Algebraiczna Teoria Liczb

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algebraiczna Teoria Liczb"

Transkrypt

1 Algebraiczna Teoria Liczb Opracowane na podstawie notatek z wykładu w semetrze letnim roku 2008r. (niekompletne- pominięto ostatnie wykłady o szeregach Diricheta) r.

2 W tej części rozważań wszystkie rozszerzenia ciał są skończone i algebraiczne. Definicja1(Elementcałkowity)NiechR R 1 będąprzemiennymidziedzinamiz1.elementa R 1 nazywamycałkowitymnadrjeżeliistniejewielomian unormowanyf=x n +a n 1 x n a 1 x+a 0,należącydoR[x],żef(a)=0. Twierdzenie1NiechR R 1,a R 1.Następującewarunkisąrównoważne: ajestcałkowitynadr, R[a] ={g(a), g(x) R[x]} jest skończenie generowanym R- modułem, istniejer[a]-modułm,skończeniegenerowanyjakor-modułtaki,że: R[a] M R 1, istnieje R[a]- moduł wierny, który jako R- moduł jest skończenie generowany. Twierdzenie2ZbiórwszystkichelementówcałkowitychzR 1 nadrjestpodpierścieniemzawierającymr.nazywamygocałkowitymdomknięciemrwr 1. Definicja 2(Całkowita domkniętość) Pierścień R jest całkowicie domkniętywr 1 jeżelikażdyelementcałkowitya R 1 nadrjestwistocieelementem R. Twierdzenie 3 Całkowite domknięcie jest całkowicie domknięte(dwukrotne wzięcie całkowitego domknięcia nie daje nowych elementów). Definicja 3(Pierścień normalny) Pierścień R nazywamy normalnym gdy jest on całkowicie domknięty w swoim ciele ułamków. Twierdzenie4JeżeliRjestnormalnyorazR (R) K,gdzieK-ciało,todlakażdegoelementucałkowitegoa KnadR,wielomianminimalny unormowany(wsensieteoriiciał)dlaanadrnależydor[x]. Twierdzenie 5 Jeżeli R jest pierścieniem z jednoznacznym rozkładem, to jest normalny. 1

3 Definicja 4(Liczby całkowite) Jeżeli rozważamy całkowite domknięcie Z w ciele K, to jego elementy nazywamy liczbami całkowitymi w K i oznaczamy przezz K. Twierdzenie 6 Niech m będzie niezerową liczbą całkowitą. Wówczas: Z[ m], dlam 1mod4 Z Q[ m] =. Z[ 1+ m 2 ], dlam=1mod4 Twierdzenie7Niechω n będziepierwiastkiempierwotnymstopnianz1.wówczasz Q[ωn]= Z[ω]. Definicja 5(Dziedzina Dedekinda) Dziedzina całkowitości R jest Dedekinda wtedy i tylko wtedy, gdy spełnione są warunki: R jest noetherowska, R jest normalna, każdy niezerowy ideał pierwszy R jest maksymalny. Twierdzenie8Z + K jestdladowolnegociałaskończeniegenerowanąwolnągrupą abelową. Twierdzenie9PierścienieZ K sądziedzinamidedekinda. Definicja6(Normaiśladelementu)NiechK L-skończonerozszerzenie algebraiczne ciał charakterystyki 0. Definicja ma cztery równoważne postaci: 1.L K,a L,f=a n x n +a n 1 x n a 1 x+a 0 -wielomianminimalny azk[x].wówczas: N L/K (a)=(( 1) n a 0 ) [L:K(a)], T L/K (a)= (a n 1 ) [L:K(a)]. 2.L K,a L K,f-wielomianminimalny,rozważanywKmapostać: f(x)=(x a)(x b 2 )...(x b n ).Wówczas: N L/K (a)=(a b 2... b n ) [L:K(a)], T L/K (a)=(a+b b n ) [L:K(a)]. 2

4 3.L K,a L K.Jeżeli[L:K]=n,tomamnróżnychwłożeńLw K:σ 1,σ 2,...,σ n.ztwierdzeniaabelal=k(c),dlapewnegoalgebraicznegoc.jegowielomianminimalnyfmawknróżnychpierwiastków.włożenialwktoliniowerozszerzeniaformułyc jedenzpierwiastkówf. Wówczas: N L/K =σ 1 (a)σ 2 (a)...σ n (a), T L/K (a)=σ 1 (a)+σ 2 (a)+...+σ n (a). 4. Rozszerzenie L K można traktować jako algebrę skończenie wymiarową nad L. Wówczas ślad i norma to odpowiednio ślad i wyznacznik macierzy przekształcenia liniowego x ax. Twierdzenie 10 Ślad i norma mają następujące własności: T L/K (a),n L/K (a) K, jeżeliajestcałkowite(nadczymś),tonormaiśladteż, dladowolnycha,b L,x,y Kmamy: N L/K (ab)=n L/K (a) N L/K (b) T L/K (xa+yb)=xt L/K (a)+yt L/K (b). Definicja7(Wyróżnik)NiechL K,[L:K]=n.Wybieramyα 1,α 2,...,α n L.RozważamynróżnychwłożeńLwK:σ 1,σ 2,...,σ n.wyznacznikiemukładu discr(α 1,α 2,...,α n ) L/K nazywamykwadratwyznacznikanastępującejmacierzy: σ 1 (α 1 ) σ 2 (α 1 ) σ n (α 1 ) σ 1 (α 2 ) σ 2 (α 2 ) σ n (α 2 ) σ 1 (α n ) σ 2 (α n ) σ n (α n ) JeżeliokreślićformędwuliniowąT(x,y)=T L/K (x y),wówczaswyróżnikjest macierzątejformy:(t(α i,α j )) n i,j=1. Definicja8(Dyskryminant)Przezdyskryminant K (a)elementualgebraicznegoa L Krozumiemywyróżnikukładu:{1,a,a 2,...,a n 1 },gdziento stopień rozszerzenia ciał. 3

5 Twierdzenie11Jeżelia L K,orazftowielomianminimalnyelementu a,to K (a)=±n L/K (f (a)).stąddyskryminantelementucałkowitegojest całkowity. Ogólnie wyróżnik układu elementów całkowitych jest całkowity. Twierdzenie12Dladwóchróżnychbazcałkowitych Z K mamyrównedyskryminanty. Stąd z ciałem skojarzyć można dyskryminant. Twierdzenie13Jeżeliwyróżnikukładu{a 1,a 2,...,a n }niezależnychelementówz K nad Zmawyróżnikbezkwadratowy,toukładtenjestbazącałkowitą Z K. Definicja 9(Względnie pierwsze ideały) I, J są ideałami względnie pierwszymipierścieniar,jeżelii+j=r. Definicja 10(Najmniejsza wspólna wielokrotność ideałów) Przez NWW(I, J) określamyi J. Twierdzenie14NiechI 1,I 2,...,I n ideałypierścieniar,paramiwzględnie pierwsze.wówczasi 1 I 2... I n =I 1 I 2... I n. Twierdzenie15(Chińskieoresztach)JeżeliI 1,I 2,...,I n -ideałypierścieniar,paramiwzględniepierwsze,tor/ I k R/I k. Twierdzenie 16 Niech R noetherowski. Wówczas każda niepusta rodzina ideałów ma element maksymalny. Definicja 11(Ideał ułamkowy) Niech R- dziedzina całkowitości, z ciałem ułamków(r). I (R) nazwiemy ideałem ułamkowym R w(r), jeżeli spełnione są dwa warunki: IjestR-podmodułemK,zmnożeniema x y = ax y, istniejeniezerowea Rtakie,żeaI R. Twierdzenie 17 Jeśli R jest noetherowski wówczas równoważne są warunki: Ijestułamkowyw(R), I jest skończenie generowanym R- podmodułem(r). W szczególności twierdzenie jest prawdziwe dla dziedzin Dedekinda. 4

6 Twierdzenie 18 Niech I będzie nietrywialnym ideałem właściwym w dziedzinie Dedekinda R. Wówczas istnieje ideał J, że IJ jest główny. Twierdzenie19NiechI jw.wówczasistniejąideałypierwszep 1,P 2,...,P k takie,żei P 1 P 2...P r. Twierdzenie 20 Niech R Dedekinda, I nietrywialny ideał właściwy. WówczaszbiórJ={x (R):xI R}stanowiideałułamkowyRorazJI=R. Twierdzenie 21 Niech I będzie nietrywialnym ideałem właściwym w dziedzinie Dedekinda R. Wówczas rozkłada się on jednoznacznie na iloczyn ideałów pierwszych. Definicja 12(Grupa dywizorów, grupa klas ideałów) Niech R- dziedzina Dedekinda. Możemy w niej na dwa równoważne sposoby określić tzw. grupę klas ideałów. Wprowadźmy na rodzinie jej ideałów relację równoważności: I J a,b R (a)i (b)j.wówczasklasyrównoważnościtejrelacjitworzągrupę ze względu na mnożenie:[i] [J] =[IJ]. Elementem neutralnym jest[(1)], Rodzina ideałów ułamkowych pierścienia R tworzy grupę ze względu na mnożenie. Nazywamy ją grupą dywizorów. Dzielimy ją przez ideały ułamkowe główne. Iloraz to grupa klas. Twierdzenie22NiechR Dedekinda,I 0-ideałwR.Wówczasdladowolnegox Iistniejetakiy I,żeI=(x,y). Twierdzenie 23 Niech R Dedekinda z jednoznacznością rozkładu. Wówczas RjestPID. 5

7 W najbliższych rozważaniach przyjmujemy konwencję: Q K L. Z Z K Z L Wszystkie rozszerzenia są skończone. Twierdzenie24NiechP ideałpierwszywz K.WówczasP Z L Z K =P. Odwrotnie:jeżelidlapewnegoideałupierwszegoQ Z L mamyq Z K P,to QwystępujewrozkładzieP Z L. Definicja13(Indeksyrozgałęzienia)NiechP ideałpierwszywz K oraz P Z L =Q e1 1 Qe2 2 Qe Qer r rozkładideałup Z L naczynnikipierwsze zz L.Wówczaswspółczynnikie i Z +,i {1,2,...r}nazywamywspółczynnikamirozgałęzienia(lubindeksamiramifikacji)PwQ i.mówimy,żezachodzi ramifikacjapwz L jeślir>1. Definicja14(Indeksyinercji)NiechP ideałpierwszywz K orazp Z L = Q e1 1 Qe2 2 Qe Qer r rozkładideałup Z L naczynnikipierwszezz L.Wówczas skoroq i sąmaksymalne,toz L /Q i sąciałami.przezindeksyinercjipwq i nazywamystopnierozszerzenia:f i =[Z L /Q i :Z K /P]. Twierdzenie25Niech[L:K]=n.WówczasdlakażdegoideałupierwszegoP wz K mamyn= r e i f i. i=1 Twierdzenie26Ideałpierwszy(p) ZjestrozgałęzionywZ K wtedyitylko wtedy, gdy p dzieli dyskryminant rozszerzenia Q K. Zakładamydalej,żeK LjestGalois. Twierdzenie27NiechP ideałpierwszywz K orazp Z L =Q e1 1 Qe2 2 Qe Q er r rozkładideałup Z L naczynnikipierwszezz L.Wówczasdlakażdych i,j {1,2,...r}istniejeσ Gal(L/K),żeσ(Q i )=Q j. 6

8 Twierdzenie28JeżeliK LjestGalois,todlakażdegoideałupierwszegoP wz L mamye i =e,f i =forazn= r ref. i=1 Definicja 15(Grupa rozkładu) Przez grupę rozkładu D określać będziemy grupęizotopiiideałuq=q 1 rozkładupnaczynnikiwz L. Twierdzenie29[Gal(K/L):D]=r. Definicja 16(Grupa inercji) D jako podgrupa grupy Galois zadaje pewien automorfizmrozszerzenia[z L /Q:Z K /P].MamywobectegoepimorfizmD Gal((Z L /Q)/(Z K /P)).Jeżelizałożymy,żeZ L /Q Z K /P jestrozdzielcze, wówczasjegoobrazemtegoepimorfizmujestgal((z L /Q)/(Z K /P)).Jegojądro nazywamy grupą inercji E. Twierdzenie 30 Grupę inercji można opisać explicite jako: {σ D:σ(x) x Q, x Z L }. Twierdzenie31Rządgrupyinercjitoe.PodniesienieciałaKdoLodbywasię zatem w trzech krokach poprzez ciała pośrednie odpowiadające grupom rozkładu i inercji. Nazywamy je ciałami inercji i dekompozycji. L e= E F E f= D E F D r= [L:K] ef K CałaramifikacjamamiejscenaL,całerozszczepienienapoziomieciałaF D. CiałarezidualnepochodzącezinercjipochodzącązprzejściadoF E.Wyrażato tabelka: e f r F D 1 1 r F E 1 e 1 L f

9 Twierdzenie 32(Norma ideału) Przez normę ideału I oznaczać będziemy indeksiwz K. Twierdzenie33DladowolnychideałówI,JpierścieniaZ K mamy IJ = I J. Twierdzenie34Dladanegom ZistniejeskończeniewieleideałówIwZ K, żei=m. Dowód.Zauważmy,żedlaideałuImamy I I.Istotnie,niechx I.Wówczaselement I (x+i)jestelementemneutralnymgrupyaddytywnejz K /I. Istotnie,ponieważgrupatamarząd I,torządelementux+Ijestpewnym dzielnikiem I.Zatem I x I,kładącwięcx=1mamy I I.Oznacza to w szczegóności, że I dzieli( I ). Z jednoznaczności rozkładu( I ) rozpada się na iloczyn skończenie wielu ideałów pierwszych, a więc jest skończenie wiele ideałówi,któremogąbyćtymiiloczynami. Twierdzenie35Niech0 α Z K.Wówczas N K/Q (α) = (α). Twierdzenie36Niech Q K-skończone.WówczasdlakażdegoideałuI Z K istniejeα Itakie,żeistniejeλ R,że N K/Q (α) γ I. Twierdzenie37DlakażdegoideałuIwZ K istniejeideałjzklasy[i],że J γ. Definicja17(KrataciałaKwR n )NiechKbędzieskończonymrozszerzeniem Q,aZ K pierścieniemliczbcałkowitych.wśródnwłożeńσ i,i=1,...,n ciałakw C,r 1 idziecałkowiciewliczbyrzeczywiste,zaś2r 2 =n r 1 jest zespolonych.rozważamyprzekształcenieφ:z K R r1 C r2,którex Z K przesyła na: φ(x)=(σ 1 (x),σ 2 (x),...,σ r1 (x),σ r1+1(x),...,σ r1+r 2 (x)). Podgrupazłożonazobrazówxjestwolnągrupaabelowarangin.Mamywięckratę n- wymiarową. Mamy tu pewien obszar fundamentalny, który określić możemy jako{a i σ i,a i [0,1)}.JegomiaręLebesgue aoznaczamyjakovol(r n /L). Twierdzenie38Mamynastępującąrówność:(2i) r2 vol(r n /K)= discr(k/q). 8

10 Twierdzenie 39(Minkowski) Niech S będzie zbiorem mierzalnym względem miarylebesgue ana R n,przyczymµ(s)>vol(r n /L).Wówczasistniejądwa różnepunktyx,y S,żex y H. Twierdzenie40(Minkowski)NiechHbędziekratąwR n.załóżmy,żes jest mierzalny względem n- wymiarowej miary Lebesgue a, symetrycznym wokół środka i wypukłym. Wówczas jeśli: µ(s)>2 n vol(h)lub, µ(s) 2 n vol(h)isjestzwarty,to: S (H{0}). Twierdzenie 41(Minkowski) Niech Q L będzie rozszerzeniem stopnia n. Wówczasistniejenzanurzeńσ i L C.Jeżeliσ i (C R),todlaσ i istnieje sprzężoneznimzanurzenie.zatemn=r 1 +2r 2,gdzier 1 ilośćrzeczywistych zanurzeń,2r 2 ilośćzespolonychzanurzeń.stałąwtwierdzeniu36,37można wyrazićwpostaci: ( ) ( ) 4 n! r2 π n n L. Twierdzenie 42 Grupa klas ideałów jest skończona. Twierdzenie 43(Kroneckera o elementach odwracalnych) Niech K będzie skończonym rozszerzeniem ciała Q. Wówczas elementy odwracalne pierścieniaz K wyrażająsięjakoiloczynprostygrup:u K =W K UK 0,gdzieW K oznaczapodgrupęzłożonązewszystkichpierwiastków1zawartychwz K,zaśUK 0 jestpewnąwolnągrupąabelowąorandzer 1 +r 2 1. Twierdzenie 44(Kronecker- Weber) Niech K będzie skończonym i abelowymrozszerzeniemciała Q.Wówczasistniejetakien,żeK Q[ω n,gdzieω n jest pierwiastkiem pierwotnym stopnia n z 1. Definicja 18(Liczba regularna) Niech p- liczba pierwsza. Powiemy, że jest onaregularna,jeżelipniedzielirzędugrupyklasideałówwz[ω p ]. Twierdzenie45Równaniex p +y p =z p niemarozwiązańwzdlap>2, regularnych. 9

11 Definicja 19(Rozszerzenie Kummera) Niech K- ciało liczbowe, zawierająceω p.niechα K.Jeżeli p α/ K,wówczasrozszerzenieK K(ω n )jest nietrywialne, stopnia p, abelowe. Nazywamy je rozszerzeniem Kummera. Twierdzenie46Załóżmy,żeNWD(p,α)=1.WtedyK K( p α)jestnierozgałęzione wtedy i tylko wtedy gdy: (α)=i p, α=v p modp p,v Z K,P=(1 ω p ). Definicja20(Ciałoklas)NiechK-ciałoliczbowe,Z K całkowitedomknięcie ZwK,zaśCl(K)-grupaklasideałówZ K.Wówczasistniejedokładniejedno ciało E, będące skończonym rozszerzeniem K, spełniające warunki: [E:K]= Cl(K), EjestGaloisnadKiGal(E/K) Cl(K), każdyideałi KjestideałemgłównymwE żadenideałpierwszypniepodlegaramifikacjiwz E,cowięcej rozkłada sięnadokładnie Cl(K) o(pz E) czynników,gdzieo(pz E)oznaczarządideału o(pz E )wgrupieklasideałówz E. 10

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Pojęcia wstępne. Piotr P. Karwasz. Kraków, 22 kwietnia 2017 r. Uniwersytet Gdański

Pojęcia wstępne. Piotr P. Karwasz. Kraków, 22 kwietnia 2017 r. Uniwersytet Gdański Piotr P. Karwasz Uniwersytet Gdański Kraków, 22 kwietnia 2017 r. Redukcja Niech p Z będzie liczbą pierwszą oraz π p kanonicznym homomorfizmem: π p : Z F p. Twierdzenie (wersja dla studentów) Niechaj w(x)

Bardziej szczegółowo

Definicje- Algebra III

Definicje- Algebra III Definicje- Algebra III Opracowane na podstawie notatek z wykładu w semetrze zimowym roku 2007r. (mocno niekompletne- umieszczono kilka pierwszych wykładów) 21.11.2007r. Algebry Definicja1(K-algebra)- Przestrzeń

Bardziej szczegółowo

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Teoria rugownika i wyróżnik ciała. Projekt zaliczeniowy: Algebraiczna Teoria Liczb I

Teoria rugownika i wyróżnik ciała. Projekt zaliczeniowy: Algebraiczna Teoria Liczb I Teoria rugownika i wyróżnik ciała. Projekt zaliczeniowy: Algebraiczna Teoria Liczb I Bazyli Klockiewicz 22 czerwca 2014 1 Rugownik pary wielomianów oraz wyróżnik wielomianu. Poniższe stwierdzenia opisują

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

0.1 Pierścienie wielomianów

0.1 Pierścienie wielomianów 0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie

Bardziej szczegółowo

Skończone rozszerzenia ciał

Skończone rozszerzenia ciał Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie

Bardziej szczegółowo

1 Pierścienie, algebry

1 Pierścienie, algebry Podstawowe Własności Pierścieni Literatura Pomocnicza: 1. S.Balcerzyk,T.Józefiak, Pierścienie przemienne, PWN 2. A.Białynicki-Birula, Algebra, PWN 3. J.Browkin, Teoria ciał, PWN 4. D.Cox, J.Little, D.O

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania

Bardziej szczegółowo

O ROZMAITOŚCIACH TORYCZNYCH

O ROZMAITOŚCIACH TORYCZNYCH O ROZMAITOŚCIACH TORYCZNYCH NA PODSTAWIE REFERATU NGUYEN QUANG LOCA Przez cały referat K oznaczać będzie ustalone ciało algebraicznie domknięte. 1. Przez cały referat N oznaczać będzie ustaloną kratę izomorficzną

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca. Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której

Bardziej szczegółowo

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X. 1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Zadania z algebry liniowej - sem. I Struktury algebraiczne Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy

Bardziej szczegółowo

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi

Bardziej szczegółowo

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011 1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy 1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,

Bardziej szczegółowo

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian 9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

ciałem F i oznaczamy [L : F ].

ciałem F i oznaczamy [L : F ]. 11. Wykład 11: Baza i stopień rozszerzenia. Elementy algebraiczne i przestępne. Rozszerzenia algebraiczne i skończone. 11.1. Baza i stopień rozszerzenia. Uwaga 11.1. Niech F będzie ciałem, L rozszerzeniem

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9

2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9 Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 6. Znajomość podstaw logiki, teorii mnogości i algebry liniowej.

KARTA KURSU. Kod Punktacja ECTS* 6. Znajomość podstaw logiki, teorii mnogości i algebry liniowej. KARTA KURSU Nazwa Nazwa w j. ang. Algebra abstrakcyjna Abstract algebra Kod Punktacja ECTS* 6 Koordynator Prof. dr hab. Kamil Rusek Zespół dydaktyczny: Dr Antoni Chronowski Opis kursu (cele kształcenia)

Bardziej szczegółowo

Kryptografia - zastosowanie krzywych eliptycznych

Kryptografia - zastosowanie krzywych eliptycznych Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest

Bardziej szczegółowo

Algebra i jej zastosowania - konspekt wykładu

Algebra i jej zastosowania - konspekt wykładu Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2018/2019 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 3 13 Pierścienie Euklidesa

Bardziej szczegółowo

Maciej Grzesiak. Wielomiany

Maciej Grzesiak. Wielomiany Maciej Grzesiak Wielomiany 1 Pojęcia podstawowe Wielomian definiuje się w szkole średniej jako funkcję postaci f(x) = a 0 + a 1 x + a 2 x + + a n x n Dogodniejsza z punktu widzenia algebry jest następująca

Bardziej szczegółowo

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16 DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Wielomiany i rozszerzenia ciał

Wielomiany i rozszerzenia ciał Wielomiany i rozszerzenia ciał Maciej Grzesiak 1 Pierścień wielomianów 1.1 Pojęcia podstawowe Z wielomianami spotykamy się już w pierwszych latach nauki w szkole średniej. Jest to bowiem najprostsza pojęciowo

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. 12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

DB Algebra liniowa 1 semestr letni 2018

DB Algebra liniowa 1 semestr letni 2018 DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,

Bardziej szczegółowo

Hipoteza Grothendiecka dla równania Rischa y = ay + b M. van der Put

Hipoteza Grothendiecka dla równania Rischa y = ay + b M. van der Put Hipoteza Grothendiecka dla równania Rischa y = ay + b M. van der Put A. Nowel kwiecień 2017 Marius van der Put, Grothendieck s conjecture for the Risch equation y = ay + b. Indag. Math. (N.S.) 12 (2001),

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Algebra i jej zastosowania - konspekt wykładu

Algebra i jej zastosowania - konspekt wykładu Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2016/2017 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 2 13 Ciało ułamków

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa

Bardziej szczegółowo

Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1.

Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1. Algebra II Wykład 1 0. Przypomnienie Zbiór R z działaniami +, : R R R, wyróżnionymi elementami 0, 1 R i operacją : R R nazywamy pierścieniem, jeśli spełnione są następujące warunki: (1) a, b, c R : a +

Bardziej szczegółowo

Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): -

Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): - Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): - 1. Informacje ogólne koordynator

Bardziej szczegółowo

Algebra i jej zastosowania - konspekt wykładu

Algebra i jej zastosowania - konspekt wykładu Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2012/2013 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 3 13 Ciało ułamków

Bardziej szczegółowo

Krzywe Freya i Wielkie Twierdzenie Fermata

Krzywe Freya i Wielkie Twierdzenie Fermata Krzywe Freya i Wielkie Twierdzenie Fermata Michał Krzemiński 29 listopad 2006 Naukowe Koło Matematyki Politechnika Gdańska 1 1 Krzywe algebraiczne Definicja 1.1 Krzywą algebraiczną C nad ciałem K nazywamy

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Uniwersytet w Białymstoku. Wykład monograficzny

Uniwersytet w Białymstoku. Wykład monograficzny Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr

Bardziej szczegółowo

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

14. Przestrzenie liniowe

14. Przestrzenie liniowe 14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorium ochrony danych Ćwiczenie nr 3 Temat ćwiczenia: Kod BCH Cel dydaktyczny: Zapoznanie się z metodami detekcji i korekcji błędów transmisyjnych za pomocą binarnych kodów cyklicznych, na przykładzie

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

1 Pierścienie i ich homomorfizmy. Ideał, pierścień ilorazowy. Ideały pierwsze i maksymalne, dziedziny i ciała - definicje i przykłady

1 Pierścienie i ich homomorfizmy. Ideał, pierścień ilorazowy. Ideały pierwsze i maksymalne, dziedziny i ciała - definicje i przykłady Tekst ten jest dostępny na stronie http://www-usersmatumkpl/ cstefan/ W razie potrzeby tam będą znajdowały się ewentualne poprawki i uzupełnienia 1 Pierścienie i ich homomorfizmy Ideał, pierścień ilorazowy

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

Baza i stopień rozszerzenia.

Baza i stopień rozszerzenia. Baza i stopień rozszerzenia. Uwaga Niech F będzie ciałem, L rozszerzeniem ciała F. Wówczas L jest przestrzenią liniową nad ciałem F. Definicja Niech F będzie ciałem, L rozszerzeniem ciała F. 1. Wymiar

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo