Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE
|
|
- Kacper Wrona
- 6 lat temu
- Przeglądów:
Transkrypt
1 Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE GDAŃSK 2011
2 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Romuald Szymkiewicz RECENZENT Magdalena Rucka PROJEKT OKŁADKI Katarzyna Olszonowicz Wydano za zgod Rektora Politechniki Gda skiej Oferta wydawnicza Politechniki Gda skiej jest dost pna pod adresem Copyright by Wydawnictwo Politechniki Gda skiej Gda sk 2011 Utwór nie mo e by powielany i rozpowszechniany, w jakiejkolwiek formie i w jakikolwiek sposób, bez pisemnej zgody wydawcy ISBN WYDAWNICTWO POLITECHNIKI GDA SKIEJ Wydanie I. Ark. wyd. 7,2, ark. druku 8,75, 963/629 Druk i oprawa: EXPOL P. Rybi ski, J. D bek, Sp. Jawna ul. Brzeska 4, Włocławek, tel
3 3 Spis tre ci 1. Wst p Układy równa liniowych Wprowadzenie Podział numerycznych metod rozwi zania i ich ogólne cechy Metody eliminacyjne Metoda eliminacji Gaussa Metoda Jordana Metody dekompozycyjne Wprowadzenie Metoda Gaussa-Doolittle a Metoda Gaussa-Crouta Metoda Choleskiego (Banachiewicza) Metody przybli one Metoda iteracyjna Gaussa Metoda Gaussa-Seidla Metoda nadrelaksacji Przykłady Metoda Gaussa Metoda Jordana Odwrócenie macierzy metod Jordana Metoda Gaussa-Doolittle'a Metoda Gaussa-Crouta Metoda Choleskiego Metoda iteracyjna Gaussa Metoda Gausa-Seidla Metoda nadrelaksacji Problem własny Podstawy teoretyczne Wprowadzenie Sprowadzenie ogólnej postaci problemu własnego do postaci standardowej Rozwi zanie postaci standardowej Rozwi zanie standardowego problemu własnego metod Jacobiego Metoda pot gowa Inne metody numerycznego rozwi zania problemu własnego Przykłady Poszukiwanie punktów zerowych wielomianu Wektory własne Metoda Jacobiego Metoda pot gowa... 47
4 4 Spis tre ci Najmniejsza warto własna metod pot gow Rozwi zanie problemu własnego dla ramy Równania nieliniowe Podstawy teoretyczne Informacje ogólne Metoda przeszukiwania Metoda połowienia kroku Metoda lokalnego minimum Metoda Monte Carlo Metoda siecznych Metoda siecznych z przyspieszeniem Metoda stycznych (Newtona) Zmodyfikowane metody typu Newtona dla pierwiastków wielokrotnych Przykłady Metoda przeszukiwania Metoda połowienia kroku Metoda minimum lokalnego Metoda siecznych Metoda siecznych z przyspieszeniem Metoda stycznych Metoda Monte Carlo Interpolacja Wprowadzenie Interpolacja liniowa Interpolacja kwadratowa Interpolacja Newtona dla wielomianu dowolnego stopnia Interpolacja wielomianami Czebyszewa Interpolacja wielomianami Hermite a Interpolacja wielomianami Lagrange a Interpolacja szeregami Fouriera Przykłady Interpolacja liniowa Interpolacja kwadratowa Interpolacja sze cienna Aproksymacja Wprowadzenie Aproksymacja interpolacyjna Aproksymacja jednostajna Metoda najmniejszych kwadratów wariant liniowy Ocena dokładno ci aproksymacji Przykłady Aproksymacja wielomianowa metod najmniejszych kwadratów... 91
5 Spis tre ci 5 7. Całki oznaczone Wprowadzenie Standaryzacja przedziału całkowania Metody obliczania całek Metoda Newtona-Cotesa Metoda Gaussa Iteracyjny algorytm Romberga Metoda Monte Carlo Przykłady Metoda Newtona-Cotesa bez standaryzacji przedziału całkowania Metoda Newtona-Cotesa ze standaryzacj przedziału całkowania Całkowanie metod Gaussa ze standaryzacj przedziału całkowania Równania ró niczkowe I rz du Wprowadzenie Podział metod rozwi zywania równa ró niczkowych I rz du Metoda Eulera Metoda punktu rodkowego Metoda Rungego-Kutty Metoda trapezów Metoda Adamsa-Bashfortha-Moultona Przykład Zastosowanie algorytmu Eulera Rozwi zanie metod punktu rodkowego Rozwi zanie metod Heuna Rozwi zanie klasyczn metod Rungego-Kutty Rozwi zanie metod trapezów Rozwi zanie metod Adamsa-Bashfortha-Moultona Równania ró niczkowe II rz du Wprowadzenie Podział metod rozwi zywania równa ruch Metoda superpozycji modalnej Metoda ró nic centralnych Metoda Newmarka Przykład Rozwi zanie analityczne metod superpozycji modalnej Rozwi zanie metod ró nic centralnych Rozwi zanie metod Newmarka Literatura
Oferta wydawnicza Politechniki Gda skiej jest dost pna pod adresem
Wydawnictwo Politechniki Gdańskiej Gdańsk 2011 Przewodnicz cy Komitetu Redakcyjnego Wydawnictwa Politechniki Gda skiej Romuald Szymkiewicz Zespół redakcyjny Danuta Beger, Jolanta Dymkowska, Barbara Wikieł
REGULACYJNE USŁUGI SYSTEMOWE W ZAKRESIE MOCY CZYNNEJ
POLITECHNIKA GDAŃSKA PAWEŁ BUĆKO REGULACYJNE USŁUGI SYSTEMOWE W ZAKRESIE MOCY CZYNNEJ GDAŃSK 2011 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Romuald Szymkiewicz REDAKTOR PUBLIKACJI
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Oferta wydawnicza Politechniki Gdańskiej jest dostępna pod adresem
Wydawnictwo Politechniki Gdańskiej Gdańsk 2013 Przewodniczący Komitetu Redakcyjnego Wydawnictwa Politechniki Gdańskiej Janusz T. Cieśliński Zespół redakcyjny Danuta Beger, Jolanta Dymkowska, Barbara Wikieł
automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
Automatyzacja i sterowanie statkiem
Automatyzacja i sterowanie statkiem Komitet Automatyki i Robotyki Polskiej Akademii Nauk Monografie Tom 18 Komitet Redakcyjny serii Tadeusz Kaczorek (przewodnicz¹cy) Stanis³aw Bañka Miko³aj Bus³owicz W³adys³aw
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Artur Cichowski Paweł Szczepankowski Wojciech Śleszyński TECHNIKA CYFROWA I MIKROPROCESOROWA LABORATORIUM
Artur Cichowski Paweł Szczepankowski Wojciech Śleszyński TECHNIKA CYFROWA I MIKROPROCESOROWA LABORATORIUM Gdańsk 2011 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Romuald Szymkiewicz
Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim uje od roku akademickiego 2012/13 2013/14
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
Przykładowy program ćwiczeń
Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
Modele matematyczne do badania bezpieczenstwa systemu elektroenergetycznego TOM
Jacek Klucznik Robert Małkowski Zbigniew Lubośny Maciej Łosiński Ryszard Zajczyk TOM Modele matematyczne do badania bezpieczenstwa systemu elektroenergetycznego redaktor Ryszard Zajczyk Gdańsk 2012 PRZEWODNICZĄCY
Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład
Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą
MASZYNY ELEKTRYCZNE WOKÓŁ NAS Zastosowanie, budowa, modelowanie, charakterystyki, projektowanie
MASZYNY ELEKTRYCZNE WOKÓŁ NAS Zastosowanie, budowa, modelowanie, charakterystyki, projektowanie Mieczysław Ronkowski Michał Michna Grzegorz Kostro Filip Kutt redakcja Mieczysław Ronkowski Wydawnictwo Politechniki
Zygfryd Domachowski REGULACJA AUTOMATYCZNA TURBOZESPOŁÓW CIEPLNYCH
Zygfryd Domachowski REGULACJA AUTOMATYCZNA TURBOZESPOŁÓW CIEPLNYCH Gdańsk 2011 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Romuald Szymkiewicz RECENZENT Andrzej Miller PROJEKT
UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH
POLITECHNIKA GDAŃSKA KRZYSZTOF LIPIŃSKI UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH GDAŃSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
KRZYSZTOF REDLARSKI PODSTAWY METODYKI ZARZĄDZANIA PROJEKTAMI W UJĘCIU KLASYCZNYM
KRZYSZTOF REDLARSKI PODSTAWY METODYKI ZARZĄDZANIA PROJEKTAMI W UJĘCIU KLASYCZNYM Gdańsk 2016 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński RECENZENT Witold
Karta (sylabus) przedmiotu
Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia
Wacław Matulewicz Dariusz Karkosiński Marek Chomiakow. Podstawy badań obwodów elektrycznych i elektromagnetycznych dla mechaników
Wacław Matulewicz Dariusz Karkosiński Marek Chomiakow Podstawy badań obwodów elektrycznych i elektromagnetycznych dla mechaników Gdańsk 2013 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: Matematyka III. Kod przedmiotu:. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego. Kierunek: Informatyka 5. Specjalność: Systemy wspomagania decyzji\technologie
Zwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
MODELE STRUMIENIA POWIETRZA W PNEUMATYCE
POLITECHNIKA GDAŃSKA SZYMON GRYMEK MODELE STRUMIENIA POWIETRZA W PNEUMATYCE GDAŃSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński REDAKTOR PUBLIKACJI
ROZWÓJ BIOAKTYWNYCH IMPLANTÓW POROWATYCH NA OSNOWIE STOPÓW TYTANU
POLITECHNIKA GDAŃSKA SYLWIA SOBIESZCZYK ROZWÓJ BIOAKTYWNYCH IMPLANTÓW POROWATYCH NA OSNOWIE STOPÓW TYTANU GDAŃSK 2013 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Janusz T. Cie
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
METROLOGIA SKRYPT DO LABORATORIUM. dla studentów kierunku elektrotechnika. Leona Swędrowskiego. pod redakcją
METROLOGIA SKRYPT DO LABORATORIUM dla studentów kierunku elektrotechnika pod redakcją Leona Swędrowskiego Gdańsk 2011 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Romuald Szymkiewicz
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE
WOJCIECH WYRZYKOWSKI PODATKOWE UWARUNKOWANIA ROZWOJU PRZEDSIĘBIORCZOŚCI W POLSCE
WOJCIECH WYRZYKOWSKI PODATKOWE UWARUNKOWANIA ROZWOJU PRZEDSIĘBIORCZOŚCI W POLSCE GDAŃSK 2013 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński REDAKTOR PUBLIKACJI
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:
PALE PRZEMIESZCZENIOWE WKRĘCANE
POLITECHNIKA GDAŃSKA ADAM KRASIŃSKI PALE PRZEMIESZCZENIOWE WKRĘCANE WSPÓŁPRACA Z NIESPOISTYM PODŁOŻEM GRUNTOWYM GDAŃSK 2013 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz
Egzamin z Metod Numerycznych ZSI, Grupa: A
Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
BADANIE METOD I PROJEKTOWANIE USŁUG LOKALIZACYJNYCH W SIECIACH RADIOKOMUNIKACYJNYCH
POLITECHNIKA GDAŃSKA JACEK STEFAŃSKI BADANIE METOD I PROJEKTOWANIE USŁUG LOKALIZACYJNYCH W SIECIACH RADIOKOMUNIKACYJNYCH GDAŃSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów Autorzy: Maria Kosiorowska Marta Kornafel Grzegorz Kosiorowski Grzegorz Szulik Sebastian Baran Jakub Bielawski Materiały przygotowane w ramach projektu
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Metody obliczeniowe Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.
Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)
Zajęcia nr 1: Zagadnienia do opanowania:
Laboratorium komputerowe oraz Ćwiczenia rachunkowe z przedmiotu Metody obliczeniowe Prowadzący: L. Bieniasz (semestr letni 018) Zagadnienia do opanowania przed zajęciami, pomocnicze zadania rachunkowe
Krystyna Dzierzbicka Grzegorz Cholewiński Janusz Rachoń DLA ZAINTERESOWANYCH PYTANIA I ODPOWIEDZI
Krystyna Dzierzbicka Grzegorz Cholewiński Janusz Rachoń DLA ZAINTERESOWANYCH PYTANIA I ODPOWIEDZI Gdańsk 2016 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński
EWA ZABOROWSKA. Zasady projektowania WODNYCH WEZŁÓW CIEPŁOWNICZYCH
EWA ZABOROWSKA Zasady projektowania WODNYCH WEZŁÓW CIEPŁOWNICZYCH GDANSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Romuald Szymkiewicz REDAKTOR PUBLIKACJI NAUKOWYCH Janusz
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Laboratorium Podstaw Energoelektroniki. Krzysztof Iwan Piotr Musznicki Jarosław Guziński Jarosław Łuszcz
Laboratorium Podstaw Energoelektroniki Krzysztof Iwan Piotr Musznicki Jarosław Guziński Jarosław Łuszcz Gdańsk 2011 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Romuald Szymkiewicz
TERMODYNAMIKA ZADANIA I PRZYKŁADY OBLICZENIOWE WIESŁAWA PUDLIKA WYDAWNICTWO POLITECHNIKI GDAŃSKIEJ
TERMODYNAMIKA ZADANIA I PRZYKŁADY OBLICZENIOWE JANUSZ T. CIEŚLIŃSKI DARIUSZ GRUDZIŃSKI WIESŁAW JASIŃSKI WIESŁAW PUDLIK pod redakcją WIESŁAWA PUDLIKA WYDAWNICTWO POLITECHNIKI GDAŃSKIEJ GDAŃSK 2017 PRZEWODNICZĄCY
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Algorytmy obliczeniowe
PG WETiI Katedra Systemów Automatyki Algorytmy obliczeniowe Dr inż. Krzysztof Cisowski Tel: 583471274, email: krci@eti.pg.gda.pl Kierunek studiów Automatyka i Robotyka Zakres i treść przedmiotu (1) 1.
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
PROJEKTOWANIE WIEDZY RELACYJNEBAZYDANYCH TACJANA NIKSA-RYNKIEWICZ
PROJEKTOWANIE WIEDZY RELACYJNEBAZYDANYCH TACJANA NIKSA-RYNKIEWICZ GDAŃSK 2017 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński RECENZENT Krzysztof Cpałka REDAKCJA
Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne
Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana
Z-ETI-1040 Metody numeryczne Numerical Methods
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Z-ETI-1040 Metody numeryczne Numerical Methods Kod modułu Nazwa modułu Nazwa modułu w języku angielskim
5. Twierdzenie Weierstrassa
Pytania egzaminacyjne z Metod Numerycznych 1. Jaką największą liczbę można zapisać w postaci znormalizowanej w dwójkowym systemie liczenia na 8-miu bitach podzielonych 4 + 4 na mantysę i cechę, jeśli zarówno
Wstęp do metod numerycznych Zadania numeryczne 2016/17 1
Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
DYNAMIKA KONSTRUKCJI BUDOWLANYCH
DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych
y ( x) x i. y x i y( x) = ( x) x i,
Teoria reprezentacji zmiennoprzecinkowej i błędu obliczeń () Zapisać liczby, /3, 275, 225 w arytmetyce M(2, 6, 2) (zapis dwójkowy, 6 miejsc na mantysę, 2 na wykładnik), M(6, 4, 4), M(2, 2, 2) (2) (W) Wykaż,
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
KARTA KURSU (realizowanego w module specjalności) Metody numeryczne
KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół
Wprowadzenie do modelowania MES w programie SOFISTIK Materiały pomocnicze do laboratorium z metody elementów skończonych
Jacek Chróścielewski, Mikołaj Miśkiewicz, Łukasz Pyrzowski Wprowadzenie do modelowania MES w programie SOFISTIK Materiały pomocnicze do laboratorium z metody elementów skończonych Gdańsk 2016 PRZEWODNICZĄCY
Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223
Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Ukªady równa«liniowych PWSZ Gªogów, 2009 Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zada«redukuje si do problemu rozwi zania ukªadu
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych
Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2
Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Studia na sekcji przygotowują do praktycznego posługiwania się narzędziami informatycznymi począwszy od systemów operacyjnych
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 12: Zagadnienia zaawansowane Cel: Poznanie metod rozwiązywania konkretnych problemów Czas: Wprowadzenia 10 minut, ćwiczeń
Rachunek różniczkowy w zadaniach
Rachunek różniczkowy w zadaniach Rachunek różniczkowy w zadaniach Jolanta Dymkowska Danuta Beger Przewodniczący Komitetu Redakcyjnego Wydawnictwa Politechniki Gdańskiej Janusz T. Cieśliński Recenzent
Rys Mo liwe postacie funkcji w metodzie regula falsi
5.3. Regula falsi i metoda siecznych 73 Rys. 5.1. Mo liwe postacie funkcji w metodzie regula falsi Rys. 5.2. Przypadek f (x), f (x) > w metodzie regula falsi 74 V. Równania nieliniowe i uk³ady równañ liniowych
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Obliczenia Naukowe i Metody Numeryczne Przykładowe zadania z Analizy Numerycznej z poprzednich lat 5 października 2009
Obliczenia Naukowe i Metody Numeryczne Przykładowe zadania z Analizy Numerycznej z poprzednich lat 5 października 2009 1. Co to jest epsilon maszynowy? Napisać schemat algorytmu obliczania w komputerze
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ
NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ PODZIAŁ DOKŁADNE ELIMINACYJNE DEKOMPOZYCYJNE ELIMINACJI GAUSSA JORDANA GAUSSA-DOOLITTLE a GAUSSA-CROUTA CHOLESKY EGO
III. INTERPOLACJA Ogólne zadanie interpolacji. Niech oznacza funkcjê zmiennej x zale n¹ od n + 1 parametrów tj.
III. INTERPOLACJA 3.1. Ogólne zadanie interpolacji Niech oznacza funkcjê zmiennej x zale n¹ od n + 1 parametrów tj. Definicja 3.1. Zadanie interpolacji polega na okreœleniu parametrów tak, eby dla n +
PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA
PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Interpolacja metoda funkcji sklejanych Materiały pomocnicze do ćwiczeń laboratoryjnych
ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH
P I O T R DUDZIŃSKI ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH GDYNIA 2003 Piotr Dudziński, Zadania z matematyki dla studentów kierunków ekonomicznych, Gdynia 2003, s. 84, bibliografia
EGZAMIN LICENCJACKI NA KIERUNKU MATEMATYKA ROK AKADEMICKI 2016/2017
EGZAMIN LICENCJACKI NA KIERUNKU MATEMATYKA ROK AKADEMICKI 2016/2017 1. Analiza matematyczna 1. Zdefiniuj pojęcia kresów podzbiorów zbioru liczb rzeczywistych. 2. Omów pojęcie granicy ciągu liczb rzeczywistych
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
INFORMATYKA W CHEMII. Dr Piotr Szczepański. Katedra Chemii Fizycznej i Fizykochemii Polimerów. pok. 256 B
INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów pok. 256 B INFORMATYKA W CHEMII Wykładowca: dr Piotr Szczepański, e-mail: piotrs@chem.umk.pl Katedra Chemii Fizycznej
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta
b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy
Zagadnienia - równania nieliniowe
Zagadnienia - równania nieliniowe Sformułowanie zadania poszukiwania pierwiastków. Przedział izolacji. Twierdzenia o istnieniu pierwiastków. Warunki zatrzymywania algorytmów. Metoda połowienia: założenia,
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Aproksymacja cz. II, wielomiany ortogonalne zastosowania PWSZ Gªogów, 2009 Iloczyn skalarny Funkcja okre±lona na przestrzeni liniowej (, ) R iloczyn skalarny wektorów
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
RACHUNEK PRAWDOPODOBIE STWA
Jerzy Ombach RACHUNEK PRAWDOPODOBIE STWA WSPOMAGANY KOMPUTEROWO DLA STUDENTÓW MATEMATYKI STOSOWANEJ Wydawnictwo Uniwersytetu Jagielloƒskiego Seria Matematyka Książka finansowana przez Wydział Matematyki
Elementy Analizy Numerycznej - opracowanie pytań egzaminacyjnych
Elementy Analizy Numerycznej - opracowanie pytań egzaminacyjnych baszmen, entereczek, JG, kubked, MK, PajdziuPaj Vertyk WI-INFA września 0 Spis treści Teoria. Co to znaczy, że algorytm obliczeniowy jest
Algorytmy obliczeniowe
PG WETiI Katedra Systemów Automatyki Algorytmy obliczeniowe Dr inż. Krzysztof Cisowski Tel: 583471274, email: krci@eti.pg.gda.pl Kierunek studiów Automatyka i Robotyka Zakres i treść przedmiotu (1) 1.