oexzt [10%] :1 dl`y.(0, 0) dcewpd zaiaqa zeneqg ody zeiwlg zexfbp zlra f(x, y) idz.(0, 0) dcewpa dtivx f ik gked
|
|
- Magdalena Kubicka
- 6 lat temu
- Przeglądów:
Transkrypt
1 dwihnznl dhlewtd l"hn - oeipkhd g"qyz sxeg 'z `"ecg '` cren ziteq dpiga oexzt [10%] :1 dl`y.(0, 0) dcewpd zaiaqa zeneqg ody zeiwlg zexfbp zlra f(x, y) idz.(0, 0) dcewpa dtivx f ik gked.lim f(x, y) = f(0, 0) ik ze`xdl jixv zetivx gikedl ick x 0 y 0.lim f(x, y) f(0, 0) = 0 ik gikep :odly minqgd z` M 1, M -a onqpe,zeneqg ody zeiwlg zexfbp zlra f(x, y) oezpd itl x 0 y 0 f x (x, y) M 1, f y (x, y) M.(zeneqge zeniiw zeiwlgd zexfbpd day daiaq dze`) (0, 0) ly daiaqa dcewp (x, y) idz,okae f(x, y) f(0, 0) = f(x, y) f(0, y) + f(0, y) f(0, 0) f(x, y) f(0, y) + f(0, y) f(0, 0) = - yleynd oeieey-i`a ynzyp :('fpxbl zgqep) miipiad jxr htyn ynzyp dzr,dxifb divwpet `id f(t, y), f(0, t) zeivwpetd on zg` lk okl,zeiwlg zexfbp zlra f oezpd itl :mitwz htynd i`pz okle,(t cigid dpzynd ly) dtivx okle = f x ( x, y)x + f y (0, ȳ)y zeiwlgd zexfbpd zeniqga ynzyp.daiaqd jeza miipia zecewp od x, ȳ xy`k M 1 x + M y. 0 f(x, y) f(0, 0) M 1 x + M y.'uieecpqd llk itl lim x 0 y 0 mekiql f(x, y) f(0, 0) = 0 okl.l"yn 1
2 .(1, 0) dcewpd on xzeia zewegxe xzeia zeaexwy x + y 9 4 [15%] : dl`y = 1 dqtil`d lr zecewpd z` `vn.g(x, y) = x 9 + y 4 1 onqp. (x 1) + y i"r oezp (1, 0) dcewpd on (x, y) dcewp ly wgxnd reaixd zivwpet ik) wgxnd reaixl menxhqw` z`ivnl dlewy ilnxhqw` wgxn z`ivn divwpetd ly oeviwd zecewp z` `evnl witqn okle,(ynn dler zipehepen u(t) = t f(x, y) = (x 1) + y g(x, y) = 0. ueli`l setka g m`d wecap.(minepilet od ik) R lka 1 od f, g zeivwpetd.'fpxbl iltek zhiya ynzyp ( ) :qt`zdl leki x g = 9, y. 4.ueli`d z` miiwn eppi` x = y = 0 la`,x = y = 0 xear wx qt`zn g.miniiwzn 'fpxbl iltek htyn i`pze qt`zn `l hp`icxbd xnelk ( ) x F = f(x, y) + λg(x, y) = (x 1) + y + λ 9 + y 4 1 F x = (x 1) + λx 9 = 0 F y = y + λy 4 = y ( 1 + λ 4 'fpxbl zivwpet xicbp,laewnk.dly zeihixwd zecewpd z` `vnpe ) = 0 - zeiexyt` izy opyiy raep F y -l d`eeynd on,x = ±3 raep ueli`d on f`e y = 0-y e`.y = ± 8 5 lawp ueli`d one x = 9 5 raep F x xear d`eeynd on.λ = 4 gxkda f`e y 0-y e` f(3, 0) = 4, f( 3, 0) = 16, f md el` zecewpa f ikxr.zeihixw zecewp rax` ep`vn ( ) 9 5, ±8 = zlawn (dtivx `idy) f divwpetd,q`xhyxiiee htyn itl.dneqge dxebq dveaw `id dqtil`d zeihixwd zecewpd z` xewql witqn okl,dly meniqwnde menipind ikxr z` dqtil`d lr izya lawzn ilnipind wgxnde,( 3, 0) dcewpa lawzn ilniqwnd wgxnd.( 9, ± ) lirl epnyxy :ziteq daeyz zecewpd
3 :3 dl`y zniiwny,r lka dtivx divwpet g(t) idz 0 g(t) dt = 1, / 0 g(t) dt = g(t) dt = 3, / / g(t) dt = 4 x y= 1 Y. = { (x, y) x + y 1 } megzd idi.(df sirqa wnpl jxev oi`) megzd ly dviwq xiiv [1%] (`). g(x + y) dxdy ayg [9%] (a) x+y=1 x+y= 1 x y=1 X (`) (a) i"r lewy ote`a megzd z` aezkl ozip = { (x, y) 1 x + y 1, x y 1 } :zecgein zehpicxe`ewl xearl rivp u = x + y, v = x y mpn`e,qt`zn `l dly o`iaewridy i`pza r"gg recike 1 `idy zix`pil dwzrd idef (u, v) (x, y) = =..letkd lxbhpi`a mipzyn iepiyl ef dwzrda ynzydl lkep jkitl g(x + y) dxdy = g(u) (x, y) (u, v) dudv i"r oezp megzd xy`a = { (u, v) 1 u 1, v 1 }. (x, y) (u, v) = (u, v) (x, y) = + 1 `ed lxbhpi`a yexcd o`iaewrid R lka 1 `id zix`pild dwzrdd ik xekfp) zeketdd zeivwpetd htyna epynzyd xy`k g(x + y) dxdy = 1.(mitwz htynd i`pz okl,qt`zn `l dly o`iaewride g(u) dudv = 1 dv g(u) du = 1 3 = 3. - mekiql 3
4 ( ) ( ) y x F (x, y, z) = x + y + cos y î + x + y x sin y ĵ + z ˆk,y + z = 0 xeyind mr x + z = 1 lilbd ly jezigd mewr `ed xy`k [15%] :4 dl`y ixehweed dcyd oezp.y xiv ly iaeigd oeeikd on lelqnd lr milkzqn xy`k oeryd ibegn oeeika F d r ayg xy`a, F = G + H dxeva oezpd dcyd z` meyxp G(x, y, z) = y x + y î + x x + y ĵ H(x, y, z) = cos y î x sin y ĵ + z ˆk ik) ely l`ivphet zivwpet `id U(x, y, z) = x cos y z3 ik,r 3 lka xnyn dcy `ed H dcyd.( U = H zniiwn xy` R 3 lka 1 divwpet idef H d r = 0 okl. xebq lelqn lkl z` siwn xy` xebq lelqn lkl G d r = π miiwn xy` "mqxetnd dcyd" `ed G dcyd ly iaeigd oeeikd on lelqnd lr milkzqn xy`k,oeryd ibegnl cbepnd oeeika zg` mrt Z xiv.z xiv Z.oeeik dfi`ae Z xiv z` siwn oezpd lelqnd m`d wecap x +z =1 X y+z=0 Y xexaa mi`ex ea,sxevnd xeiva opeazp :1 dhiy oeryd ibegn oeeika Y xiv z` siwn xy` lelqndy,y xiv ly iaeigd oeeikd on eilr milkzqn xy`k milkzqn xy`k oeryd ibegn oeeika Z xiv z` siwn.z xiv ly iaeigd oeeikd on eilr opeazpe lelqnd ly divfixhnxt meyxp : dhiy.xy xeyin lr ely lhida oeryd ibegn oeeika oeeknd) lelqnd zivfixhnxt,lynl,`id (Y xiv ly iaeigd oeeikd on eilr milkzqn xy`k z = cos t, x = sin t, y = z = cos t, 0 t π xy` dcigid lbrn `edy x = sin t, y = cos t, 0 t π mewrd `ed XY xeyin lr lhidd.oeryd ibegn mr `ed epeeik,"ilily"d oeeika zg` mrt Z xiv z` siwn xy` xebq lelqn `ed oezpd lelqnd :mekiql F d r = G d r + `id ziteqd daeyzd okle, H d r = π + 0 = π. G d r = π okl 4
5 :5 dl`y.t lkl zetivxa dxifb divwpet b(t) idz z = y + xb(z) d`eeyndy d`xd [5%] (`).(x 0, y 0, z 0 ) = (0, 0, 0) dcewpd zaiaqa z(x, y) dcigi divwpet dxicbn.u(x, y) = f(z(x, y)) xicbpe,t lkl dxifb f(t) idz [4%] (a).dzaiaqae (x 0, y 0 ) = (0, 0) dcewpa dxifb u ik d`xd.ef daiaqa u (x, y), u(x, y) z` ayg [6%] x y (b) F (x, y, z) = y + xb(z) z onqp (`).F (x, y, z) = 0 d`eeynd jezn x, y ly divwpetk z z` ulgl mipiipern ep` xnelk :zenezqd zeivwpetd htyn i`pz z` wecap,f (0, 0, 0) = 0 (1) 1 zeivwpet ly yxtde mekq,dltkne,(oezpd itl) zetivxa dxifb b(z) ik,r 3 lka F 1 (), 1 divwpet `ed F z (0, 0, 0) = xb (z) 1 = 0 (3) (0,0,0).(miiw b (0) jxrd hxta okle zetivxa dxifb b(z) ik al miyp).yxcpk z(x, y) dcigi divwpet zniiw ok` okle miniiwzn zenezqd zeivwpetd htyn i`pz,t lkl dxifb f(t) oezpd itl (a).(zenezqd zeivwpetd htyn ly d`vezk) dzaiaqe (0, 0)-a dxifb z(x, y) oke.dzaiaqe (0, 0)-a dxifb u(x, y) zxyxyd llk itl okl itk mitwz mdi`pz xy`) zenezqd zeivwpetd htyn ze`veze zxyxyd llk it lr (b) - ('a,'` mitirqa epi`xy u x (x, y) = f (z(x, y))z x z x = F x = b(z) F z xb (z) 1 u x (x, y) = b(z(x, y))f (z(x, y)) xb (z(x, y)) 1 u y (x, y) = f (z(x, y))z y z y = F y 1 = F z xb (z) 1 u y (x, y) = f (z(x, y)) xb (z(x, y)) 1 5
6 y dx + z dy + x dz Z (0,0,1) [15%] :6 dl`y z` (zxg` jxca `le) qwehq htyn zxfra ayg.xeivay lelqnd `ed xy`k Y (0,1,0) X (1,0,0).(mepilet `ed ely aikx lk ik) R 3 lka 1 `ed, F = y î + z ĵ + x ˆk epnqpy,dcyd.oirhewnl wlg okle,yleyn `ed lelqnd z` eilr rawpe,ezty -y edylk oirhewnl wlg ghyn xgap qwehq htyna ynzydl zpn-lr.zipnid cid llk i"tr lnxepd oeeik lnxepd oeeik mr (wlg ghyn `ed xeyind) x + y + z = 1 xeyind ly wlgd z` xgap lynl.(,, ). F d r = F ˆn ds okle,miniiwzn qwehq htyn i`pz S F î ĵ ˆk = x y z = ( z, x, y). y z x i"r oezp (xeyind ly yleynd wlgd xnelk) S ghynd S = {(x, y, z) x + y + z = 1, (x, y) }, = {(x, y) x 0, y 0, x + y 1} :ghynd ly zixhnxt dbvd meyxp R(x, y) = xî + yĵ + (1 x y)ˆk = R y R x = (z x, z y, ) = (,, ) S F ˆn ds = ( z, x, y) (,, ) dxdy = = (x + y + z(x, y)) dxdy = dxdy = 1 = 1 okle.(z(x, y) = 1 x y -y dcaera epynzyd xy`k) 6
7 [0%] :7 dl`y.(, 4, 0) dcewpd jxc xaery ghyn S idi i"r oezp `ed ike,ghynd lr (x 0, y 0, z 0 ) dcewp lka wiyn xeyin miiw df ghynl ik reci (x 0 + z 0 )(x x 0 ) (y 0 + z 0 )(y y 0 ) + (x 0 y 0 )(z z 0 ) = 0.S ghynd z` zx`znd d`eeyn `vn xy`k F (x, y, z) = 0 dxevd on d`eeyn i"r x`ezn xy` S ghyn ytgp ep`,f 1 (1).ghynd lr (x 0, y 0, z 0 ) dcewp lka F (x 0, y 0, z 0 ) 0 ().(x 0, y 0, z 0 ) dcewp lka wiyn xeyin ok` yi ghynl ik migihan el` mi`pz ipy i"r oezp (x 0, y 0, z 0 ) dcewpa ghynl wiynd xeyind,l"pd zegpdd zgz F x (x 0, y 0, z 0 )(x x 0 ) + F y (x 0, y 0, z 0 )(y y 0 ) + F z (x 0, y 0, z 0 )(z z 0 ) = 0 miiwzn oezpd itle F x (x 0, y 0, z 0 ) = x 0 + z 0, F y (x 0, y 0, z 0 ) = y 0 z 0, F z (x 0, y 0, z 0 ) = x 0 y 0 dxevd on divwpet lk ik ze`xl lwe,f divwpetd z` miytgn ep` F (x, y, z) = 1 x + xz 1 y yz + ( ). F (x, y, z) = (x + z, y z, x y),mpn`e, reaw lkl,dni`zn divwpet `id.f (x, y, z) = 1 x + xz 1 y yz + = 0 `id ghynd z`eeyny o`kn,(, 4, 0) dcewpd jxc xaer ghynd ik oezpd zxfra rawp reawd z` :F (, 4, 0) = 0 i`pzd on xnelk F (, 4, 0) = = 6 + = 0. 1 x + xz 1 y yz + 6 = 0 `id zyweand d`eeynd okle, = 6 okl (x 0, y 0, z 0 ) dcewp lka wiyn xeyin ok` yi lirl `gqepd i"r x`eznd ghynly wecal x`yp,mepilet F ik F 1 (1) dl`k zecewpa la`,x = y = z oday zecewpa wx qt`zn F :hp`icxbd z` wecap () F (a, a, a) = 1 a + a 1 a a + 6 = 6 0 :eilr i"r x`eznd ghynl okle,qt`zn hp`icxbd day F (x, y, z) = 0 zniiwny dcewp s` oi` okl.yxcpk,eilr (x 0, y 0, z 0 ) dcewp lka wiyn xeyin ok` yi 1 x + xz 1 y yz + 6 = 0 d`eeynd,xekfke, F xnynd dcyl l`ivphet zivwpet ep`vn mvra ep` ( ) alya ik al miyp :dxrd.reaw ick cr zrawp l`ivphetd zivwpet 7
e` 'gn :dhlewt my :ihxt
e` 'gn :dhlewt 'qn :'cehq :ihxt :dgtyn :zexexa zeize`a o`k jly zipexhwl`d zaezkd z` meyxl `p,ipexhwl` x`eca ef ogana jz`vez z` lawl jpevxa m` EMAIL: 26..2006, 104011, "n2 ilxbhpi`e il`ivpxtic oeayg" a
zihxwqic dwihnzna ziteq dpiga
2 jezn 1 cenr zihxwqic dwihnzna ziteq dpiga xeqpn wite`z :dvxnd f"qyz '` :xhqnq 290107 :jix`z zery 2 1 2 :dpigad jyn ` :cren :mipgapl ze`xed ly dpr,zel`y yely likn 'a wlg zecewp 30 ly daeg zg` dl`y likn
.f(x) y = 0. .x f(x) y = x
dketdd divwpetd htyn Df(x)-y gipp.(r = ile`) C r divwpet f : U R n -e U R n idz 0. htyn zniiwe W f(x 0 )-e V x 0 zegezt zeaiaq zeniiw if`.x 0 U dcewpa dkitd :y jk g : W V dcigi divwpet.g = f..y W lkl Dg(y)
zeil`ivpxtic zeipaz :ixehwe aizka F = dx i x i ,dzr 1.R n -l ihxcphqd qiqaa e i xehwel mgkezn oeniqn xzei did `l dx i xy`k :mipalnl oixb htyna xkfp
zeil`ivpxtic zeipaz xfr ilkk xwira yeniyl eqpked xy`,zeipaz-1 ly byena epynzyd mcewd wxta mfilnxetd on xake,mipalnl oixb htyn zgkeda epnzg wxtd z`,z`f mr.ipeniq htynd ly dllkd oixb htyna ze`xl mivex epgp`
d`elb zxeze zecyd zxeza dxfg zel`y
d`elb zxeze zecyd zxeza dxfg zel`y? R lrn miwixt-i`d minepiletd mdn (1 :mipiievnd zecyd lrn miwixt-i` mi`ad minepiletd ik egiked (2 Q( 2) lrne Q lrn X 3 3 (`) Q lrn X 4 + 1 (a) Q lrn X 3 5X 2 + 2X + 1
FUNKCJE WIELU ZMIENNYCH
FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin
O X Y a 4 O X Y T Z l O X Y D Z. 4 E - Y Z W 7 - a l a I P P A B X P l a 7 f 4. a S a a S O X Y H 4 s 7 S. A. T Z. i. a z i ) 4 Y z 7 a P Z z Z. 7 a Y j a F i. 9. P 4 7 Z. Y j a j 9. k 4 8 9. ( i s 7 4
iliiw zgqep a"dx`,mit,(daniel J. Kleitman),onhiilw l`ipc 'text oeipkha ihnznd oecrena dpzipy d`vxd zerlvde,micewcew
iliiw zgqep a"dx`,mit,(daniel J. Kleitman),onhiilw l`ipc 'text oeipkha ihnznd oecrena dpzipy d`vxd opeazp ep`.mipey micewcew ly bef `id rlv lk.zerlv zerlvde,micewcew micewcewd :zeveaw izyn akxen sxb zxne`
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta
stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv
Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży
v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)
v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d
dixhne`iba mixgap mi`yep
dtig zhiqxaipe` dwihnznl begd dixhne`iba mixgap mi`yep wpla cec zpwezn dxecdn h"qyz i ,ef zxaegn miwlg zclwd lr leniy-oa fer xnle ux`eey hxaex 'xcl zecez.eizexrd lr iwqpaex xinicle 'textle xagnl zexeny
a) f : R R R: f(x, y) = x 2 y 2 ; f(x, y) = 3xy; f(x, y) = max(xy, xy); b) g : R 2 R 2 R: g((x 1, y 1 ), (x 2, y 2 )) = 2x 1 y 1 x 2 y 2 ;
Zadania oznaczone * s troch trudniejsze, co nie oznacza,»e trudne.. Zbadaj czy funkcjonaª jest dwuliniowy, symetryczny, antysymetryczny, dodatniookre±lony: a) f : R R R: f(x, y) = x y ; f(x, y) = 3xy;
AB = x a + yb y a + zb z a 1
1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor
f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5)
1 Pochodne cząstkowo Pochodną cząstkową funkcji dwóch zmiennych z = f(x, y) względem zmiennej x oznaczamy i definiujemy jako granicę f(x + h, y) f(x, y) lim h 0 h natomiast pochodną cząstkową względem
xnb hwiiext- zizek`ln dpial `ean
xnb hwiiext- zizek`ln dpial `ean (shlomisha) ryry inely,(itaisegev) aby izi` dirad xe`iz.dwized oeqbnd znxethltl `vi `ede,battlecity `xwp wgynd wgynd xe`iz. illk xe`iz.. cr) owgy wph mpyi gela.milqwit
WSKAZANIE OBSZARÓW OBJĘTYCH OCHRONĄ ŚCISŁĄ, CZYNNĄ I KRAJOBRAZOWĄ
43 Załącznik nr 4 WSKAZANIE OBSZARÓW OBJĘTYCH OCHRONĄ ŚCISŁĄ, CZYNNĄ I KRAJOBRAZOWĄ Lp. Rodzaj ochrony Lokalizacja 1) Powierzchnia ogółem w ha 1 Ochrona ścisła Oddziały 1b, 1c, 1d, 1f, 1g, 1h, 1i, 1j,
`ean 1. mibeg 1.1. zeix`pia zelert izy mr R,+, dveaw idef :beg edn mixkef mleky gipn ip` -y jk,(dn`zda ltke xeaig odl `xwpy)
`ean 1 mibeg 1.1 zeix`pia zelert izy mr R,+, dveaw idef :beg edn mixkef mleky gipn ip` -y jk,(dn`zda ltke xeaig odl `xwpy).(0,ilxhiip xai` mr) zitelig dxeag `ed R, +.1.(xeaigl qgia) ziaiheaixhqice ziaih`iveq`
4.1. Lecture 4 & 5. Riemann. f(t)dt. a = t 0 <t 1 < <t n 1 <b= t n (4.1) , n [t i 1,t i ] t i t i 1 (i =1,...,n) f(ξ i )(t i t i 1 ) (4.
Lecture 4 & 5 4 4.1 Riemnn t f(t) [, b] (Riemnn ) f(t)dt [, b] n 1 t 1,...,t n 1 t 0
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań Jacek Cichoń, WPPT PWr, 05/6 Pochodne i całki funkcji jednej zmiennej Zadanie Oblicz pierwszą i drugą pochodną następujących funkcji. f(x)
Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne zadań dla sudenów kierunku Auomayka i roboyka WEAIiIB AGH Michał Góra Wydział Maemayki Sosowanej AGH I. Równania o zmiennych rozdzielonych: y = f (y)f () Zadanie. Rozwiąż
cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
Zestaw zadań z Równań różniczkowych cząstkowych I 18/19
Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć
1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć
ń Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć Í ń Ó Ń Ń Ń Ó ľ ęż Ń Á ęż Ń Ą ę Ż ć ę ę Ż ć ę ć Ś ę ę Ś Ż Ż Ż Ż ę ę Ż ń Ż ń ę ę ć Ś ę Ż ć Ż ć Ż Ż ć ń Ż ľ ę ę ę ę Ś ę ę ľ ę Ę Ĺ Í ľ ď ý Ę ń ľ ę ń Ó Ń ć Í ô Ó ľ ü
ť Ü Ĺ ä Ů Ú Í Í Ť ř Ě Í ü Í ń đ ń ď ď ń Ż Ł í á í É Ĺ Ü Í Ť Ĺ Ĺ ű Í Í ť Í ŕ Ĺ Í Ü Ü ü Ż Ż ń ť Ą Ą ŕ Ą ń ń Ż ń Ż ń ý Ż ń í Á É É Ýá Í ä í Ĺ Ĺ í Í ů ť Ĺ ť Ź Ť Ť Ł ń ź Ź ń ń ć ń ć ń Ż í ť ń Ż Ĺ ŕ í Ú íí ť
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego
Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami
3. Znaleźć długość krzywej l = {y = x, 0 x 1}. 4. Obliczyć objętość bryły powstałej w wyniku obrotu dookoła osi OX krzywej
eria. Obliczyć całki (A) 2 x 2 dx (z definicji); 2 xe x dx; e 2xe x2 dx. 2. Obliczyć pole obszaru (A) {(x, y) : < x < 3, < y < x 2 +}; {(x, y) : 6x x 2 < y < x 2 6x+}. 3. Znaleźć długość krzywej l = {y
Wykład z analizy. Tydzień 10 i 11. Różniczkowanie funkcji wielu zmiennych
Wykład z analizy Tydzień 1 i 11. Różniczkowanie funkcji wielu zmiennych 1.1 Niech f(x, y) będzie funkcją dwóch zmiennych, i niech druga współrzędna będzie ustalona y = y. Rozważana funkcja zależy tylko
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 33 2 0 1 7 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o C e
2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.
Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie
Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki
Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
O X Y T Z l O X Y a 4 E - Y Z W 7 - a l a I P P A B X T Z -. i W a - z i R 4 Y z 7 a S. A. O X Y H 4 s 7 P Z z Z. 7 a Y j a F i. 9. P 4 7 Z. Y j a j 9. k 4 8 9. ( i s 7 4 i a iw 8 Z s 7 Y j Z R - 4 - S
ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Legalna ±ci ga z RRI 2015/2016
Legalna ±ci ga z RRI 205/206 Równania ró»niczkowe pierwszego rz du sprowadzalne do równa«o zmiennych rozdzielonych a) Równanie postaci: = f(ax + by + c), Równanie postaci: = f(ax + by + c), () wprowadzamy
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1. Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient. Dla prostoty ograniczymy się do
czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda
Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania
Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3
Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 2 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych
24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA
4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
Jacek Jakubowski, Rafał Sztencel Rachunek prawdopodobieństwa dla (prawie) każdego (wyd. I) Ostatnia aktualizacja: 6 lutego 2004
ERRATA Jacek Jakubowski, Rafał Sztencel Rachunek prawdopodobieństwa dla (prawie) każdego (wyd. I) Ostatnia aktualizacja: 6 lutego 2004 Rozdział 20 2 przykładzie 4 przykładzie 5 Rozdział 2 48 4 P (B 2 B
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Uniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: michal.musielak@utp.edu.pl.
Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,
Określenie całki oznaczonej na półprostej
Określenie całki oznaczonej na półprostej Definicja 1 Niech funkcja f : [a, ) R będzie całkowalna na przedziałach [a, T ] dla każdego T > a. Całkę niewłaściwą funkcji f na półprostej [a, ) określamy wzorem
Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy:
Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
Liczby zespolone. Zadanie 1. Oblicz: a) ( 3+i)( 1 3i) b) (3+i)2 (4i+1) i
Zadanie. Oblicz: a) ( 3+i)( 3i) +i b) (3+i)2 (4i+) i (2+i) 3 Liczby zespolone Zadanie 2. Zaznacz na płaszczyźnie Gaussa zbiór: a) {z : z > 3} b) {z : z i } c) {z : 4 z + + i < 9} Zadanie 3. Wykaż, że suma
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
x y = 2z, + 2y f(x, y) = ln(x3y ) y x
. Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Funkcje wielu zmiennych
Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa
Niniejsza wersja jest wersją elektroniczną Krajowej Oceny Technicznej CNBOP-PIB nr CNBOP-PIB-KOT-2017/ wydanie 1, wydanej w formie
ń ń ż Ä Ä ż ń Ę Ę ľ Ä ŕ ż ń ř ő ő Ę ż ż ń Ę Ź ř ý ż É ż Ę ń ń ń Ę ľ ż Ż ń ż ż ż Ę ż ć ć ý ż Ę ż ż ý ć Ę ż ć ć ż Ę Ę Ę ż ż ć ź Ą Ł Ł Ł Ł ľ Ł Ł Ł ź ý ľ ż Ł ż Ł ń ý ż ż Ł Ł ý ľ Ł ż Ł Á Ż Ż Ł Ę Ź ż ż ż Á ż
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Funkcje wielu zmiennych
Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji
Analiza Matematyczna MAEW101 MAP1067
Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
2 x U S B 2. 0 ( t y ł ), 2 x U S B 3. 0 ( t y ł ),
J e s t e m y f i r m s p e c j a l i z u j c s i w m i n i a t u r o w y c h k o m p u t e r a c h, z n a j d u j c y c h s z e r o k i e z a s t o s o w a n i e p r z y : w y w i e t l a nu i t r e c
1 Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem
1 Działania na zbiorach
Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie
III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE
III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Lista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę
MATEMATYKA Lista 1 1. Zbadać liniową niezależność wektorów. (a) (1, 2, 3), (3, 4, 5), V = R 3 ; (b) (1, 2, 3), (3, 2, 1), (1, 1, 1), V = R 3 ; (c) (1, 0, 0, 0), ( 1, 1, 0, 0), (1, 1, 1, 0), ( 1, 1 1, 1),
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
Matematyczne Metody Fizyki II
Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład / 6 Ortonormalne
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
y(t) = y 0 + R sin t, t R. z(t) = h 2π t
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
1 Granice funkcji wielu zmiennych.
AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica
Funkcje dwóch zmiennych
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Twierdzenia o wzajemności
Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F
Rozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
Procesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne
Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk
Analiza Matematyczna Równania różniczkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Analiza
Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej
Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,