e` 'gn :dhlewt my :ihxt
|
|
- Maciej Marczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 e` 'gn :dhlewt 'qn :'cehq :ihxt :dgtyn :zexexa zeize`a o`k jly zipexhwl`d zaezkd z` meyxl `p,ipexhwl` x`eca ef ogana jz`vez z` lawl jpevxa m` , , "n2 ilxbhpi`e il`ivpxtic oeayg" a dpiga.zewc 90 :df wlgl onfd.oey`x wlg.(oery/ciip oetlha `l mbe oeaygna `l mbe) xfr xnega ynzydl oi`.dpigad iwlg ipy oia dwqtdd iptl xcgdn z`vl xeq`.wenip `ll dpigad qteh lr 2 dl`y lr epr.lawzi `l wnepn `l oexzt.el` zel`ya oexzt lk wnpl mkilr.zxagna 4-e,1 zel`y lr epr.oextra aezkl xeq`.ddk legk e` xegy hra eazk.zxagnl mitc siqedl e` yelzl oi`.hpcehq xtqne zxagnd ly sc lk lr meyxl yi.zecewp 100 yi lkd jq.dl`yd ci lr meyx dl`y lkl cewipd!dglvda.dl`d zecewpdn 50 raew df wlg :1 wlgl lkd jq.r -a dcewp lka zetivx zeiwlg zexfbp zlra f : R R divwpetd (12%).1. 9 x 4 z 5 f(2, 1, 8) = 7 -e f (2,1,8) = 10î + 20ĵ k :oezp (2, 1, 8) dcewpa g(x, y) = f(x 2 y, x, x y ). i''r zxcben g : R 2 R divwpetd.aeyigd ialy lk z` exiaqd.(1, 2) dcewpa g z` eayg 1
2 C 1 = {(x, y) x 2 + y 2 = 64, x 0 } ici-lr oezpd lelqnd C 1 idi (1%).2.(0, 8) -a miizqne (0, 8) dcewpa ligzn lelqndyk.ely dnbnd z` mbe C 1 lelqnd z` dpekp x`zn xy` xeivd zvayna X epnq [2%](`) oixb htyn zervn`a I = C 1 (e x sin y + 2y)dx + e x cos ydy lxbhpi`d z` aygl dvxp. C P dx + Qdy = D (Q x P y )dxdy [%](a) :ezgqepy. B a `xwp eplawy lebird ivgl.c 2 epnqpy xyi rhw ici-lr C 1 lelqnd z` xebqp jk l.c = C 1 C 2 didi. -l deey B ly ghyd :od ynzyp oday zeivwpetd P (x, y) =.Q(x, y) = -e (b) (.zg` dcewp ly ilily cewip zxxeb dpekp `l daeyz lk df sirqa) [2%](b). `l, ok?b -a zetivx zeiwlg zexfbp zelra dl`d zeivwpetd m`d geqipl m`zda oeekn C m`d,xnelk)?''iaeig'' epeeky xebq mewr `ed C = C 1 C 2 mewrd m`d. `l, ok (?oixb htyn ly 2
3 xy`,icnl miheyt miiehia mdy zeaeyz meyxl mkilr,zepexg`d zevaynd yelya,df sirqa ) [6%](c) (.t miitivitq mixtqn xear sin t e`/e cos t e`/e e t e`/e π e`/e miitivitq mixtqn wx millek (e x sin y + 2y)dx + e x cos ydy = C 1 C 2 B,b sirq itl dxdy =..C 2 lr lxbhpi`d z` l''pd d`vezdn xqgl epilr dzr (e x sin y + 2y)dx + e x cos ydy = C 2 I =. okle megza f(x, y) = x 2 + 4y 2 divwpetd ly ilnipind jxrde ilniqwnd jxrd z` e`vn (1%)..D = {(x, y) : 4x 2 + y 2 25, y 2x + 5}. F (x, y, z) = x (x 2 + y 2 ) î + y 2 (x 2 + y 2 ) ĵ + 2 (ex + y + z 2 ) k ixehwed dcyd oezp (12%).4. Σ = {(x, y, z) : x 2 + y 2 = : x > 0} dveawd dpezp ok-enk :onwlck Ω S e I S e A S xicbp Σ dveawd ly dveaw-zz `edy S ghyn lk xear. S ghynd ghy z` onqn A S (1.miz-d xiv oeekl dpet S-l lnxepd xy`k,i S = F ds (2.Ω S = { ( ) } (y, z) : y2, y, z S dveawd `id Ω S ( -y jk g(y, z) -e f(y, z) zeyxetn zeivwpet izy e`vn [6%](`) I S = g(y, z)dydz mbe A S = f(y, z)dydz Ω S Ω S I S = ca S.Σ -a lken xy` S l''pk ghyn lk xear S :dgqepd z` egiked [6%](a).S -a ielz `ly reaw `ed c xy`k,σ ly dveaw-zz `edy S ghyn lk xear?c ly jxrd dn.g(y, z) -e f(y, z) zeivwpetd izy oia heyt xyw e`vn :fnx - - oey`xd wlgl oel`yd seq - -
4 e` 'gn :dhlewt 'qn :'cehq :ihxt :dgtyn :zexexa zeize`a o`k jly zipexhwl`d zaezkd z` meyxl `p,ipexhwl` x`eca ef ogana jz`vez z` lawl jpevxa m` , , "n2 ilxbhpi`e il`ivpxtic oeayg" a dpiga.ipy wlg.(oery/ciip oetlha `l mbe oeaygna `l mbe) xfr xnega ynzydl oi`.zewc 90 :df wlgl onfd.dfd wlgd meiq iptl xcgdn z`vl xeq`.wenip `ll,df qteha 7 dl`y ly ` sirqe 6-e 5 zel`y ly epr.lawzi `l wnepn `l oexzt. wenip mr,zxagna 7 dl`y itirq x`y lr epr.oextra aezkl xeq`.ddk legk e` xegy hra eazk.zxagnl mitc siqedl e` yelzl oi`.hpcehq xtqne zxagnd ly sc lk lr meyxl yi.zecewp 100 yi lkd jq.dl`yd ci lr meyx dl`y lkl cewipd!dglvda.dl`d zecewpdn 50 raew df wlg :2 wlgl lkd jq miiwzn f : R 2 R dtivx divwpet lk xeary dpekzd zlra `id R 2 -a D dveawd (10%).5 ( 1 ) x 2 ( ) ( x)/2 f(x, y)dy dx + f(x, y)dy dx = f(x, y)dxdy. 0 y=0 1 y=0 D o`k D dveawd z` exiiv [2%](`) f(x, y)dxdy = D y= x= lxbhpi`a zeleab z` enilyd f(x, y)dx dy. [8%](a) 4
5 . R -a dreaw dcewp (x 0, y 0, z 0 ) idz (18%).6. V δ = {(x, y, z) R : (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 < δ 2 } dveawd z` xicbp δ > 0 lk xear -l deey.zepekpd zeaeyzd z` X-a epnq,mi`ad mitirqd lka V δ 1dxdydz yleynd lxbhpi`d δ > 0 lk xear [4%](`). δ/, 2π, 4π, 4πδ 2, πδ 2, 2πδ, 4πδ /. δ > 0 lk xear V δ a ziliaxbhpi` `idy f : R R divwpet dpezp [7%](a).iaeig δ lk xear φ(δ) = 15 f(x, y, z)dxdydz 4πδ xicbp V δ :d`ad dpekzd zniiwzn,miieqn iaeig ɛ xeare,miieqn iaeig δ xeary gipp (x x0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 < δ :m`. f(x 0, y 0, z 0 ) ɛ < f(x, y, z) < f(x 0, y 0, z 0 ) + ɛ :if` Af(x 0, y 0, z 0 ) Aɛ N φ(δ) Af(x 0, y 0, z 0 ) + Aɛ N ik gxkda raep ef dpekzn. 5, 5/, 20, 5π, 2/, 8, 2π -l deey A xy`k., 2, 1, 0 -l deey N e.(x 0, y 0, z 0 ) dcewpa dtivx a sirqa zx`eznd f divwpetdy gipp [7%](b).d`ad dniyxdn lim δ 0 φ(δ) leabd ly jxrd z` exga, 2f(x 0, y 0, z 0 ), 5πf(x 0, y 0, z 0 ), 5f(x 0, y 0, z 0 ), 20f(x 0, y 0, z 0 ), 0. 5f(x 0, y 0, z 0 ), 8f(x 0, y 0, z 0 ), 2πf(x 0, y 0, z 0 ), 4π, 2π..f(x 0, y 0, z 0 ) < 0 m` -l deeye f(x 0, y 0, z 0 ) > 0 m` + -l deey l"pd leabd..miiw `l l"pd leabd dxeary (x 0, y 0, z 0 ) -a dtivxe V 1 -a ziliaxbhpi` f divwpet zniiw 5
6 [2%](`) (22%).7 (.ef dl`ya jk-xg` yexcy n1 `''eecgn xneg lr zxekfz llek df sirq) ly dcewp lka ipye oey`x xcqn zetivx zexfbp zlra φ : R R cg` dpzyn ly divwpet dpezp.r (1). φ(t) = φ(0) + φ (0)t φ (s)t 2 -y jk s R miiw t R lkl if` (.dpekpd daeyzd z` X-a o`k epnq) miniiwn cinz (1) `gqepa t -e s mixtqnd. s -e 0 oia `vnp t, t -e 0 oia `vnp s, s < t, s > t, s = 0, s = t.zxagna ef dl`y itirq xzi lr epr ipyde oey`xd xcqdn zeiwlgd dizexfbp lky jk,f : R R divwpet dpezp [8%](a).R -a dcewp lka zetivxe zeniiw.φ(t) = f(ht, kt, lt) i''r cg` dpzyn ly φ divwpet xicbpe (h, k, l) R dreaw dcewp xgap.mkzaeyz z` ewnp.f ly dizexfbpa zeielzd φ (t) -e φ (t) zexfbpd xear ze`gqep e`vn.zecewp 2 lawi "b sirq lr dper `l ip`" yexta azeke df sirq lr zeprl rcei `ly hpcehq [12%](b) dizexfbpae f -a mielzd mireaw,a,a 2,A 1,A 0 e`vn a -e ` mitirq zxfra [[10%]] (I) P znieqn dcewpa f zexfbpa miielzd B -e B 2,B 22,B 1,B 12,B 11 mireawe (0, 0, 0) dcewpa (2).f(h, k, l) = A 0 + A 1 h + A 2 k + A l + B 11 h 2 + B 12 hk + B 1 hl + B 22 k 2 + B 2 kl + B l 2 (b) -y jk.(mincwnd zxyr lk xear zeyxetn ze`gqep lawl mkilr)?(h, k, l) -e (0, 0, 0) zecewpl qgia P dcewpd ly mewind iabl xen`l elkez dn [[2%]] (II) - - ipyd wlgl oel`yd seq - - 6
oexzt [10%] :1 dl`y.(0, 0) dcewpd zaiaqa zeneqg ody zeiwlg zexfbp zlra f(x, y) idz.(0, 0) dcewpa dtivx f ik gked
dwihnznl dhlewtd l"hn - oeipkhd g"qyz sxeg 104014 'z `"ecg 10..008 '` cren ziteq dpiga oexzt [10%] :1 dl`y.(0, 0) dcewpd zaiaqa zeneqg ody zeiwlg zexfbp zlra f(x, y) idz.(0, 0) dcewpa dtivx f ik gked.lim
zihxwqic dwihnzna ziteq dpiga
2 jezn 1 cenr zihxwqic dwihnzna ziteq dpiga xeqpn wite`z :dvxnd f"qyz '` :xhqnq 290107 :jix`z zery 2 1 2 :dpigad jyn ` :cren :mipgapl ze`xed ly dpr,zel`y yely likn 'a wlg zecewp 30 ly daeg zg` dl`y likn
d`elb zxeze zecyd zxeza dxfg zel`y
d`elb zxeze zecyd zxeza dxfg zel`y? R lrn miwixt-i`d minepiletd mdn (1 :mipiievnd zecyd lrn miwixt-i` mi`ad minepiletd ik egiked (2 Q( 2) lrne Q lrn X 3 3 (`) Q lrn X 4 + 1 (a) Q lrn X 3 5X 2 + 2X + 1
.f(x) y = 0. .x f(x) y = x
dketdd divwpetd htyn Df(x)-y gipp.(r = ile`) C r divwpet f : U R n -e U R n idz 0. htyn zniiwe W f(x 0 )-e V x 0 zegezt zeaiaq zeniiw if`.x 0 U dcewpa dkitd :y jk g : W V dcigi divwpet.g = f..y W lkl Dg(y)
zeil`ivpxtic zeipaz :ixehwe aizka F = dx i x i ,dzr 1.R n -l ihxcphqd qiqaa e i xehwel mgkezn oeniqn xzei did `l dx i xy`k :mipalnl oixb htyna xkfp
zeil`ivpxtic zeipaz xfr ilkk xwira yeniyl eqpked xy`,zeipaz-1 ly byena epynzyd mcewd wxta mfilnxetd on xake,mipalnl oixb htyn zgkeda epnzg wxtd z`,z`f mr.ipeniq htynd ly dllkd oixb htyna ze`xl mivex epgp`
22. CAŁKA KRZYWOLINIOWA SKIEROWANA
CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś
4.1. Lecture 4 & 5. Riemann. f(t)dt. a = t 0 <t 1 < <t n 1 <b= t n (4.1) , n [t i 1,t i ] t i t i 1 (i =1,...,n) f(ξ i )(t i t i 1 ) (4.
Lecture 4 & 5 4 4.1 Riemnn t f(t) [, b] (Riemnn ) f(t)dt [, b] n 1 t 1,...,t n 1 t 0
Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej
Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Uniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z
Określenie całki oznaczonej na półprostej
Określenie całki oznaczonej na półprostej Definicja 1 Niech funkcja f : [a, ) R będzie całkowalna na przedziałach [a, T ] dla każdego T > a. Całkę niewłaściwą funkcji f na półprostej [a, ) określamy wzorem
Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne zadań dla sudenów kierunku Auomayka i roboyka WEAIiIB AGH Michał Góra Wydział Maemayki Sosowanej AGH I. Równania o zmiennych rozdzielonych: y = f (y)f () Zadanie. Rozwiąż
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda
Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
3. Znaleźć długość krzywej l = {y = x, 0 x 1}. 4. Obliczyć objętość bryły powstałej w wyniku obrotu dookoła osi OX krzywej
eria. Obliczyć całki (A) 2 x 2 dx (z definicji); 2 xe x dx; e 2xe x2 dx. 2. Obliczyć pole obszaru (A) {(x, y) : < x < 3, < y < x 2 +}; {(x, y) : 6x x 2 < y < x 2 6x+}. 3. Znaleźć długość krzywej l = {y
Funkcje dwóch i trzech zmiennych
Funkcje dwóch i trzech zmiennych Niech R 2 = {(x, y) : x, y R} oznacza płaszczyznę, R 3 = {(x, y, z) : x, y, z R} przestrzeń. Odległość punktów będziemy określali następująco: P 1 P 0 = P 1 P 0 = (x 1
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
`ean 1. mibeg 1.1. zeix`pia zelert izy mr R,+, dveaw idef :beg edn mixkef mleky gipn ip` -y jk,(dn`zda ltke xeaig odl `xwpy)
`ean 1 mibeg 1.1 zeix`pia zelert izy mr R,+, dveaw idef :beg edn mixkef mleky gipn ip` -y jk,(dn`zda ltke xeaig odl `xwpy).(0,ilxhiip xai` mr) zitelig dxeag `ed R, +.1.(xeaigl qgia) ziaiheaixhqice ziaih`iveq`
opracował Maciej Grzesiak Całki krzywoliniowe
opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,
ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Analiza Matematyczna II.1, ćwiczenia i prace domowe
Analiza Matematyczna II.1, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 2012 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał 1. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do
Liczby zespolone. Zadanie 1. Oblicz: a) ( 3+i)( 1 3i) b) (3+i)2 (4i+1) i
Zadanie. Oblicz: a) ( 3+i)( 3i) +i b) (3+i)2 (4i+) i (2+i) 3 Liczby zespolone Zadanie 2. Zaznacz na płaszczyźnie Gaussa zbiór: a) {z : z > 3} b) {z : z i } c) {z : 4 z + + i < 9} Zadanie 3. Wykaż, że suma
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁA Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2005 Spis treści 1. Przestrzenie metryczne. 4 2. Granica i ciągłość funkcji
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań Jacek Cichoń, WPPT PWr, 05/6 Pochodne i całki funkcji jednej zmiennej Zadanie Oblicz pierwszą i drugą pochodną następujących funkcji. f(x)
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
AB = x a + yb y a + zb z a 1
1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
Wykªad 8. Pochodna kierunkowa.
Wykªd jest prowdzony w opriu o podr znik Anliz mtemtyzn 2. enije, twierdzeni, wzory M. Gewert i Z. Skozyls. Wykªd 8. ohodn kierunkow. enij Nieh funkj f b dzie okre±lon przynjmniej n otozeniu punktu (x
Zadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
Zadania o liczbach zespolonych
Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
3. Iloczyn zewnętrzny w ogólności nie jest przemienny, ale zachodzi wzór:
2 Iloczyn zewnętrzny jest łączny, tzn: (α β) γ α (β γ) 3 Iloczyn zewnętrzny w ogólności nie jest przemienny, ale zachodzi wzór: α β ( 1) kl β α Dowód: Punkt (1) wynika łatwo z definicji Dowód punktu (2)
x y = 2z, + 2y f(x, y) = ln(x3y ) y x
. Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f
1 Definicja całki podwójnej po prostokącie
1 efinij łki podwójnej po prostokąie efinij 1 Podziłem prostokąt = {(x, y) : x b, y d} (inzej: = [, b] [, d]) nzywmy zbiór P złożony z prostokątów 1, 2,..., n które łkowiie go wypełniją i mją prmi rozłązne
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Wybrane referencje w cenach specjalnych dla Warsztatów Niezależnych. Oferta ważna od do
Filtry cząstek stałych FAP - Motaquip 1 1611321080 EM;RURA FAP PSA 787,00 2 1611321180 EM;RURA FAP PSA 607 787,00 3 1611321280 EM;RURA FAP PSA 406 R 787,00 4 1611321380 EM;RURA FAP PSA 787,00 5 1611321480
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv
Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży
Rachunek całkowy funkcji wielu zmiennych.
Rachunek całkowy funkcji wielu zmiennych. Agata ilitowska 27 1 Całka podwójna. 1.1 Całka podwójna w prostoka cie Niech f be dzie funkcja dwóch zmiennych określona i ograniczona w prostoka cie domknie tym
24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA
4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.
Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć
ń Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć Í ń Ó Ń Ń Ń Ó ľ ęż Ń Á ęż Ń Ą ę Ż ć ę ę Ż ć ę ć Ś ę ę Ś Ż Ż Ż Ż ę ę Ż ń Ż ń ę ę ć Ś ę Ż ć Ż ć Ż Ż ć ń Ż ľ ę ę ę ę Ś ę ę ľ ę Ę Ĺ Í ľ ď ý Ę ń ľ ę ń Ó Ń ć Í ô Ó ľ ü
Rozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
w ww cic oz F o r p U0 a A Zr24 H r wa w wa wa w o UazQ v7 ; V7 v7 ; V7 ; v7 rj. co.. zz fa. A o, 7 F za za za 4 is,, A ) D. 4 FU.
1 68. E E E E 69 69 69 E ) E E E E be 69 69 E n c v u S i hl. ' K cic p. D 2 v7. >- 7 v7 ; V7 v7 ; V7 ; v7 J.. ~" unli. = c.. c.. n q V. ) E- mr + >. ct >. ( j V, f., 7 n = if) is,, ) - ) D. lc. 7 Dn.
WSKAZANIE OBSZARÓW OBJĘTYCH OCHRONĄ ŚCISŁĄ, CZYNNĄ I KRAJOBRAZOWĄ
43 Załącznik nr 4 WSKAZANIE OBSZARÓW OBJĘTYCH OCHRONĄ ŚCISŁĄ, CZYNNĄ I KRAJOBRAZOWĄ Lp. Rodzaj ochrony Lokalizacja 1) Powierzchnia ogółem w ha 1 Ochrona ścisła Oddziały 1b, 1c, 1d, 1f, 1g, 1h, 1i, 1j,
ť Ü Ĺ ä Ů Ú Í Í Ť ř Ě Í ü Í ń đ ń ď ď ń Ż Ł í á í É Ĺ Ü Í Ť Ĺ Ĺ ű Í Í ť Í ŕ Ĺ Í Ü Ü ü Ż Ż ń ť Ą Ą ŕ Ą ń ń Ż ń Ż ń ý Ż ń í Á É É Ýá Í ä í Ĺ Ĺ í Í ů ť Ĺ ť Ź Ť Ť Ł ń ź Ź ń ń ć ń ć ń Ż í ť ń Ż Ĺ ŕ í Ú íí ť
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Jacek Jakubowski, Rafał Sztencel Rachunek prawdopodobieństwa dla (prawie) każdego (wyd. I) Ostatnia aktualizacja: 6 lutego 2004
ERRATA Jacek Jakubowski, Rafał Sztencel Rachunek prawdopodobieństwa dla (prawie) każdego (wyd. I) Ostatnia aktualizacja: 6 lutego 2004 Rozdział 20 2 przykładzie 4 przykładzie 5 Rozdział 2 48 4 P (B 2 B
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy:
Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Ą Ę Ę Ł ć ź Ź Ę ć Ę ć ć ć ć ź Ę ć ć ć ć ć Ę ć ć ć Ę ć ć źą Ć ć Ę ź Ó ź ć ć ź ć Ę Ę ć ć ć ć ć ź ć Ó ź ć ź Ę Ę ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ź Ą Ą Ł ć Ł ć ć ć ć ć ć ć ć ć Ę Ł ć Ł ź Ó Ł ć Ą ć ć Ę Ę Ę
xnb hwiiext- zizek`ln dpial `ean
xnb hwiiext- zizek`ln dpial `ean (shlomisha) ryry inely,(itaisegev) aby izi` dirad xe`iz.dwized oeqbnd znxethltl `vi `ede,battlecity `xwp wgynd wgynd xe`iz. illk xe`iz.. cr) owgy wph mpyi gela.milqwit
Ź Ę Ę Ś Ś Ś ć Ę ć Ś ć Ź Ż Ś ć Ż Ź Ż Ą Ż Ę Ś Ź Ę Ź Ż Ó Ś ć ć Ś Ż Ć ź Ś Ń Ź ć Ó ź Ś Ń ź Ń Ź Ź ź Ż Ź Ź Ź Ź Ż Ź ć Ż Ę ź Ę ź ć Ń ć ć ć ć Ź Ę Ą ć Ę ć Ń ć ć Ź Ż ć Ó Ó Ó Ż ć Ó Ż Ę Ą Ź Ó Ń Ł ź ź Ń ć ć Ż ć Ś Ą
Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ
Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż
Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś
Procesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
x y = 2z. + 2y f(x, y) = ln(x3y ) y x
. Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,). Zad.. Wykazać, że każda funkcja z(x, y) = x f ( ) y x, gdzie f jest funkcją różniczkowalną jednej zmiennej,
Rachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Ą ń Ż Ź Ś Ż ź Ł Ż Ż ź ź Ż Ż Ż Ż ź ź ź ż Ż ź Ż ż ń Ż ż ć ń ż ż ż Ż ź Ż Ż ź Ż ż Ż ć ż Ż Ś ż Ś Ż ź ń ń Ż ń Ż ń Ż ź ń ń ż ż ń Ą ń Ą ń ń ń ń ń ź ń Ź ż ć ż Ż ć ź Ż ć ż ć ć ż Ą ć ń ń ć Ł ż ż ć Ż Ż ż ż Ż Ż Ż ń
ń Ż ć Ą Ę Ę ń Ą Ż ń Ż ń Ę Ę Ę ń Ż ń Ś ń ć Ś ń ń ń ń ń Ę Ę Ą ń Ą Ń Ę ń Ż Ń ń Ź ń Ż Ś ń Ż ń ń ń Ź Ż Ą ń ń Ż ń ć Ś ń ń ź ń ń Ź ń Ś Ź ń ń ń Ż ń ć Ś ń ń ć Ż Ę ń ć Ś Ś Ż ń Ź Ż ń ń Ą ń Ś Ść Ń ń ń ź ń Ż ń Ż Ż
Ą Ę ą Ś ą ć Ą ą ą ą ą ŻŻ ŻŻ Ą Ż ą ą ą ą ą ą ą ą ą Ą ą ą Ęć ą ą ą ą ą ć Ę Ś Ą ć ą ć Ś ą Ą ć Ą ą Ą ź Ę ź ą ć ć ą ą Ę ą ą Ę ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą Ę ą ą ą ą ą ą ą ą ć ć ź ą Ą ą ć Ę Ł Ł Ę ą ą Ą ą ą
ć ć Ż ć Ż ć ć ź ć ć ć ć ć ć ć ć ć ź ć ć ź Ę ć ć ź ć ź ć ć ć ć ć ć ć Ę ć ć ź ć ć ź ź ź ź ź ź Ę Ę ź Ę ć ź ć ź ź ć ć ć Ę ć ź ź ć ź ć ć ź Ą ć ź ź ź ź ć ć ć Ę ź ź ć ć ć ć ć ć ź ź ć ć ć ć ć ć ć ć ć ć ć ź ź ć
Ś Ę Ż Ż Ł ź ź Ę ź Ę Ą Ę ź ć Ś Ą ć Ą ź ć Ó Ę ć ć Ś ć ć Ń ć Ż Ź Ż ć Ś ć Ę Ę Ę Ł ź ć Ś Ś ź Ł ć Ę ć Ł ć ź Ł ć Ż ć Ą Ś Ę ź Ę ć ź ć Ł Ń Ę ć Ś ź ć Ł Ł Ń ć ć ć ć Ę Ę ć ć Ż Ń Ń ŻŻ Ż Ę Ż ć ć Ę Ż Ó ć Ł Ą ć Ś Ę ć
Ł Ś Ą Ł Ę ź Ł Ł Ę Ł ź Ł Ł Ś Ł Ł ż Ł Ś Ł Ł Ś Ł ź Ę ź Ł Ł Ł Ł Ł Ł ź ć ż Ę ż Ł ż ż ć ć ć ć ć ć ż Ę ć ć ć ć ć ć ż ż ć ż ż ż ż Ł Ś Ł ż ż ć ć ć ż ć ć ć ć ż ż ż Ł Ś Ł ż Ł Ł Ł ż Ł Ś Ł Ł Ś Ł ż Ł Ś Ł ź ż Ę ż ż ź
ź Ę ć Ż Ż ń ć Ż Ę Ż ć ć ć Ż ć ć ź Ż ć Ż Ż ć ć ń Ż ć Ś Ę Ż ń Ż ć Ż ć Ż ć Ż Ż Ę ć Ż Ż Ż Ą Ę Ą ć Ż ć ć Ż Ą Ż ć ń ń Ż ń Ż Ę Ż ć Ż Ż Ł Ą źź ź ć Ż Ż Ż Ż Ę ź ź ź ź Ż Ż ń Ż Ż Ó ń Ś ć ń Ą Ę Ą Ż Ą Ę Ś Ę Ż ć Ę Ś
Ł Ń Ł Ł ź Ż ź Ł Ż Ó ż ż Ą ź Ą Ó Ń Ą Ł Ł Ą Ż Ś Ą ź Ż Ż ź Ż Ż ż Ą Ł Ż Ź Ź ź Ó ź Ł Ą ź Ń ź Ó Ł ż ć Ś Ś Ą Ł Ś ż ź ź Ą Ż Ł Ś Ś Ł Ż Ń Ń Ł Ó Ś Ś ć Ś Ó Ć ć ć Ś ż Ó Ó ź Ó Ó Ś Ó Ą Ą ć Ą Ą Ł Ą Ł Ą Ł ż Ł ź ć Ł Ą
Ż ń ń Ł Ą ń Ą Ż Ą Ż ń Ą ń ń ń ń Ł Ą ń ń ń ń ń Ą ń ń ń ń ń ń ń ć ń Ż ń ń Ą Ś Ą Ś Ą ń Ą Ś Ę ń Ś ń ń Ą ń Ż ń ź ź ń Ś ń ń Ś Ę Ś Ź Ś ń ń ć Ż ń ń Ą ń Ś Ż ń Ż Ż Ć Ż Ś Ś ć Ż Ż ć Ą ń Ą ń Ż ń ń ń Ż ć Ż Ż ń ń Ś Ż
Ł Ż Ł Ł Ł Ł ż ż ć ź ć ż ż Ż ż Ż ż Ż ć Ż Ł Ż ć ŻŻ ź ż Ł ż ż ż Ż ć Ł Ł ż ż ż ż Ż ż ż ź ć Ż ż ż Ż ż Ż ć ż ć Ż ź ż ż ć ć Ż ż Ź ż ż ż ź ż ż ź ż ż ż ż ż ź Ż Ż ź ż ć ż ż Ł ż ć ż ż ż ć ż ż ć Ż Ż ż ż ż ź ć ż ż
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
Tensory mały niezbędnik
28 października 2013 Rozkład wektora V na współrzędne: α = (0x, V ), β = (0y, V ), γ = (0z, V ). Rozkład wektora r, r = (x, y) na współrzędne w dwóch różnych układach współrzędnych. x = x cos θ + y sin
Zadania. 4 grudnia k=1
Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy
T = Z t T t T t T t T t T : Z N (s i ) n i=1 n n S S = {(s i ) n i=1 N n : s j + j s k + k ( n), n N}. 1 j k n (s 1, s 2,..., s n ) s 1 s 2... s n m = s 1 s 2... s n m s i m i = 1,..., n S m S m = {(s
Wielomiany Legendre a
grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane