d`elb zxeze zecyd zxeza dxfg zel`y
|
|
- Judyta Jankowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 d`elb zxeze zecyd zxeza dxfg zel`y? R lrn miwixt-i`d minepiletd mdn (1 :mipiievnd zecyd lrn miwixt-i` mi`ad minepiletd ik egiked (2 Q( 2) lrne Q lrn X 3 3 (`) Q lrn X (a) Q lrn X 3 5X 2 + 2X + 1 (b) F 7 lrn X 7 X 1 (c) R(t) lrn X 3 t (d) α+1 mbe α mb ik gippe,owezne wixt-i` mepilet f F [X] `di,dcy F `di (3.iaeig oeit` F -l ik egiked.f ly miyxy ly wixt-i`d mepiletd zlrn ik egiked (4 2(1 3) i z` zwlgn Q lrn f(x) ik e`xd. Q-a f(x) ly yxy α `die f(x) = X 3 + 2X + 2 `di (5.1, α, α 2 ly zix`pil divpianewk 1/(1 + α) z` ebivd.q lrn wixt-i`.q( 3 2 3) = Q( 3 2, 3) ik egiked (6.α = iynnd xtqnd ly Q lrn wixt-i`d mepiletd z` eayg (7.C-a eiyxy lk z` e`vn,df mepilet ly α yxyl.wixt-i` X 3 X + 1 Q[X] mepiletd ik egiked (8.irr(α 2, Q) z` e`vn.f 2 lrn 3 dlrnn miwixt-i`d minepiletd lk z` e`vn (9 dlrnn wixt-i` mepilet f F [X] `die ziteq zecy zagxd E/F `dz (10.E-a yxy f -l oi` ik egiked.1-n dlecbde [E : F ]-l dxfd egiked.zibef-i` irr(α, F ) zlrn ik gipp.f dcyd lrn ixabl` xa` α `di (11.F (α) = F (α 2 ) ik jk F p mi`znd ipey`xd dcyd lrn f(x) minepiletl zyxetn `nbec epz (12.mixa` 27 e`,8, 9 oa dcy epid F p [X]/ f(x) -y.f 8, F 9 ly ltkde xeaigd zegel z` ex`z (13 1
2 2. 1 dlrnn wixt-i` mepilet f E[X] `di.zixabl` dagxd E/F `dz (14.f(X) g(x)-y jk g F [X] cigi wixt-i`e owezn mepilet miiw ik egiked.(f p : (F p ) 2 ) = 2,ipey`x p 2 lkl ik egiked (15 ipey`x lkl ik egiked.f(x) = (X 2 2)(X 2 3)(X 2 6) Q[X] `di (16 oi` f(x)-l mle`,f p -a yxy yi p elecen f(x) ly f(x) F p [X] divwecxl,p.q-a yxy :mipiievnd zecyd lrn mi`ad minepiletd ly levitd zecy z` eayg (17 Q lrn X 3 5 (`).F 5 lrn X 3 2 (a) F 5 lrn X 6 + X (b) Q lrn X (c) Q lrn X 4 4 (d) zegtl cg` yxy mr n zibef-i` dlrnn wixt-i` mepilet f Q[X] `di (18.2n-a zwlgzn Q lrn f ly levitd dcy zlrn ik egiked.c \ R-a egiked.char F -a zwlgzn dpi`y dlrnn ziteq zecy zagxd E/F `dz (19.dcixt E/F ik lkl.dcixt dpid ely zixabl` dagxd lk m` (perfect) llkeyn iexw dcy (20 :(ipey`x p o`k) llkeyn `ed m` eraw,mi`ad zecydn cg`.f p (t) (c) ;F p (b) ;Q(t) (a) ;Q (`) E 1 E 2 sexvd mb ik egiked.f dcy ly zeilnxep zeagxd E 1, E 2 dpidz (21?oekp jtidd m`d.f ly zilnxep dagxd epid mepilet ly levit dcy E-y jk M/E/F zeiteq zeagxd lcbnl `nbec epz (22 mepilet ly levit dcy epi` M j`,e lrn mepilet ly levit dcy M,F lrn.f lrn? d`elb zagxd dpid ze`ad zeagxddn in (23 Q( 5 3)/Q (`) Q( 3 2, 2)/Q (a) R(t)/R(t 2 ) (b) R(t)/R(t 3 ) (c) F 7 (t)/f 7 (t 2 ) (d) C( t)/r(t) (e)
3 3 Gal(M/F ) mr d`elb M/F ik gippe zecy ly lcbn F E M `di (24 z` xiqdl ozip `l ik d`xnd `nbec epz.d`elb E/F ik egiked.ziaihhenew.zeiaihhenewd zgpd ik gipp.e levit dcy mr wixt-i` f F [X] `die 0 oeit`n dcy F `di (25.f ly α yxy lkl E = F (α) ik egiked.ziaihhenew Gal(E/F ) xcqn d`elb zagxd E/F `dz. 1 z` liknd 2 oeit`n dcy F `di (26 :miiwzn mi`ad mi`pzd cg` ik egiked.4 e` ;edylk a F -l E = F ( 4 a) (`).mdylk a, b F -l E = F ( a, b) (a) miipia zagxd oi` ik egiked.a 5 d`elb zxeag mr d`elb zagxd E/F `dz (27.[K : F ] = 2 mr F K E Q(α)/Q ik egiked.q lrn α = ly wixt-i`d mepletd z` e`vn (28.dly d`elb zxeag z` e`vne d`elb zagxd.mipiievnd zecyd lrn mi`ad minepiletd ly d`elb zexeag z` eayg (29 :(icn dlecb dpi` dxeagdyk) miipiad zeagxd bixy z` eayg F 3 lrn X 4 + 6X 2 + X + 1 (`) Q lrn X 6 + X 4 + X (a) Q lrn X (b) Q lrn X 4 X (c) Q lrn Φ 24 (X) (d) C(t) lrn X 3 t (e) R(t) lrn X 3 t (f) F 7 -e F 3,Q( 23),Q lrn X 3 X + 1 (g) Q lrn X 3 3X + 3 (h) Q lrn X 4 4X (i) Q lrn X 4 3 (`i) F 5 lrn X 4 3 (ai) Q(i) lrn X 4 5 (bi) Q lrn X 5 5X 1 (ci).q lrn 10 i=0 Xi (eh).(dakxdd zlertl qgia) E ly minfitxenehe` zxeag G `dze dcy E `di (30 dveawd m` wxe m` F lrn ixabl` α ik egiked.α E `die F = E G `di.ziteq {σ(α) σ G} Φ 12 (X) z` eayg (31. p 1 k=1 (1 ζk ) = p ik egiked ζ = e 2πi/p -le ipey`x p-l (32
4 4? Q(e 2πi/42 )/Q dagxdl yi miipia zecy dnk (33? R(t),C(t)-a dcigid iyxy mdn (34.Q(e 2πi/7 )/Q ly zecigid miipiad zeagxd od Q(cos 2π/7)-e Q( 7) ik egiked (35 zlkend 2 dlrnn E/Q dcigi dagxd dpyi ik egiked.ibef-i` ipey`x p `di (36? R-a E lken p miipey`x eli` xear.q(e 2πi/p )-a -le p 1,..., p s mipey miipey`xl :d`ad dcaerd z` oiivp oldly zeiral (37.ϕ( s i=1 pr i i ) = ( ) s i=1 p r i 1 i (p i 1) miiwzn r 1,..., r s 1 miirah miixyt`d eikxr mdn.q ly 2 dlrnn dagxd Q(e 2πi/n )-y jk irah n `di (38?n ly? Q( 3)-a dcigid iyxy mdn (39? ±1-l hxt dcigi iyxy Q( m)-a oi` m minly mixtqn eli` xear (40 ik egiked.ζ n = e 2πi/n ( Q) onqp n 1 irahl (41. Q(ζ n )Q(ζ m ) = Q(ζ lcm(n,m) ), Q(ζ n ) Q(ζ m ) = Q(ζ gcd(n,m) )? Q(ζ n ) Q(ζ m ) izn iyxy ly iteq xtqn wx yi E-a ik egiked.ziteq dagxd E/Q ik gipp (42.dcigi. 1 E-e Gal(E/Q) =Z/4 mr Q ly E d`elb zagxd oi` ik egiked (43 :dpid Gal(E/Q)-y jk Q ly E d`elb zeagxdl ze`nbec epz (44 Z/3 (c) ; Z/11 (b) ;Z/22 (a) ; Z/2 (`) F 1024 /F 2 dagxdd ly miipiad zeagxd lk z` e`vn (45 lkn miwixt-i` minepilet F [X]-a miniiw F iteq dcy lkl ik egiked (46.dlrn? X = 0 d`eynl oexzt miiw miiteq zecy eli`a (47?F p 3 lrn wixt-i` X 2 + 2X + 2 mepiletd p miipey`x mixtqn el` xear (48 wixt-i` mepilet f F 2 [X] `di.ipey`x 2 n 1 ike irah n > 1 ik gipp (49 dcyd ly ziltkd dxeagd z` zxvei X ly dwlgnd ik egiked.n dlrnn.f 2 [X]/ f
5 5 ik egiked.dlrn dze`n F q iteq dcy lrn miwixt-i` minepilet f, g eidi (50.miitxenefi` zecy F q [X]/ g -e F q [X]/ f ik egiked.f p lrn F p r ly xvei α `die,miirah r, s eidi,ipey`x p `di (51.mixf r, s m` wxe m` F p s -a wixt-i` xzep irr(α, F p ) dpid F p r lrn X n 1 ly E levitd dcy zlrn ik egiked.ipey`x p `di (52.n q k 1-y jk k ixrfnd irahd yxy α R `di.e levit dcy mr 4 lrnn wixt-i` mepilet f Q[X] `di (53 Gal(E/Q) =A 4 m` ik egiked.ipa α f` Gal(E/Q) =Z/4 m` ik egiked.f ly.ipa epi` α f`.miipa md α ly Q-icenv lk ik egiked.ipa xtqn α `di (54.miiynn miyxey ipy weica mr 4 dlrnn wixt-i` mepilet f Q[X] `di (55 dxeagl d`elb zbvd zgz zitxenefi` dpi` Q lrn f ly d`elb zxeag ik egiked.(s 4 -a zeibefd zexenzd zxeag = ) A 4 zeiteq zexeag eli`?dcy ly ziltk dxeagk zeriten zeiteq zexeag eli` (56?dcy ly zixeaig dxeagk zeriten.zeiteq opi` F p /F p, Q/Q zeagxdd ik egiked (57 E = F (α) miiwnd α E oi`y jk 3 dlrnn E/F dagxdl `nbec epz (58.α 3 F -e :ekixtd e` egiked (59.epnn mipeyd miiwlg zecy Q-l oi` (`) minxeb zltknl C lrn wxtzn Q lrn ziaeig dlrnn wixt-i` mepilet lk (a).mipey mix`pil.r R (mibegk) dxyid dltknl itxenefi` C dcyd (b).α Q(β) if`.ely miyxy α, β C eidie wixt-i` f Q[X] `di (c).cixt epi`y F [X]-a mepilet miiw f` p > 0 oeit`n dcy F m` (d) M/E,E/F m` wxe m` dcixt M/F f` zecy ly lcbn F E M m` (e).zecixt.2014 dlrnn d`elb zagxd C((t))-l yi (f).irah n lkl d`elb Q(sin 2π/n)/Q (g) -y jk irah m miiw f` edylk irah n-l Q(e 2πi/n )-a lkend dcy E m` (h).e = Q(e 2πi/m )
zihxwqic dwihnzna ziteq dpiga
2 jezn 1 cenr zihxwqic dwihnzna ziteq dpiga xeqpn wite`z :dvxnd f"qyz '` :xhqnq 290107 :jix`z zery 2 1 2 :dpigad jyn ` :cren :mipgapl ze`xed ly dpr,zel`y yely likn 'a wlg zecewp 30 ly daeg zg` dl`y likn
e` 'gn :dhlewt my :ihxt
e` 'gn :dhlewt 'qn :'cehq :ihxt :dgtyn :zexexa zeize`a o`k jly zipexhwl`d zaezkd z` meyxl `p,ipexhwl` x`eca ef ogana jz`vez z` lawl jpevxa m` EMAIL: 26..2006, 104011, "n2 ilxbhpi`e il`ivpxtic oeayg" a
`ean 1. mibeg 1.1. zeix`pia zelert izy mr R,+, dveaw idef :beg edn mixkef mleky gipn ip` -y jk,(dn`zda ltke xeaig odl `xwpy)
`ean 1 mibeg 1.1 zeix`pia zelert izy mr R,+, dveaw idef :beg edn mixkef mleky gipn ip` -y jk,(dn`zda ltke xeaig odl `xwpy).(0,ilxhiip xai` mr) zitelig dxeag `ed R, +.1.(xeaigl qgia) ziaiheaixhqice ziaih`iveq`
oexzt [10%] :1 dl`y.(0, 0) dcewpd zaiaqa zeneqg ody zeiwlg zexfbp zlra f(x, y) idz.(0, 0) dcewpa dtivx f ik gked
dwihnznl dhlewtd l"hn - oeipkhd g"qyz sxeg 104014 'z `"ecg 10..008 '` cren ziteq dpiga oexzt [10%] :1 dl`y.(0, 0) dcewpd zaiaqa zeneqg ody zeiwlg zexfbp zlra f(x, y) idz.(0, 0) dcewpa dtivx f ik gked.lim
dixhne`iba mixgap mi`yep
dtig zhiqxaipe` dwihnznl begd dixhne`iba mixgap mi`yep wpla cec zpwezn dxecdn h"qyz i ,ef zxaegn miwlg zclwd lr leniy-oa fer xnle ux`eey hxaex 'xcl zecez.eizexrd lr iwqpaex xinicle 'textle xagnl zexeny
.f(x) y = 0. .x f(x) y = x
dketdd divwpetd htyn Df(x)-y gipp.(r = ile`) C r divwpet f : U R n -e U R n idz 0. htyn zniiwe W f(x 0 )-e V x 0 zegezt zeaiaq zeniiw if`.x 0 U dcewpa dkitd :y jk g : W V dcigi divwpet.g = f..y W lkl Dg(y)
Í í Í Á ń ý ý Ż í í ď Í Ĺ ń Í ń Ę ń ý Ż Ż ź ń ń Ę ń ý ý í ŕ Ĺ Ĺ Í Á í Ż Í É Í Ü ö ä Ż Ż Ż Ę ń ć Ę Ż ń Ę Ż ć ń Ł Ą ń Ę í Ę Ż Ż ý Ż Ż Ą Í É đ í Ł Ę Ł ć ő ť Ę ń í ć Í Ę Ę Ł Ą Ł ć ď ć Ę Ę ń Ó Ü ü Ĺ ý Ę ä í
I V. N a d z ó r... 6
C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 1 d o U c h w a ł y n r 2 2. / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. P
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
Podstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
- :!" # $%&' &() : & *+, &( -. % /0 ( 1 $+ #2 ( #2 ) !( # ;<= &( ) >- % ( &( $+ #&( #2 A &? -4
- :!" # $%&' &() : 1. 8 -& *+, &( -. % /0 ( 1 $+ #2 ( #2 ) 3 45 167-1.!( # ;- % ( &(- 17 #(?!@- 167 1 $+ &( #&( #2 A &? -2.!"7 # ;- % #&( #2 A &? -3.!( # ;
iliiw zgqep a"dx`,mit,(daniel J. Kleitman),onhiilw l`ipc 'text oeipkha ihnznd oecrena dpzipy d`vxd zerlvde,micewcew
iliiw zgqep a"dx`,mit,(daniel J. Kleitman),onhiilw l`ipc 'text oeipkha ihnznd oecrena dpzipy d`vxd opeazp ep`.mipey micewcew ly bef `id rlv lk.zerlv zerlvde,micewcew micewcewd :zeveaw izyn akxen sxb zxne`
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Ł Ł Ś Ó ć ć ć Ą Ć ć ć Ł Ś Ą Ó Ń Ą ź ź ź Ń ć ć Ł ć Ł Ł Ł Ś Ó Ń ć ć Ł ć Ł ć ć Ś Ł ć Ą Ą ź ź ź ć ć ć Ńć ć Ś Ś Ś Ń Ą ć ć ć ć ć Ń Ą Ł ź ź Ą ź ź ć ć ź ć Ą ć ć ć ź ź ź Ą ź ź ź ź ź ź ć ć ć ć ć ć ć Ą ć ć ź ć ć
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 33 2 0 1 7 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o C e
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
M G 4 2 7 v. 2 0 1 5 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w
!" #$% & " ' #% " " :; a 9, : 1 c : 'V 1 E T W ^#]X7 Y] ++ ' 9"92 ++ ) ++ ' / # 7 C #$ T 9MUZA 7 ) ++ =>? - JK ( ' / JK ' / 7 )
!" #$% & " ' #% " " =>?@4##ABCDEE% :; a 9, : 1 c: 'V 1 E T W ^#]X7 Y] ++ ' 9"92 ++ ) ++ A @ADS ' / # 7 C #$ T9MUZA 7 ) ++ =>? - JK ( ' / JK ' / 7 ) ++E ( ' 2- bmu 4- /%. /). A 7 ) ++9MU,! MU ) ++7! 5+
G d y n i a W y k o n a n i e p r a c p i e l g n a c y j- n o r e n o w a c y j n y c h n a o b i e k t a c h s p o r t o w y c h G C S o r a z d o s t a w a n a s i o n t r a w, n a w o z u i w i r u
n a k r ę t e k Z, I I, I.
H U T A W K A O G R O D O W A 2 - o s o b o w a t y p : J K S C 0 1 I N S T R U K C J A M O N T A V U I B E Z P I E C Z N E G O U V Y T K O W A N I A S z a n o w n i P a s t w o, D z i ę k u j e m y z
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech
1 3. N i e u W y w a ć w o d y d o d o g a s z a n i a g r i l l a! R e k o m e n d o w a n y j e s t p i a s e k Z a w s z e u p e w n i ć s i
M G 4 2 7 v.1 2 0 1 6 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 01 82 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A P r o m o c j a G m i n y M i a s t a G d y n i a p r z e z z e s p óp
Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć
ń Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć Í ń Ó Ń Ń Ń Ó ľ ęż Ń Á ęż Ń Ą ę Ż ć ę ę Ż ć ę ć Ś ę ę Ś Ż Ż Ż Ż ę ę Ż ń Ż ń ę ę ć Ś ę Ż ć Ż ć Ż Ż ć ń Ż ľ ę ę ę ę Ś ę ę ľ ę Ę Ĺ Í ľ ď ý Ę ń ľ ę ń Ó Ń ć Í ô Ó ľ ü
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
Z e s p ó ł d s. H A L i Z
C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n
r = ψ x ( 5 ) = x ψ ( 6 ) dn = q(x)dx ( 7 ) dt = μdn = μq(x)dx ( 8 ) M = M ( 1 )
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O K R E L E N I E O S I O B R O T U M A Y C H R O B O T W G Ą S I E N I C O W Y C H D L A P O T R Z E B O P I S U M O D E L
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
F u l l H D, I P S D, I P F u l l H D, I P 5 M P,
Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y
5 9; STU ()* +,-. /0#1 cp :Y ; :PQ ; $< + =>? AB)* + C 2D +,6E ; FFGHI)* + Y * JK L# M )* N ;O 7 )* +] P<Q)* +R STUV6 #)* +,- ] W
5 9; STU ()* +,-. /0#1 cp 2 3 3 4567 8 + 9:Y ; :PQ ; $< + =>? : @ AB)* + C 2D +,6E ; FFGHI)* + Y * JK L# M )* N ;O 7 )* +] P 2 )* +. Z[\,- X ]^_` :,- a ^ bc, #,
! "#$%&'! "# &' ( )*+,-. "#!! "/ :;/ ##$. 45 F45GH,! I#JKILMNO!PQ RST UV:WX)*+,Y PZJ[ -\IL]^_)* <`abc PZ QWX 2E _ a _ c a
! "#$%&'! "# &' ( )*+,-. "#!! "/01 2345 56789:;/ ##$. 45 ?'&@ABCDE, F45GH,! I#JKILMNO!PQ RST UV:WX)*+,Y PZJ[ -\IL]^_)*
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o
Arkusz1. Wyniki CPUbenchmark.net na dzień 11.05.2012
Wyniki CPUbenchmark.net na dzień 11.05.2012 AMD A4-3300 APU 1731 AMD A4-3300M APU 1643 AMD A4-3305M APU 1414 AMD A4-3310MX APU 1378 AMD A4-3320M APU 1477 AMD A4-3400 APU 1704 AMD A4-3420 APU 1823 AMD A6-3400M
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H
przedsięwzięcia kształceniowe i związane z pracą z kadrą
S P R A W O Z D A N I E Z R E A L I Z A C J I P L A N U P R A C Y C H O R Ą G W I D O L N O 5 L Ą 5 K I E J 2 0 1 4 W 2 0 1 4 r o k u z a p l a n o w a n e b y ł y n a s t ę p u j ą c e p r z e d s i ę
M& ( " A;P M ' ">? Z>? :JZ>? "UVM >? " ; = ;FY O " & M >? [S A\ A E D, 8 "V* >? " # ) "V* >? " 678>? ( 9/ I JK 4? 9RS/ > " " P &' ` &
9 789 45M&(" A;P M ' ">? Z>?:JZ>?"UVM >?" ; > @, = ;FYO" & M >? [SA\ )@ A ED, 8 "V* >?" # ) "V* >?" 678>?( 9/ IJK 4? 9RS/> " " P &' ` & > " P &' ) G 9 + :;J K : H 34I!JK Y 4 \ < 3b 2 I \ $GH ( 9 9"3?F
zeil`ivpxtic zeipaz :ixehwe aizka F = dx i x i ,dzr 1.R n -l ihxcphqd qiqaa e i xehwel mgkezn oeniqn xzei did `l dx i xy`k :mipalnl oixb htyna xkfp
zeil`ivpxtic zeipaz xfr ilkk xwira yeniyl eqpked xy`,zeipaz-1 ly byena epynzyd mcewd wxta mfilnxetd on xake,mipalnl oixb htyn zgkeda epnzg wxtd z`,z`f mr.ipeniq htynd ly dllkd oixb htyna ze`xl mivex epgp`
2 0 0 M P a o r a z = 0, 4.
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z
Clockwork as a solution to the flavour puzzle
Clockwork a a oluon to the flavour puzzle Rodrigo Alono Beyond the BSM 2//28 eab6hicbns8naej3urq/qh69lbbbuleqmeif48t2a9oq9lj+3azsbboqs+gu8efdeqz/jm//gbzudtj4yelw8y8ibfcg9f9dgobmvbo8xdt7+wefr+fikrenumwyxwmsqgcngktgw4edhofnaoedolj3dzvpkhspjypzpqgh95cfnfipiynyxa26c5b4uwkajkag/jxfxiznejpmkba9zmx5glefm4kzutzumle3ochuwshqh9rpfotnyyzuhcwnlsxqyuh9pzdtsehtjoizqxxvbn4n9dltxjjzwmquhjlovcatk/nxzmgvmiomllcmul2vdfvlbmbtcmg4k2+ve7avxprxrn6r9no+jcgdwdpfgqq3qca8naaedhgd4htxlx3p2pzwvbywdo4q+czx/jbyzp
2 ), S t r o n a 1 z 1 1
Z a k r e s c z y n n o c i s p r z» t a n i a Z a ł» c z n i k n r 1 d o w z o r u u m o w y s t a n o w i» c e g o z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w
I 3 + d l a : B E, C H, C Y, C Z, ES, F R, G B, G R, I E, I T, L T, L U V, P T, S K, S I
M G 6 6 5 v 1. 2 0 1 5 G R I L L G A Z O W Y T R Ó J P A L N I K O W Y M G 6 6 5 I N S T R U K C J A U 7 Y T K O W A N I A I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y
Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
T00o historyczne: Rozwój uk00adu okresowego pierwiastków 1 Storytelling Teaching Model: wiki.science-stories.org , Research Group
13T 00 o h i s t o r y c z n Re o: z w ó j u k 00 a d u o k r e s o w e g o p i e r w i a s t k ó w W p r o w a d z e n i e I s t n i e j e w i e l e s u b s t a n c j i i m o g o n e r e a g o w a z e
ĺ Ä Ą Ż ďĺí Íĺ ĺ Ż Ą Ż Ż ę ś Í ę ĺ ĺ Żę ę ę ś Ó ĺ ś ś Í őźĺ ę ń ś ž ś ę ęń Ż Ż í ĺ ĺ ĺ ź ĺ ĺ ĺ ĺ ę ę ś ś ę ę Ż ĺ ź ń őź ĺ ś Ż Í ę ĺ ĺ ę ś ę Ż ś ĺ Í ď Ż Ż Ż Í ę Ł ę í ś đ ĺ ĺ Ż ś ę ś ĺ ę ę ę ś Żđ ę Ż ę
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
O F E R T A H o t e l Z A M E K R Y N * * * * T a m, g d z i e b łł k i t j e z i o r p r z e p l a t a s ił z s o c z y s t z i e l e n i t r a w, a r a d o s n e t r e l e p t a z m i a r o w y m s z
GAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.
GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem
ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n
ü E E ść ś* ść H H ż j H ę ę F j E Ś ś E E ę ę jś E- Jś j Żj Ś ż ą Mą j j D ś j żj D D ą ą ę jż j ą ś j : ü Hü ą ś j ę ą j żj ę j ją D j ją ś EÓD JEDYY IY ÓY EÓD EYYJY DUŚĆ DI IE EDU EÓD IY EYY E IE IY
Niniejsza wersja jest wersją elektroniczną Krajowej Oceny Technicznej CNBOP-PIB nr CNBOP-PIB-KOT-2017/ wydanie 1, wydanej w formie
ń ń ż Ä Ä ż ń Ę Ę ľ Ä ŕ ż ń ř ő ő Ę ż ż ń Ę Ź ř ý ż É ż Ę ń ń ń Ę ľ ż Ż ń ż ż ż Ę ż ć ć ý ż Ę ż ż ý ć Ę ż ć ć ż Ę Ę Ę ż ż ć ź Ą Ł Ł Ł Ł ľ Ł Ł Ł ź ý ľ ż Ł ż Ł ń ý ż ż Ł Ł ý ľ Ł ż Ł Á Ż Ż Ł Ę Ź ż ż ż Á ż
2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe
!" #$%! &" #$%'%#% '', 9;,) $!+$ #,) $!+$ # GHIJ9-KL1-MNO,.F$G ( * -2 1( &.#!! M & ' a ; ^? c 1 ' S 1 & MW / & & 1 M 1 1 c( />? / & _ _ ; P / 3
!" #$%! &" #$%'%#% '', 9;,) $!+$ #,)$!+$ # GHIJ9-KL1-MNO,.F$G (* -2 1( &.#!!M & ' a ; ^? c 1 ' S1 & MW/ & 5661&1M11c( />?/ &_ _ ; P/3'W1 1'a- 1A6 E V7 X- Z(618-3,1`JK1 ()/ &.#!!M *+,-.$/01 /. B*1*J S;
N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Afiniczne rekursje stochastyczne z macierzami trójkatnymi
Afiniczne rekursje stochastyczne z macierzami trójkatnymi Ewa Damek (Uniwersytet Wrocławski ) (wyniki wspólne z Witoldem Światkowskim, Jackiem Zienkiewiczem - Uniwersytet Wrocławski, Muneya Matsui - Nanzan
"Liczby rządzą światem." Pitagoras
"Liczby rządzą światem." Pitagoras Def. Liczbą zespoloą azywamy liczbę postaci z= x +yi, gdzie x, y є oraz i = -1. Zbiór liczb zespoloych ozaczamy przez ={ x + yi: x, y є } Ozaczeia x= Re z częśd rzeczywista
Wstęp do chemii kwantowej - laboratorium. Zadania
Wstęp do chemii kwantowej - laboratorium. Zadania 2 października 2012 1 Wstęp Używanie maximy jako kalkulatora Zadanie 1 1. Oblicz 2+2*2 2. Oblicz 18769 3. Oblicz 2 10 4. Oblicz 7/8 i 7.0/8.0 5. Oblicz
Sprawozdanie z działalnoci Spółki Doradztwo Gospodarcze DGA S.A. w roku 2005 1/45
Sprawozdanie z działalnoci Spółki Doradztwo Gospodarcze DGA S.A. w roku 2005 1/45 !"#!" # $! % ( () *,# -.! % # / -00 000. 1 2 ". 3 4 1 0 5 (1 5 1 6! 6 ( " % 6 " - 6 ". 7 - # 8-1 8! 1 3 4! 3 0 5() "! (!
O X Y a 4 O X Y T Z l O X Y D Z. 4 E - Y Z W 7 - a l a I P P A B X P l a 7 f 4. a S a a S O X Y H 4 s 7 S. A. T Z. i. a z i ) 4 Y z 7 a P Z z Z. 7 a Y j a F i. 9. P 4 7 Z. Y j a j 9. k 4 8 9. ( i s 7 4
LXIII Olimpiada Matematyczna
1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a
< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
Sekantooptyki owali i ich własności
Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy
Ż S KŻ Ń C Z Y C Y PWP X I Ł I X I VPW.P W I T T E L S BŻ C H O W I EPPPPPPPPPPPPPPP IP L U K S E M B U R G O W I EPPPPPPPPPPPPPP P X I V MX VP w.a 8
Ż S KŻ Ń C Z Y C Y W X I Ł I X I VW. W I T T E L S BŻ C H O W I E I L U K S E M B U R G O W I E X I V MX V w.a 8 8 W i t t e l s b a c h o w i e L U D W I K W Ż L D E MŻ R L U D W I K I STŻ R S Z Y FŻ
Funkcje arytmetyczne. Funkcje arytmetyczne
Definicja 1 Każda arytmetyczna, to funkcja f(n, n N, przyporządkowująca N C, (R. Na przykład: f(n = n. Definicja 2: Funkcję arytmetyczną f : N f(n R nazywamy multyplikatywną, jeżeli m,n N, m n mamy f(mn
!"#$ %&!'"()$*+$",&%-!.,*/
!" #!"#$ %&!'"($*+$",&%-!.,*/! "'* 0 $% & ' ((#* #*" % % +,-./+0 ((#* #*" % % (1" # 11 2 +,-./+0 ((#* #*" % % (1" # 3 456*/%&("& %4 7$%&!./'*!4%%,4-58*/.98 $*58!6(,.'(3333333333333333333333333333333333333333333333333:!"#$%&'("*+$,",'-."/0"
& + >?! F:? ^K ) G^ : X +G $3 J I, 6 CA D J = Q =, G > =< b :! " 6 [ _ $ ) I 6 " $ [ ) " "3 ] <B, =b Q, 4 <a B F,[ < [ Z < 6-7 J :, ^ I$ b Z 3W&$c \,
& + >?! F:? ^K ) G^ : X +G $3 J I, 6 CA D J = Q =, G > =< b :! " 6 [ _ $ ) I 6 " $ [ ) " "3 ]
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Errata do książki Multisim. Technika cyfrowa w przykładach.
. 3. 24 r. rrata do książki Multisim. Technika cyfrowa w przykładach.. str.5, źle jest zapisana postać funkcji wyjściowej równoważność (xclusive NOR, XNOR, NOR, XNOR), y 7 = a b + a b = a Ä b = a Å b 2.
R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )
5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin
"###1#': 9&#"# 9#&:#$1& "%1 ' * ' 6 #$%&'!"!!"#$%&'"##$%"! "# $%# & $ ' $! ' ' % "##$%" " &#"#(#'(#% &#"#(#%(#%!"#" $%&' % % & % & ' & % %( )% % %( *
"###1#': 9&#"# 9#&:#$1& "%1 ' #$%&'!"!!"#$%&'"##$%"! "# $%# & $ ' $! ' ' % "##$%" " &#"#(#'(#% &#"#(#%(#%!"#" $%&' % %& % & ' & % %( )% % %( * %+% &, % % -, % )!./!0#1!00 &!!( )!*+!, -.+( +/ 0 )! (( 0-1!+!.+(!
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Wybrane referencje w cenach specjalnych dla Warsztatów Niezależnych. Oferta ważna od do
Filtry cząstek stałych FAP - Motaquip 1 1611321080 EM;RURA FAP PSA 787,00 2 1611321180 EM;RURA FAP PSA 607 787,00 3 1611321280 EM;RURA FAP PSA 406 R 787,00 4 1611321380 EM;RURA FAP PSA 787,00 5 1611321480
Geometria Różniczkowa I
Geometria Różniczkowa I wykład trzynasty Na poprzednim wykładzie zajmowaliśmy się różniczkowaniem pól tensorowych wzdłuż pola wektorowego,czylipochodnąliegol X.WartośćpochodnejLiegozależywsposóbbardzo
Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
4.1. Lecture 4 & 5. Riemann. f(t)dt. a = t 0 <t 1 < <t n 1 <b= t n (4.1) , n [t i 1,t i ] t i t i 1 (i =1,...,n) f(ξ i )(t i t i 1 ) (4.
Lecture 4 & 5 4 4.1 Riemnn t f(t) [, b] (Riemnn ) f(t)dt [, b] n 1 t 1,...,t n 1 t 0
- -;;O. o r. . ' ~ o. »» m. z ::o - --I =:;J. -= c: s;: "o Ul. 3!: :;o. n ::o CI) --I Z. ~i m Co - mi. Ul :r>2:!o=i Z z S;:o ~ C ~m~-l ... Z ...
=:;J = : i (li. ): ". ' :XI. W ; (li.,!::!. :;J (li : :i". >. li:: W " Ul." ' fii ::I. ' il!.. 5" le ; ::! "1J q :; "ti < = :; = ;;/) : _ :>. l G5 Ul :>2:!=i 00 :: :;; S;: l Ul ;; Ul :; ;: ':ls: Ul ç 5>
Jacek Jakubowski, Rafał Sztencel Rachunek prawdopodobieństwa dla (prawie) każdego (wyd. I) Ostatnia aktualizacja: 6 lutego 2004
ERRATA Jacek Jakubowski, Rafał Sztencel Rachunek prawdopodobieństwa dla (prawie) każdego (wyd. I) Ostatnia aktualizacja: 6 lutego 2004 Rozdział 20 2 przykładzie 4 przykładzie 5 Rozdział 2 48 4 P (B 2 B
u l. W i d o k 8 t e l. 2 2 6 9 0 6 9 6 9
T A D E U S Z R O L K E J U T R O B Ę D Z I E L E P I E J T o m o r r o w W i l l B e B e t t e r K a w i a r n i a F a f i k, K r a k ó w, 1 9 9 2 F a f i k C a f e, C r a c o w, 1 9 9 2 W ł a c i c i
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
!"# "$ %& "' "$ " "' ' ()* +,-,$.-/ &' 1!()*+, -. / ! "6 1+!!"#$%&' # ()*+,-./ 01' :; CD E 167!"' FG- HIJKLMNO NOPQRS,-.TU
!"# "$ %& "' "$" "' ' ()* +,-,$.-/ &' 1!()*+, -. /0 12345! "6 1+!!"#$%&' # ()*+,-./ 01' 2345 167 89:;?@AB, CD E 167!"' FG- HIJKLMNO NOPQRS,-.TU V W*XY #Z[\]^@_`a:bc : : #$,-. @ V 2 2345L,K?ABFG-
Podstawy elektrotechniki
Wydział Mechaniczno-Energetyczny Podstawy elektrotechniki Pro. dr hab. inż. Juliusz B. Gajewski, pro. zw. PWr Wybrzeże. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 tara kotłownia, pokój 359 el.: 71 320 3201
w roku szkolnym 2012 I 2013
ZESPOt SZK6-l:._.4- Irn. T. KLECZARA ul. SyaZelenskieg96, tel. 222 11 4-75 KAT WI C E identyfikatr 1249 IP 954-22-51-97 PLA ADZORU PEDAGOGICZEGO Dyrektra Zesplu Szk61 r 4 im. Tmasza Klenczara Katicach
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2
Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów. P. F. Góra
Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Metody iteracyjne W metodach dokładnych otrzymane rozwiazanie jest dokładne
Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d 2 0 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e j Z H
Gmina Domanice Domanice 52
min Dmnie Dmnie 52 0811 DMTC Rb.DS nwye / efiyie qu eyilne lld bhunkw w 1 1 5022C1 4 ke ku ni 1 unii ku 201 ') mwiekie ieleki w. u.1 k 2 uw finnh mw w.s u.1 k 2 uw finnh. kh mw w. 217 ul.2 pk uwy mw w.
2 p. d p. ( r y s. 4 ). dv dt
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X N U M E R Y C Z N Y O P I W Y S T R Z E L E N I A S I A T K I S P R O C E S U W A S P E K C I E I N T E R A K C J I D Y N A