Metody Obliczeniowe w Nauce i Technice

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody Obliczeniowe w Nauce i Technice"

Transkrypt

1 12. Iteracyjne rozwiązywanie Ax=B Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland dice.cyfronet.pl Contributors Anna Marciniec Radosław Kazior Łukasz Janeczko

2 Plan wykładu Wady metod bezpośrednich Podział metod iteracyjnych Istota metod iteracyjnych dla Ax=b Zbieżność procesu iteracyjnego rozwiązywania Ax=b Sens procedury iteracyjnej dla Ax=b Metoda Jacobiego Metoda Gaussa-Seidla (G-S i S-R -successive relaxation) Metoda kolejnych nadrelaksacji - SOR (successive over-relaxation) Sposoby przeglądania węzłów siatki Metoda Czybyszewa Porównywanie jakości wybranych metod iteracyjnych

3 12.1 Wady metod bezpośrednich Wady metod bezpośrednich Złożoność obliczeniowa N 3 M = 1 3 n3 + n n (,/) D = 1 3 n n2 5 6 n (+) Np punktów siatki przestrzennej (mesh points) 100 x 100 (2 D) 20 x 20 x 20 (3 D) metoda eliminacji Gaussa to operacji 1 operacja trwa 10 8 s czyli 3 godziny

4 12.1 Wady metod bezpośrednich Zwykle czas symulacji 1h, liczba kroków czasowych 1000, cały krok - to rozwiązywanie układu równań, 1 operacja 10 8 s, liczba punktów siatki 10 4 ( liczba równań)

5 12.1 Wady metod bezpośrednich Potrzebne są metody o znacznie mniejszej złożoności Metody takie powinny być oparte na własnościach równań różniczkowych cząstkowych (zwykle - źródła równań liniowych): liniowość, wymiar, możliwość separacji zmiennych, zakres zmian współczynników, kształt geometryczny obszaru, warunki brzegowe - postać.

6 12.1 Wady metod bezpośrednich Metody bezpośrednie zaburzają strukturę macierzy rzadkich 2 - D operator pięciopunktowy

7 12.1 Wady metod bezpośrednich Metody bezpośrednie zaburzają strukturę macierzy rzadkich 5 N 2 współczynników 0 ale: po zastosowaniu metody eliminacji Gaussa znikają zera z wstęg (*) trzeba wtedy pamiętać 2 N 3 współczynników Macierz wstęgowa: m ij = 0 dla i j > k W metodach polegających na mnożeniu A x (t) w kroku t zamiast n 2 k n mnożeń wtedy łatwo o: s k n < n 3 gdzie s - liczba kroków, a n 3 - złożoność metod bezpośrednich.

8 12.2 Podział metod iteracyjnych Podział metod iteracyjnych Metody stacjonarne (stationary) stałe współczynniki macierzy iteracyjnej, starsze, proste w zrozumieniu i implementacji, na przykład metody Jacobiego, G S (SR), SOR, SSOR.

9 12.2 Podział metod iteracyjnych Metody niestacjonarne (nonstationary) współczynniki macierzy iteracyjnej zmieniają się w kolejnych krokach iteracji, oparte na idei ciągu wektorów ortogonalnych (CG, MINRES...), wielomianów ortogonalnych (metoda Czybyszewa), stosunkowo nowe, trudniejsze w zrozumieniu i implementacji, szybciej zbieżne.

10 12.2 Podział metod iteracyjnych iterate przybliżenie rozwiązania w kolejnej iteracji, residual r = Ay b, preconditioner, preconditioning matrix: macierz transformująca układ równań do postaci o lepszych własnościach spektralnych

11 12.3 Istota metod iteracyjnych dla Ax=b Istota metod iteracynych dla Ax = b A x = b gdzie A jest macierzą n x n, x wektor n niewiadomych, b wektor danych (źródeł).

12 12.3 Istota metod iteracyjnych dla Ax=b Rozkład: A = B + R B macierz dla, której łatwo stworzyć B 1 R pozostałość A x = (B + R) x = b B x = R x + b B x = (A B) x + b

13 12.3 Istota metod iteracyjnych dla Ax=b Metody iteracyjne dla Ax = b (mesh relaxation methods) polegają na: odgadnięciu wektora początkowego x (0) generowaniu ciągu iteracyjnego x (t) według postulowanego wzoru: B x (t+1) = (A B) x (t) + b x (t+1) = B 1 (A B) x (t) + B }{{}} 1 {{ b} I B 1 A=M M - iteration matrix W x (t+1) = M x (t) + B 1 b

14 12.3 Istota metod iteracyjnych dla Ax=b Różne B rodzina metod iteracyjnych: x (t+1) = M x (t) + B 1 b ( ) Warunek zgodności formuły iteracyjnej z szukanym rozwiązaniem lim t x (t+1) = lim t (M x (t) + B 1 b)

15 12.4 Zbieżność procesu iteracyjnego rozwiązywania Ax=b Zbieżność procesu iteracyjnego rozwiązywania Ax=b Twierdzenie: Zbieżność procesu iteracyjnego Teza: Ciąg ( ) z dowolnym wektorem startowym x (0) jest zbieżny do jedynego granicznego x (inf) wtedy i tylko wtedy, gdy promień spektralny (spectral radius) macierzy iteracji jest mniejszy od 1 ρ(m) < 1

16 12.4 Zbieżność procesu iteracyjnego rozwiązywania Ax=b Dowód ε (t) = x (t) x; wektor błędu w iteracji t x = M x + W oraz x }{{ (t+1) = M x } (t) + W ε (t+1) =M ε (t) ε (t) =Mt ε (0) (7) ε (0) - initial error vector gdy M zmienia się w procesie iteracji - to: ε (t) = M t ε (0) (8) Dla określenia zbieżności - potrzebny jest skalar ε (t). Chcemy, by dla pewnego t: ε (t+1) < ε (t)

17 12.4 Zbieżność procesu iteracyjnego rozwiązywania Ax=b Dowód M macierz iteracji ma n różnych wartości i wektorów własnych Ms i = ρ i s i (12.3) Rozkładamy (rzuty na inne osie): n ε (t) = M t α i s i, α i - amplituda kierunku s i i=1 (12.4) ε (t) = M t n α i s i = i=1 ε (t) = n i=1 α i M t 1 (Ms i }{{} ρ i s i ) =... = n α i ρ t i s i (12.5) i=1 n α i ρ t i s i i=1

18 12.4 Zbieżność procesu iteracyjnego rozwiązywania Ax=b Dowód lim t ε(t) = α m ρ t ms m gdzie: ρ m = max i ρ i = ρ promień spektralny macierzy iteracji ρ < 1 - warunek zbieżności ε (t) ε (0) M(t) - zadana dokładność ρ M (t ) = 10 p λ asymptotic convergence factor λ t = 10 p t = p ln10 lnλ - liczba iteracji

19 12.5 Sens procedury iteracyjnej dla Ax=b Sens procedury iteracyjnej dla Ax=b W każdym kroku następuje poprawianie rozwiązania. Przypadek, gdy źródłem Ax=b jest rozkład Poissona: 2 u(x, y) = ρ(x, y) ρ(x, y) funkcja rozkładu źródeł szybkość propagacji informacji 2 Operator Laplace a

20 12.5 Sens procedury iteracyjnej dla Ax=b Ale rozkład Poissona to graniczny (stacjonarny) przypadek równania dyfuzji: u t 2 u = ρ którego jawne sformułowanie różnicowe ma postać: siatka t : t p, u (p+1) = u (p) + t y (p) + ρ t }{{}}{{} t + t p + 1 Mu (p) W =B 1 b Procedura iteracyjna - jawne rozwiązanie zagadnienia opisującego zbieżność w wyimaginowanym czasie iteracji (pseudoczas)

21 12.6 Metoda Jacobiego Metoda Jacobiego A = D + (L + U) { M = I D 1 A W = D 1 b gdzie: L poddiagonalna; U naddiagonalna; D = B diagonalna, z diagonalnych elementów macierzy A. Ax = (D + (L + U))x = b = Dx = (L + U)x + b Korzystając z zależności otrzymujemy wzór roboczy: x (t+1) i Dx (t+1) = (L + U)x (t) + b = 1 a ii [b i n j=1,j i a ij x (t) j ] ; a ii 0, i 1,.., n

22 12.6 Metoda Jacobiego Procedura przestawiania wierszy 1) spośród kolumn z a ii = 0 wybieramy tę, która ma najwięcej zer, 2) w tej kolumnie wybieramy element o max a ji i przestawiamy wiersze tak, aby znalazł się on na diagonali, 3) powtarzamy 1) i 2).

23 12.6 Metoda Jacobiego Modelowe zadanie równanie Poissona 2-D w.b. φ 0 siatka przestrzenna N x N Dla modelowego zadania met. Jacobiego: ρ cos π N 10 π2 N 2, λ J = ρ

24 12.6 Metoda Jacobiego Charakterystyka metody Jacobiego prosta, ma znaczenie dydaktyczne, wolnozbieżna, nie wykorzystuje całej, dostępnej w danym kroku informacji, pamiętane x (t) i x (t+1), zbieżna dla A silnie diagonalnie dominujących, wierszowo : a ii > kolumnowo : a ii > n j=1,j i n j=1,j i a ij, a ji,

25 12.7 Metoda Gaussa-Seidla (G-S i S-R -successive relaxation) Metoda Gaussa-Seidla (G-S i S-R -successive relaxation) A = (L + D) +U }{{} B M = I B 1 A = I B 1 (B + U) = B 1 U, ( ) (*) Pamiętamy, że x (t+1) = B 1 Ux (t) + B 1 b (D + L)x (t+1) = Ux t + b Dx (t+1) = Lx (t+1) Ux (t) + b x (t+1) = Mx (t) + W, M = I B 1 A, W = B 1 b

26 12.7 Metoda Gaussa-Seidla (G-S i S-R -successive relaxation) Wzór roboczy: x (t+1) i i 1 = 1 [b i a ii a ij x (t+1) j j=1 } {{ } ( ) n a ij x (t) ] j j=i+1 }{{} ( ) gdzie: ( ) - otrzymujemy z rozwiązania poprzednich równań w bieżącej (t + 1) iteracji i w tym tkwi przewaga nad metodą Jacobiego i źródło wzrostu efektywności, ( ) - z poprzedniej iteracji (t).

27 12.7 Metoda Gaussa-Seidla (G-S i S-R -successive relaxation) Charakterystyka metody G-S elementy diagonali powinny być 0 przestawianie wystarczy pamiętać aktualne przybliżenie x (t+1) zbieżna dla A: * silnie diagonalnie dominujących wierszowo, kolumnowo, * symetrycznych, * dodatnio określonych (xax > O x 0).

28 12.7 Metoda Gaussa-Seidla (G-S i S-R -successive relaxation) Dla modelowego zadania: λ GS = ρ 2 λ GS = cos 2 ( π N 1 ( π2 N 2 ) t = ln10 π 2 (pn2 )...

29 12.8 Metoda kolejnych nadrelaksacji - SOR (successive over-relaxation) Metoda kolejnych nadrelaksacji - SOR (successive over-relaxation) Inaczej zapisany wzór roboczy SR(G-S): x (t+1) i = x (t) i Przyspieszenie zbieżności: x (t+1) i i [b i a ii a ij x (t+1) j n a ij x (t) j ] j=1 j=i }{{} r (t) i - poprawka do starego rozwiązania x (t) i = x (t) i + ωr (t) i, ω - pewna liczba

30 12.8 Metoda kolejnych nadrelaksacji - SOR (successive over-relaxation) Wzór roboczy a ii x (t+1) i = a ii }{{} x (t) i w zapisie macierzowym i 1 +ω[b i j=1 a ij x (t+1) j n j=i+1 a ij x (t) j ] ω a ii Dx (t+1) = (1 ω)dx (t) + ω[b Lx (t+1) Ux (t) ] po uporządkowaniu: }{{} x (t+1) = (D + ωl) 1 [D ω(d + U)] x (t) + ω(d + ωl) 1 b }{{}}{{} M W (=B 1 b) x (t) i

31 12.8 Metoda kolejnych nadrelaksacji - SOR (successive over-relaxation) Twierdzenie Założenia Dla dowolnej nieosobliwej macierzy A i dowolnej liczby ω zachodzi: Teza ρ(m) ω 1 Stąd: { ω (0, 1] - podrelaksacja ω (0, 2) ω (1, 2) - nadrelaksacja

32 12.8 Metoda kolejnych nadrelaksacji - SOR (successive over-relaxation) Interpretacja: Dla ważnych praktycznie klas macierzy znana jest optymalna wartość ω

33 12.8 Metoda kolejnych nadrelaksacji - SOR (successive over-relaxation) Twierdzenie Założenia Dla A - symetrycznej, dodatnio określonej o postacji blokowo - trójprzekątniowej: D 1 U 1 A = L 2 D 2 U L n 1 D n 1 U n 1 L n D n

34 12.8 Metoda kolejnych nadrelaksacji - SOR (successive over-relaxation) Teza ω opt = Dla równania modelowego ρ(m GS ) = ρ 2 (M J ) ρ(m GS ) λ SOR = ω opt 1 ρ = cos 2 ( π N ), ω opt 2(1 π N, λ SOR = 1 2π N )

35 12.9 Sposoby przeglądania węzłów siatki Sposoby przeglądania węzłów siatki

36 12.10 Metoda Czybyszewa Metoda Czybyszewa B 1 = W (A) - wielomian macierzowy M = 1 W (A)A. Znaleźć W (U) taki, by: min!max 1 W (U)U U Jest to klasyczny problem aproksymacji wielomiany Czybyszewa

37 12.10 Metoda Czybyszewa Przyspieszenie Czybyszewa metody SOR; odd-even ordering ρ = ρ(m J ) ω (0) = 1 ω = ρ2 ω (t+ 1 2 ) 1 = ρ2 ω (t), dla t=1 2, 1, 11 2,... ω ( ) = ω opt

38 12.10 Metoda Czybyszewa 1 ω=1.0 DO 2 t = 1, MAXIT ( 100, 1000) 3 Norm = 0. 0 DO 1 p= 1, n 5 DO 1 p= 1, n IF ( MOD( p+q, 2 ).EQ. MOD( t, 2 ) ) THEN 7 R e s i d u a l = a p,qφ p,q 1 + b p,1φ p,q+1 + c p,qφ p 1,q+ d p,qφ p+1,q + e p,qφ p,q f p,q 9 Norm = Norm + ( R e s i d u a l ) 2 φ p,q = φ pq ω R e s i d u a l /e p,q 11 ENDIF 1 CONTINUE 13 ( ) ω = 1.0/( ρ 2 ω) ( ) IF ( t.eq. 1) ω = 1.0/( ρ 2 ) 15 IF (Norm. LT. EPS f s o l u t i o n o b t a i n e d 2 CONTINUE Zadanie: Przećwiczyć na lab.

39 12.10 Metoda Czybyszewa Uwagi do algorytmu EPS 10 6, f obliczona wcześniej norma prawej strony, gdy usuniemy instrukcje (*) otrzymamy metodę G-S, jeżeli dodatkowo zastąpimy ω = 1 przez ω = ω opt - metodę SOR, (Dla r. Poissona: a = b = c = d = 1, e = 4)

40 12.11 Porównywanie jakości wybranych metod iteracyjnych Porównywanie jakości wybranych metod iteracyjnych A { r. Poissona, 2-D siatka 128 x 128

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksacji 3. Zbieżność

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 9 - Rozwiązywanie układów równań nieliniowych Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Anna Marciniec

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu:

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu: Rozwiązywanie algebraicznych układów równań liniowych metodami iteracynymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksaci 3. Zbieżność

Bardziej szczegółowo

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Plan wykładu. Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 p. Rozwiazywanie układów równań. metody bezpośrednie,

Plan wykładu. Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 p. Rozwiazywanie układów równań. metody bezpośrednie, Plan wykładu Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Układy równań liniowych i metody ich rozwiazywania Metoda sprzężonych gradientów Macierze

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 23. Rozwiązywanie równań różniczkowych cząstkowych Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Numeryczna algebra liniowa

Numeryczna algebra liniowa Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6

Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 Wykład 6 p. 1/?? Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Plan wykładu

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 7. Równania nieliniowe (non-linear equations) Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Dawid Prokopek

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x. Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje

Bardziej szczegółowo

Wykład III Układy równań liniowych i dekompozycje macierzy

Wykład III Układy równań liniowych i dekompozycje macierzy Wykład III Układy równań liniowych i dekompozycje macierzy Metody eliminacji i podstawienia wstecz Metoda dekompozycji LU i jej zastosowania Metody dla macierzy specjalnych i rzadkich Metody iteracyjne

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona

Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona 1. Klasyfikacja RRCz, przykłady 2. Metody numerycznego rozwiązywania równania Poissona a) FFT (met. bezpośrednia) b) metoda różnic

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 5. Aproksymacja Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Paweł Urban Jakub Ptak Łukasz Janeczko

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 8. Wyznaczanie pierwiastków wielomianów Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena Nowak

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Lista nr 1 - Liczby zespolone

Lista nr 1 - Liczby zespolone Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić

Bardziej szczegółowo

ALGEBRA LINIOWA. ĆWICZENIA Układy Równań Liniowych

ALGEBRA LINIOWA. ĆWICZENIA Układy Równań Liniowych ALGEBRA LINIOWA ĆWICZENIA Układy Równań Liniowych ALEXANDER DENISIUK Najnowsza wersja tego dokumentu dostępna jest pod adresem http://userspjwstkedupl/~denisjuk/ Proponowane zadania powinny zostać zrealizowane

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów. P. F. Góra

Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów. P. F. Góra Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Metody iteracyjne W metodach dokładnych otrzymane rozwiazanie jest dokładne

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Metody rozwiązywania równań nieliniowych

Metody rozwiązywania równań nieliniowych Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym 1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy

Bardziej szczegółowo

Metoda dekompozycji przestrzeni i jej zastosowania

Metoda dekompozycji przestrzeni i jej zastosowania Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Justyna Szatkowska Nr albumu: 77931 Metoda dekompozycji przestrzeni i jej zastosowania Praca magisterska na kierunku MATEMATYKA w zakresie

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Grupa: A

Egzamin z Metod Numerycznych ZSI, Grupa: A Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa

Bardziej szczegółowo

Wstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów. P. F. Góra

Wstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów. P. F. Góra Wstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Współczynnik uwarunkowania macierzy symetrycznej Twierdzenie 1. Niech

Bardziej szczegółowo

Równania różniczkowe cząstkowe. Wojciech Szewczuk

Równania różniczkowe cząstkowe. Wojciech Szewczuk Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe - wstęp u x = lim x u(x + x, y) u(x, y) x u u(x, y + y) u(x, y) y = lim y y () (2) 2 u x 2 + 2xy 2 u y 2 + u = 3 u x 2 y + x 2 u + 8u = 5y

Bardziej szczegółowo

Bardzo łatwa lista powtórkowa

Bardzo łatwa lista powtórkowa Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin

Bardziej szczegółowo

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =

Bardziej szczegółowo

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną.

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Tomasz Chwiej 9 sierpnia 18 1 Wstęp 1.1 Dyskretyzacja n y V V 1 V 3 1 j= i= 1 V 4 n x Rysunek 1: Geometria układu i schemat siatki obliczeniowej

Bardziej szczegółowo

WYKŁAD 9 METODY ZMIENNEJ METRYKI

WYKŁAD 9 METODY ZMIENNEJ METRYKI WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Modyfikacja schematu SCPF obliczeń energii polaryzacji

Modyfikacja schematu SCPF obliczeń energii polaryzacji Modyfikacja schematu SCPF obliczeń energii polaryzacji Zakład Metod Obliczeniowych Chemii 11 kwietnia 2006 roku 1 Po co? Jak? 2 Algorytm Analiza zbieżności 3 dla układów symetrycznych 4 Fulleren 5 Po co?

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych. P. F. Góra

Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych. P. F. Góra Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Metody iteracyjne Rozwiazanie układu równań liniowych, uzyskane

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Metody dekompozycji macierzy stosowane w automatyce

Metody dekompozycji macierzy stosowane w automatyce Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky

Bardziej szczegółowo

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński. Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 10. Numeryczna algebra liniowa wprowadzenie. Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Iteracyjne rozwiązywanie równań

Iteracyjne rozwiązywanie równań Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo