funkcja rozkładu Fermiego-Diraca T=0K T>0K 1 f ( E ) = 0 dla dla E E F E > EF f ( E, T ) 1 = E E F kt e + 1 1 T>0K Funkcja rozkładu Fermiego-Diraca

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład IX: Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada dynamiki Siły

Bardziej szczegółowo