Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
|
|
- Maria Michałowska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Co to są półprzewodniki? Jak TO działa? Google: Jacek Szczytko Login: student Hasło: ******* Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY: Prawo Moore a Ilość komponentów (tranzystory, połączenia, izolacje itd.) w IC podwaja się co około 18 miesięcy. Rozmiar liniowy komponentów również zmniejsza się wykładniczo w czasie.? Te trendy nie mogą być kontynuowane w nieskończoność. Co zastąpi technologię Si? Z czego będzie wynikała ta zmiana technologii? Źródło: Intel 3 Źródło: Intel 4 1
2 TRENDY: Prawo Moore a Jak TO działa? HP nanotechnologia, memrystory komputery nanotechnologia grafen materiały organiczne Przeprojektowanie CMOS (np. wertykalne, FIN, MOSFET z podwójną bramką) Urządzenia alternatywne (np. na pojedynczych elektronach) Urządzenia hybrydowe (np. FET z nanorurek) Nowe architektury (np. samonaprawiające się, defect tolerance, automaty komórkowe) Zupełnie nowe architektury (np. komputery molekularne, komputery ) koniec prawa Moore a Źródło: Intel 5 6 Czy dwa półprzewodniki dadzą cały przewodnik? Przepływ prądu Kryształ Ciało amorficzne 7 8 2
3 Półprzewodniki Czy dwa półprzewodniki dadzą cały przewodnik? II III IV V VI Be B C N O Nośniki: dziury + elektrony - Domieszki: Akceptory (typ p) Donory (typ n) Co to jest izolator, półprzewodnik, przewodnik? Mg Al Si P S Mała odległość między atomami Zn Ga Ge As Se Cd In Sn Sb Te Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS... Atomy zawiązane (elektrony są fermionami i obowiązuje zakaz Pauliego) 9 10 Trochę historii XX w: materia ma (również) charakter falowy Fale materii De Broglie 1924 (Nobel 1929), doświadczenia G.P. Thomsona L.H. Germera i C.J Davissona (Nobel 1937) = h / p p = h / Trochę historii XX w: materia ma (również) charakter falowy Fale materii De Broglie 1924 (Nobel 1929), doświadczenia G.P. Thomsona L.H. Germera i C.J Davissona (Nobel 1937) = h / p p = h / klasycznie klasycznie kwantowo slit3.html slit3.html
4 Trochę historii XX w: materia ma (również) charakter falowy Fale materii De Broglie 1924 (Nobel 1929), doświadczenia G.P. Thomsona L.H. Germera i C.J Davissona (Nobel 1937) = h / p Single electron events build up over a 20 minute exposure to form an interference pattern in this double slit experiment by Akira Tonomura and coworkers. (a) 8 electrons; (b) 270 electrons; (c) 2000 electrons; (d) 60,000. A video of this experiment will soon be available on the web ( m/doubleslit.html) Elektron jako fala 16 4
5 Przerwa energetyczna pasmo pełne pasmo pełne pasmo pełne pasmo pełne pasmo pełne pasmo pełne metal półprzewodnik izolator Jak zobaczyć przerwę? metal półprzewodnik izolator Co odróżnia pp i iz
6 Czy możemy zobaczyć przerwę energetyczną? Przerwa energetyczna 21 pasmo pełne pasmo pełne pasmo pełne półprzewodnik typu p półprzewodnik typu n metal półprzewodnik izolator Co odróżnia pp i iz
7 Dioda czyli złącze p-n Dioda czyli złącze p-n typ p typ n Flat band typ p typ n Flat band Diody Quantum Well E c t D(E) E 1 E c E 0 MBE Osadzanie z atomową precyzją warstw o różnym składzie lub domieszkowaniu 2D E Hubert J. Krenner 28 7
8 Wzrost warstw MBE jest monitorowany przez Reflection High Energy Electron Diffraction (REED). Komputer steruje przesłonami (shutterami) na froncie podgrzewanych komórek efuzyjnych, co pozwala na precyzyjną kontrolę wzrostu do poziomu pojedynczej warstwy atomowej. Wzrost warstw z jamami kwantowymi (quantum wells), kropek kwantowych (quantum dots) struktury LD, LED. komora UHV wzrostu materiałów II-VI (Zn, Cd, Mg, S, Se, Te, Mn, Co, ZnCl 2, N-plazma) komora UHV przygotowania podłoży (odgazowanie powierzchni) komora załadunkowa komora UHV wzrostu materiałów III-V (Ga, Al, In, As, Sb, N-plazma, Si lub Te, Be lub Zn, Mn lub Cr lub Co) 29 Urządzenie MBE - do epitaksji z wiązek molekularnych (2 komory wzrostu) producent SVTA (USA). Zakup przez Wydział Fizyki w r. 2010, program CePT 30 MBE na Wydziale Fizyki UW
9 Reaktor Metal-Organic Chemical Vapour Epitaxy (MOCVD) w Zakładzie Fizyki Ciała Stałego MBE na Wydziale Fizyki UW 33 Aixtron CCS 3x2 Heterostruktury GaInSb, AlGaInAs and AlGaN. 34 Struktury niskowymiarowe Low dimensional Semiconductor Systems Struktury niskowymiarowe Low dimensional Semiconductor Systems Studnie Druty Kropki Studnie Druty Kropki t 2D 1D 0D Dyskretna struktura elektronowa t 2D 1D 0D Dyskretna struktura elektronowa Hubert J. Krenner Hubert J. Krenner
10 AlGaAs GaAs AlGaAs AlGaAs GaAs AlGaAs AlGaAs AlGaAs GaAs E g1 E g2 E g1 E g1 E g2 E g AlGaAs AlGaAs GaAs
11 elektrony elektrony h dziury dziury Lasery półprzewodnikowe Dioda laserowa zawiera ok. 400 różnych warstw 43 11
Nowe technologie. Kwanty, stany, pasma mechanika kwantowa dla początkujących Jacek Szczytko, Wydział Fizyki UW. Trochę historii.
Kwanty, stany, pasma mechanika kwantowa dla początkujących Jacek Szczytko, Wydział Fizyki UW 1.. 3. Czy dwa półprzewodniki dają cały Rys. źródło: IM Nowe technologie 1. Koniec technologii krzemowej? Prawo
Bardziej szczegółowoRozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Bardziej szczegółowoPlan wykładu. Pasma w krysztale. Heterostruktury półprzewodnikowe studnie kwantowe. Heterostruktury półprzewodnikowe
Heterostruktury półprzewodnikowe studnie kwantowe Heterostruktury półprzewodnikowe studnie kwantowe Plan wykładu Pasma w krysztale Powtórzenie. Pasma w półprzewodnikach Heterostruktury półprzewodnikowe
Bardziej szczegółowoTeoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Bardziej szczegółowoProste struktury krystaliczne
Budowa ciał stałych Proste struktury krystaliczne sc (simple cubic) bcc (body centered cubic) fcc (face centered cubic) np. Piryt FeSe 2 np. Żelazo, Wolfram np. Miedź, Aluminium Struktury krystaliczne
Bardziej szczegółowoChemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Nanotechnologia Uniwersytet Warszawski 2015 T k E E e B c F e T m k n 2 3 2 0 * 2 2 T k E E
Bardziej szczegółowoCo to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski
Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21
Bardziej szczegółowoChemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Bardziej szczegółowoWytwarzanie niskowymiarowych struktur półprzewodnikowych
Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja
Bardziej szczegółowoElektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
Bardziej szczegółowoPrzewodnictwo elektryczne ciał stałych. Fizyka II, lato
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Bardziej szczegółowoCiała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
Bardziej szczegółowoPrzewodnictwo elektryczne ciał stałych
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Bardziej szczegółowoWolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Edukacja przez badania Hoża 69: 1921-2014 r. 2014-09-25
Bardziej szczegółowoPrzewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Bardziej szczegółowoPrzyrządy półprzewodnikowe
Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal
Bardziej szczegółowoEdukacja przez badania. Internet dla Szkół 20 lat! Wolność, prywatność, bezpieczeństwo
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Edukacja przez badania Hoża 69: 1921 2014 r. Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Wydział
Bardziej szczegółowoFIZYKA + CHEMIA. Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych) Jeszcze o teoriach (nie tylko fizycznych)
Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA od października 2009 wkrótce więcej informacji na stronie http://nano.fuw.edu.pl
Bardziej szczegółowo6. Emisja światła, diody LED i lasery polprzewodnikowe
6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka
Bardziej szczegółowoSTRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
Bardziej szczegółowoFIZYKA + CHEMIA. Kampus Ochota, Warszawa. Fizyka kwantowa dla początkujących. Kwantowy świat nanotechnologii
Uniwersytet Warszawski Interdyscyplinarny makrokierunek Wydziału Fizyki i Wydziału Chemii Uniwersytetu Warszawskiego Kampus Ochota, Warszawa FIZYK + CHEMI od października 009 http://nano.fuw.edu.pl Fizyka
Bardziej szczegółowoIII. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski
III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.
Bardziej szczegółowoZłącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy
Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów
Bardziej szczegółowoZłącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET
Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują
Bardziej szczegółowoJak TO działa? Nanotechnologia. TRENDY: Prawo Moore a. Kwietniowa Wiedza i Życie 2010
Nanotechnologia Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 Kwietniowa Wiedza i Życie 2010 TRENDY:
Bardziej szczegółowoKryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl http://www.rk.kujawsko-pomorskie.pl/ Organizacja zajęć Kurs trwa 20 godzin lekcyjnych,
Bardziej szczegółowoPlan. 2. Fizyka heterozłącza a. proste modele kwantowe b. n-wymiarowy gaz elektronowy
Plan 1. Przegląd struktur niskowymiarowych a. studnie kwantowe, supersieci, wytwarzanie b. druty kwantowe, kropki kwantowe; wytwarzanie nanokryształy struktury samorosnące c. charakter widm optycznych
Bardziej szczegółowoRyszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Bardziej szczegółowoTeoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
Bardziej szczegółowoMateriały fotoniczne
Materiały fotoniczne Półprzewodniki Ferroelektryki Mat. organiczne III-V, II-VI, III-N - źródła III-V (λ=0.65 i 1.55) II-IV, III-N niebieskie/zielone/uv - detektory - modulatory Supersieci, studnie Kwantowe,
Bardziej szczegółowoElektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
Bardziej szczegółowoPółprzewodniki samoistne. Struktura krystaliczna
Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie
Bardziej szczegółowoPrzyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
Bardziej szczegółowoKrawędź absorpcji podstawowej
Obecność przerwy energetycznej między pasmami przewodnictwa i walencyjnym powoduje obserwację w eksperymencie absorpcyjnym krawędzi podstawowej. Dla padającego promieniowania oznacza to przejście z ośrodka
Bardziej szczegółowoStruktura pasmowa ciał stałych
Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................
Bardziej szczegółowoPodstawy fizyki wykład 4
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Bardziej szczegółowoJak TO działa? Do czego służą studnie, druty, kropki kwantowe? Półprzewodniki. Heterostruktury półprzewodnikowe
Do czego służą studnie, druty, kropki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 Półprzewodniki
Bardziej szczegółowoWykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Bardziej szczegółowoStudnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski
Studnia kwantowa Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Studnia kwantowa
Bardziej szczegółowopółprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Bardziej szczegółowoWprowadzenie do struktur niskowymiarowych
Wprowadzenie do struktur niskowymiarowych W litym krysztale ruch elektronów i dziur nie jest ograniczony przestrzennie. Struktury niskowymiarowe pozwalają na ograniczenie (częściowe lub całkowite) ruchu
Bardziej szczegółowoFizyka 3.3. prof.dr hab. Ewa Popko p.231a
Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2.W.Marciniak Przyrządy
Bardziej szczegółowoWykład III. Teoria pasmowa ciał stałych
Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
Bardziej szczegółowoUkłady cienkowarstwowe cz. II
Układy cienkowarstwowe cz. II Czym są i do czego mogą się nam przydać? Rodzaje mechanizmów wzrostu cienkich warstw Sposoby wytwarzania i modyfikacja cienkich warstw półprzewodnikowych czyli... Jak zrobić
Bardziej szczegółowoFizyka 3.3. prof.dr hab. Ewa Popko p.231a
Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2. B. Ziętek, Optoelektronika,
Bardziej szczegółowoĆwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE
Laboratorium z Fizyki Materiałów 00 Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY.WIADOMOŚCI OGÓLNE Przewodnictwo elektryczne ciał stałych można opisać korzystając
Bardziej szczegółowoLasery półprzewodnikowe. przewodnikowe. Bernard Ziętek
Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe
Bardziej szczegółowoGaSb, GaAs, GaP. Joanna Mieczkowska Semestr VII
GaSb, GaAs, GaP Joanna Mieczkowska Semestr VII 1 Pierwiastki grupy III i V układu okresowego mają mało jonowy charakter. 2 Prawie wszystkie te kryształy mają strukturę blendy cynkowej, typową dla kryształów
Bardziej szczegółowoTeoria pasmowa ciał stałych Zastosowanie półprzewodników
Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa
Bardziej szczegółowoWykład VI. Teoria pasmowa ciał stałych
Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
Bardziej szczegółowoWspółczesna fizyka ciała stałego
Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniżonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe.. fulereny, nanorurki, grafen. Kwantowe efekty rozmiarowe Ograniczenie
Bardziej szczegółowoFizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia
Fizyka klasyczna - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Zaczniemy historię od optyki W połowie XiX wieku Maxwell wprowadził
Bardziej szczegółowoIX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya
Bardziej szczegółowoMetody wytwarzania elementów półprzewodnikowych
Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie
Bardziej szczegółowo3.4 Badanie charakterystyk tranzystora(e17)
152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,
Bardziej szczegółowoWykład V Wiązanie kowalencyjne. Półprzewodniki
Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie
Bardziej szczegółowoAleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY
Bardziej szczegółowoPasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Bardziej szczegółowo+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna
Struktura cia³a sta³ego struktura krystaliczna struktura amorficzna odleg³oœci miêdzy atomami maj¹ tê sam¹ wartoœæ; dany atom ma wszêdzie takie samo otoczenie najbli szych s¹siadów odleg³oœci miêdzy atomami
Bardziej szczegółowoFizyka Laserów wykład 10. Czesław Radzewicz
Fizyka Laserów wykład 10 Czesław Radzewicz Struktura energetyczna półprzewodników Regularna budowa kryształu okresowy potencjał Funkcja falowa elektronu. konsekwencje: E ψ r pasmo przewodnictwa = u r e
Bardziej szczegółowoNanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Bardziej szczegółowoBadanie charakterystyki diody
Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,
Bardziej szczegółowoDr inż. Zbigniew Szklarski
Wykład 1: Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej
Bardziej szczegółowoelektryczne ciał stałych
Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 08.06.2017 1 2 Własności elektryczne
Bardziej szczegółowoMateriały w optoelektronice
Materiały w optoelektronice Materiał Typ Podłoże Urządzenie Długość fali (mm) Si SiC Ge GaAs AlGaAs GaInP GaAlInP GaP GaAsP InP InGaAs InGaAsP InAlAs InAlGaAs GaSb/GaAlSb CdHgTe ZnSe ZnS IV IV IV III-V
Bardziej szczegółowoKryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
Bardziej szczegółowoPodstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
Bardziej szczegółowoMateriały używane w elektronice
Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych
Bardziej szczegółowoelektryczne ciał stałych
Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Własności elektryczne ciał
Bardziej szczegółowoUMO-2011/01/B/ST7/06234
Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Bardziej szczegółowoZjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne
Bardziej szczegółowoWykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy
Wykład IV Dioda elektroluminescencyjna Laser półprzewodnikowy Półprzewodniki - diagram pasmowy Kryształ Si, Ge, GaAs Struktura krystaliczna prowadzi do relacji dyspersji E(k). Krzywizna pasm decyduje o
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules
Bardziej szczegółowoPrzewodność elektryczna półprzewodników
Przewodność elektryczna półprzewodników p koncentracja dziur n koncentracja elektronów Domieszkowanie półprzewodników donory i akceptory 1 Koncentracja nośników ładunku w półprzewodniku domieszkowanym
Bardziej szczegółowoIII.4 Gaz Fermiego. Struktura pasmowa ciał stałych
III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE
Bardziej szczegółowoAbsorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Bardziej szczegółowoTranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy
Bardziej szczegółowoIII Pracownia Półprzewodnikowa
Pomiary czasowo-rozdzielcze nanostruktur azotkowych. Ćwiczenie będzie polegało na zmierzeniu czasowo-rozdzielonej fotoluminescencji przy użyciu kamery smugowej, a następnie na analizie otrzymanych danych.
Bardziej szczegółowoPL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL
PL 221135 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221135 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 399454 (22) Data zgłoszenia: 06.06.2012 (51) Int.Cl.
Bardziej szczegółowoSkończona studnia potencjału
Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach
Bardziej szczegółowoPodstawy Fizyki Półprzewodników
Podstawy Fizyki Półprzewodników Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski konsultacje: poniedziałek godz. 15:00-17:00, pok. 310 A-1 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Bardziej szczegółowoWiązania. w świetle teorii kwantów fenomenologicznie
Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja
Bardziej szczegółowodr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr
dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr WYTWARZANIE I ZASTOSOWANIE NANOCZĄSTEK O OKREŚLONYCH WŁAŚCIWOŚCIACH WROCŁAWSKIE CENTRUM BADAŃ EIT+ WIELKOŚCI OBSERWOWANYCH
Bardziej szczegółowoW książce tej przedstawiono:
Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,
Bardziej szczegółowoelektryczne ciał stałych
Wykład 24: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 19.06.2018 1 2 Własności elektryczne
Bardziej szczegółowoPrzerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
Bardziej szczegółowoW5. Rozkład Boltzmanna
W5. Rozkład Boltzmanna Podstawowym rozkładem w klasycznej fizyce statystycznej jest rozkład Boltzmanna E /( kt ) f B ( E) Ae gdzie: A jest stałą normalizacyjną, k stałą Boltzmanna 5 k 8.61710 ev / K Został
Bardziej szczegółowoS. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
Bardziej szczegółowoWYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
Bardziej szczegółowoPrawo Ohma. qnv. E ρ U I R U>0V. v u E +
Prawo Ohma U>0V J v u J qnv u - E + J qne d J gęstość prądu [A/cm 2 ] n koncentracja elektronów [cm -3 ] ρ rezystywność [Ωcm] σ - przewodność [S/cm] E natężenie pola elektrycznego [V/cm] I prąd [A] R rezystancja
Bardziej szczegółowoInformacje wstępne. Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu.
Informacje wstępne Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu. Szanowny uczestniku, poniżej znajduje się zestaw pytań zamkniętych i otwartych. Pytania zamknięte są pytaniami
Bardziej szczegółowoInTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych
Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun Instytut Fizyki Polskiej Akademii Nauk Zbigniew R. Żytkiewicz IF
Bardziej szczegółowoStara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Bardziej szczegółowoIII Pracownia Półprzewodnikowa
Pomiary czasowo-rozdzielcze nanostruktur azotkowych. Ćwiczenie będzie polegało na zmierzeniu czasowo-rozdzielonej fotoluminescencji przy użyciu kamery smugowej, a następnie na analizie otrzymanych danych.
Bardziej szczegółowoFizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
Bardziej szczegółowoFIZYKA + CHEMIA. Technologie disruptive czyli ciężkie życie futurologa. Edukacja przez badania. Plan wykładu.
Technologie disruptive czyli ciężkie życie futurologa Uniwersytet Warszawski Interdyscyplinarny makrokierunek WydziałuFizyki i WydziałuChemii Uniwersytetu Warszawskiego FIZYKA + CHEMIA http://nano.fuw.edu.pl
Bardziej szczegółowoTranzystory polowe JFET, MOSFET
Tranzystory polowe JFET, MOSFET Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy JFET Zasada
Bardziej szczegółowoKryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
Bardziej szczegółowo