PROJEKTOWANIE MODUŁOWEGO STANOWISKA MONTAŻOWEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROJEKTOWANIE MODUŁOWEGO STANOWISKA MONTAŻOWEGO"

Transkrypt

1 Techologa Automatyzacja Motażu /0 ROJEKTOWANIE MODUŁOWEGO STANOWISKA MONTAŻOWEGO Rafał KLUZ Itesywy rozwój budowy maszy oraz stale zwększające sę wymagaa ryku doprowadzły do powstaa rozwoju elastyczych systemów motażowych, które moża zdefować jako: komputerowo ztegrowae systemy produkcyje, zbudowae z robotów oraz urządzeń peryferyjych, w których podstawowym operacjam techologczym są operacje motażowe [, 5]. Budowa zrobotyzowaych systemów motażowych a podstawe kompoetów automatyzacj pozwala a łatwe dostosowae produkcj do zmeających sę wymagań rykowych w aspektach małej lczebośc ser połączoej z wysoką jakoścą produkcj. ostęp w zakrese uwersalośc techologczej współczesych maszy urządzeń techologczych pocąga za sobą rosące wymagaa wobec urządzeń składających sę a podsystemy trasportu mapulacj. Modułowy sposób budowy tych urządzeń ma wele zalet, gdyż charakteryzuje sę []: krótkm czasem projektowaa robotów urządzeń, których poszczególe fukcje realzują poszczególe moduły, skróceem czasu przezaczoego a testowae wdrażae urządzea do produkcj, szybkm łatwym motażem demotażem oraz szybkm usuwaem skutków awar, poowym wykorzystaem sprawych modułów do budowy ych urządzeń. Jedym z ważejszych zadań podczas projektowaa zrobotyzowaego staowska jest wybór odpowedego układu kematyczego robota określee jego dokładośc oraz oprzyrządowaa. Zadae to abera obece dużego zaczea, gdyż a ryku pojawły sę wyspecjalzowae frmy (p. Bosch Rexroth GmbH, Fastems), które dostarczają elemety modułowe do motażu zautomatyzowaych urządzeń wytwórczych, warsztatowych pomocczych. Najczęścej systemy modułów pozwalają a zestawee klku układów, rozwązujących określoe zadae [5]. Z puktu wdzea wydajośc, dokładośc oraz jakośc wykoywaa prac pracochłoośc zastalowaa układy te jedak e są rówoważe, dlatego w ejszej pracy przedstawoo algorytm umożlwający porówae wybór optymalej struktury kematyczej robota do realzacj zadaej operacj motażu. Zapropoowao róweż metodykę wyzaczaa parametrów łańcucha wymarowego operacj motażowej, dającą możlwość kofguracj staowska motażowego bez zbędego zwększaa jego kosztów. Algorytm wyboru układu kematyczego robota modułowego Rys.. Algorytm wyboru układu kematyczego robota w procesach Algorytm umożlwa porówae układów a podstawe parametrów, które mają ajwększy wpływ a koszty eksploatacj staowska, a maowce: objętośc przestrze roboczej, dokładośc pozycjoowaa, szybkośc pracy, parametrów eergetyczych, pola powerzch zajmowaego przez skofguroway system, wygody obsługwaa oraz złożoośc kostrukcj (rys. ). 9

2 /0 Techologa Automatyzacja Motażu Każdemu z aalzowaych parametrów ależy przypsać współczyk wagowy, uwzględający jego wpływ a wybór ostateczej kofguracj robota. Wskaźkom, które mają ajwększy wpływ a przebeg realzacj procesu, ależy przypsać wartość, atomast pozostałym wartośc z przedzału od 0 do, w zależośc od kokretych waruków produkcyjych realzacj procesu. Na etape (rys. ) przedstawoego algorytmu ze zboru układów możlwych do zrealzowaa wybera sę klka ajbardzej odpowedch do wykoaa daej operacj. W kolejym kroku (etap ) dla wybraych układów dokoywaa jest aalza objętośc przestrze roboczej. W celu porówaa różych kofguracj ależy przyjąć astępujące parametry: lowe przemeszczee pary kematyczej S, kątowe przemeszczee pary kematyczej /, długość ogw l, długość zatwerdzea l/3. rzyjęte umowe wartośc parametrów umożlwają oszacowae objętośc przestrze roboczej oraz wyzaczee objętośc względej V y, będącej stosukem objętośc do lczby par kematyczych układu. Wybór przeprowadzay a etape 3 przedstawoego algorytmu polega a wyborze struktur mających ajwększą jedostkową objętość pracujących w różych układach współrzędych (cyldryczym, sferyczym, kartezjańskm, kątowym) (rys ). Na etape 4 astępuje porówae układów z puktu wdzea błędu geerowaego a staowsku motażowym Ϭ. W ogólym przypadku błąd te jest sumą błędu statyczego (wykającego z obcążea kostrukcj ośej robota masą przeoszoej częśc) oraz błędu kematyczego wykającego z błędów ustawea zaprogramowaych wartośc współrzędych kofguracyjych robota [3, 4]. f 4 ( ) 3 δ = μ ηx μ ξx ± σ ηx q σq = h 4 ( ) 3 μ ηx μ ξx ± σ ηx q σq = () gdze: μ ξx, μ ηx, μ ξx, μ ηx odpowedo wartośc oczekwae (błędy systematycze) zmeej losowej błędu położea os częśc bazowaej w chwytaku robota zastosowaym urządzeu bazującym względem os układu współrzędych OXX: σ, ηx μ wartośc waracj ηx dwuwymarowej zmeej losowej błędu położea os częśc ustaloej w urządzeu bazującym, σ waracja zmeej losowej błędu ustawea -tej współrzędej q uogóloej robota motażowego. W celu określea maksymalego czasu cyklu motażu ależy przyjąć, że prędkość a poszczególych współrzędych uogóloych jest wartoścą stałą. Dokoae założee umożlwa oszacowae czasu potrzebego a realzację procesu (etap 5) za pomocą zależośc []: t = S = S = ϕ l m S gdze: S całkowte lowe przemeszczee w cyklu, φ sumarycze kątowe przemeszczee, S lowa prędkość przemeszczea, l m maksymala odległość chwytaka od os obrotu. Na etape 6 astępuje ocea wybraych układów ze względu a straty eergetycze, powstające w czase wykoywaa przemeszczea w cyklu a podstawe zależośc []: () Rys.. Struktura kematycza robotów: a) kartezjańska, b) cyldrycza, c) sferycza, d) scara, e) kątowa s S F 0 = = E = ϕ l F m 0 Na etape 7 aalzoway jest proces techologczy pod kątem lczby puktów w przestrze roboczej ezbędych do prawdłowej realzacj procesu, wymagających (3) 0

3 Techologa Automatyzacja Motażu /0 wysokej dokładośc ustawea chwytaka robota. Następe określaa jest lczba jedocześe pracujących par kematyczych ezbędych do realzacj zadaa. W dalszej kolejośc a etape 8 porówywaa jest złożoość kostrukcj par kematyczych łączących ogwa robota. W tym celu wprowadzoo współczyk określający stopeń złożoośc K p kostrukcj, operający sę a porówau własośc budowy obrotowych postępowych par kematyczych. Ogóle współczyk złożoośc całej kostrukcj jest sumą współczyków wszystkch par obrotowych postępowych w ej występujących [7]: K p = K pp = = m K po gdze: K pp stopeń złożoośc par postępowych, K po stopeń złożoośc par obrotowych. Na etape 9 ocee podlega powerzcha zajmowaa przez układ, wraz z ezbędym środkam pomocczym. Ostatecze w bloku 0 astępuje wybór kematyczej struktury robota, ajbardzej odpowedej do realzacj procesu motażu cyldryczych połączeń częśc maszy. Wybór astępuje a podstawe wartośc współczyka porówaa Kp j układu oraz układu j: Kp (4) k 6 = K K K K j = k 6 (5) k kj 6 gdze K k współczyk zaczea k-tego parametru ocey,,, 3 perwszy, drug, k- t y p a r a m e t r -tego robota, j, j, 3j perwszy, drug, k-ty parametr j-tego robota. Za pomocą współczyka Kp j porówywae są wszystke aalzowae układy, spośród których wyberay jest ajodpowedejszy względem aalzowaych kryterów do realzacj zadaej operacj, w myśl zasady: jeżel Kp j >, odpowedejszą strukturę ma -ty robot. Określee dokładośc modułów staowska motażowego Wybray a podstawe przedstawoego algorytmu układ kematyczy robota zapewa mmalą lczbę stop swobody, koeczą do zrealzowaa zadaej operacj motażu, przy spełeu stawaych mu wymagań techczych. Jedakże w celu mmalzacj akładów a wykoae, zastalowae astawee robota motażowego wykoującego zadaą operację, przy jedoczesym zapeweu ezawodośc jej wykoywaa, błąd powtarzalośc pozycjoowaa oretacj jego końcówk roboczej powe być maksymale zblżoy do welkośc dopuszczalych przemeszczeń lowych kątowych łączoych elemetów w przestrze, w gracach których możlwy jest jeszcze ch motaż [6]. rzeprowadzoe badaa wykazały [3], ż ajwększy wpływ a proces motażu mają kematycze błędy ustawea za pomocą zastosowaych apędów zaprogramowaych wartośc współrzędych uogóloych oraz błędy statycze pochodzące od cężaru przeoszoej częśc. W przypadku, gdy robot przezaczoy jest do kokretej operacj techologczej motażu maszy, zay jest zakres obcążeń w czase pracy robota, w zwązku z czym steje możlwość skofgurowaa ajbardzej adekwatej jego kostrukcj a baze ujedolcoych modułów. otwerdza to przeprowadzoa aalza wpływu błędów robota a motowalość cyldryczych połączeń częśc maszy. Dla dwóch różych puktów w przestrze roboczej robota atropomorfczego Mtsubsh RV-M przeprowadzoo symulację, polegającą a badau wpływu błędów ustawea poszczególych współrzędych uogóloych a welkość luzu kojarzoych częśc (rys. 3). rzeprowadzoa aalza wykazała zróżcoway wpływ tych błędów a możlwość poprawej realzacj połączea, z założoym (0,9998) prawdopodobeństwem (uzależoym dodatkowo od wyboru puktu Rys. 3. Wpływ błędów ustawea współrzędych kofguracyjych robota o strukturze kątowej a wartość błędu całkowtego δ dla dwóch puktów w jego przestrze

4 /0 Techologa Automatyzacja Motażu w przestrze roboczej zrobotyzowaego staowska motażowego) (rys. 3), dlatego w przedstawoym zadau wybór optymalych parametrów staowska motażowego rozpatrzoo w zależośc od błędów realzacj k-tym apędem ruchu obrotowego σ φk oraz błędów realzacj j-tym apędem ruchu wzdłużo-postępowego σ sj. Rozwązae przedstawoego zagadea polega a poszukwau mmum fukcj celu (6), zapewającej maksymale zblżee błędu geerowaego przez robota do toleracj a względe przemeszczee os łączoych częśc: ( Χ) = δ T m f (6) δ f ( ) = Tδ ( μ ± 3σ ) ( μ ± 3σ ) Χ = Χ (7) ς x ς x [ σ, σ,..., σ ] { Z M = { : ( Χ) 0, = m} = ψ,..., ς x ς x (8) gdze: T δ toleracja względego przesuęca os łączoych elemetów, μ ςx, μ ςx wartość oczekwaa kematyczego błędu położea os motowaych elemetów odpowedo a os X X, σ ςx, σ ςx odchylee stadardowe błędu odległośc mędzy osam motowaych elemetów, ψ układ waruków ograczających ałożoych przez kostruktora (skraje wartośc błędów poszczególych modułów). Do rozwązaa przedstawoego zagadea wykorzystao metodę sekwecyjego programowaa kwadratowego (SQ). W celu porówaa uzyskaych wyków przyjęto astępujące dae: σ ςx = 0,0 mm, σ ςx = 0,05 mm, μ ςx = 0, μ ςx = 0, cov ς (x, x ) = 0 (parametry błędu ustawea częśc bazowej) oraz luz cyldryczej jedostk motażowej rówy 0,94 mm. W wyku rozwązaa przedstawoego zadaa uzyskao astępujące dopuszczale wartośc odchyleń stadardowych błędów ustawea poszczególych wartośc współrzędych kofguracyjych robota: σ q = 0, rad, σ q = 0, rad, = 0, rad, = 0, rad, przy wartośc fukcj celu (6,6) rówej 3, W celu określea wpływu wyboru puktu w przestrze roboczej robota a postać rozwązaa, przedstawoe zagadee rozwązao dla trzech różych zborów zmeych uogóloych, oraz dla wartośc luzu połączea rówego odpowedo: 0,94 mm 0,8 mm, uzyskując w każdym przypadku róże wartośc dopuszczalych błędów geerowaych przez robot (odchyleń stadardowych σ q ) oraz róży rozkład wartośc tych błędów, mędzy poszczególym przekładam. Uzyskae rozwązaa dla poszczególych puktów w przestrze roboczej wraz z uzyskaym wartoścam fukcj celu przedstawoo w tabel. Wosk rzedstawoą metodykę wyzaczaa parametrów kostrukcyjo-techologczych robota motażowego moża wykorzystać w praktyce przemysłowej. Na podstawe przedstawoego algorytmu projektat zrobotyzowaego staowska motażowego może wybrać optymalą strukturę kematyczą robota dla realzowaej operacj motażu oraz określć wymagaa dokładoścowe urządzeń wchodzących w skład łańcucha kematyczego operacj motażowej. rzeprowadzoa optymalzacja parametrów techologczych robota wykazała, ż steje możlwość zastosowaa do realzacj procesu motażu cyldryczej jedostk motażowej o luze 0,94 mm mej dokładej kostrukcj robota, bez obżaa ezawodośc staowska. Otrzymae wyk odbegają bowem od rzeczywstych błędów geerowaych w przegubach robota zarówo pod względem wartośc tych błędów, jak stosuku wartośc przypadających a poszczególe przekłade. Najwększym błędem obarczoa jest przekłada odpowadająca współrzędej uogóloej, pozostałe zaś przekłade geerują w przyblżeu taką samą wartość błędu > σ q σ q (0, > 0, = 0, = 0, rad), podczas gdy zmaa stosuku wartośc tych błędów umożlwa zwększee ch wartośc o 5,68% dla współrzędej uogóloej q, 356,65% dla q, kosztem zmejszea błędów o 7,35% dla współrzędej 7,4% dla q 4. Tabela. Wartośc odchyleń stadardowych błędu regulacj poszczególych współrzędych uogóloych dla trzech różych puktów w przestrze robota uzyskae w wyku optymalzacj Wartośc współrzędych uogóloych [rad] q = 0,536 q = 0,877 =,3963 q 4 =,047 q =,047 q =,047 =,7 q 4 =,3963 δ = 0,94 [mm] δ = 0,8 [mm] Rozwązae [rad] Wartość fukcj celu Rozwązae [rad] Wartość fukcj celu σ q = 0, σ q = 0, = 0, = 0, σ q = 0,00003 σ q = 0, = 0, = 0, σ = 0, q σ, q = 0, = 0, = 0, σ q = 0, , σ q = 0, = 0, = 0, , ,

5 Techologa Automatyzacja Motażu /0 LITERATURA. Frołow K.W., Worobew E.I.: Mechka promyszleych robotow. Tom 3, Wysszaa Szkoła, Moskwa Hoczareko J., Berlńsk A.: Zastosowae kompoetów mechatroczych w budowe zrobotyzowaych systemów produkcyjych. Techologa Automatyzacja Motażu r 3/006, s Kluz R.: Markg the optmum cofgurato of robotzed assembly stad, Archves of Mechacal Techology ad Automato vol. 9, No (009), p Kluz R.: Motowalość czopowo-tulejowych połączeń realzowaych przez roboty motażowe. Techologa Automatyzacja Motażu r /007, s Rout B. K., Mttal R.K.: Tolerace desg of robot parameters usg Taguch method. Mechacal System ad Sgal rocessg 0, 006, s Sgh. K., Ja S.C., Ja.K.: Advaced optmal tolerace desg of mechacal assembles wth terrelated dmeso chas ad process precso lmts. Computers Idustry Volume: 56, Issue:, February, 005, Dr ż. Rafał Kluz jest pracowkem Katedry Techolog Maszy Orgazacj rodukcj oltechk Rzeszowskej. 3

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 YCENA ŁUŻEBNOŚCI PRZEYŁU I OKREŚLANIE KOTY YNAGRODZENIA ZA BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI PRZY INETYCJACH LINIOYCH 1.

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU EWOLUCYJNE METODY OPTYMALIZACJI. Rozwązać zadae zadaa załaduku (plecakowego z ograczeam a dopuszczale wymary oraz cężar []: a algorytmem symulowaego wyżarzaa.

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

KALIBRACJA NIE ZAWSZE PROSTA

KALIBRACJA NIE ZAWSZE PROSTA KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel

Bardziej szczegółowo

O testowaniu jednorodności współczynników zmienności

O testowaniu jednorodności współczynników zmienności NR 6/7/ BIULETYN INSTYTUTU HODOWLI I AKLIMATYZACJI ROŚLIN 003 STANISŁAW CZAJKA ZYGMUNT KACZMAREK Katedra Metod Matematyczych Statystyczych Akadem Rolczej, Pozań Istytut Geetyk Rośl PAN, Pozań O testowau

Bardziej szczegółowo

STANDARYZACJA PRZEPROWADZANIA NAPRAW JAKO ETAP WDROŻENIA TOTAL PRODUCTIVE MAINTENANCE W PRZEMYŚLE WYDOBYWCZYM

STANDARYZACJA PRZEPROWADZANIA NAPRAW JAKO ETAP WDROŻENIA TOTAL PRODUCTIVE MAINTENANCE W PRZEMYŚLE WYDOBYWCZYM STANDARYZACJA PRZEPROWADZANIA NAPRAW JAKO ETAP WDROŻENIA TOTAL PRODUCTIVE MAINTENANCE W PRZEMYŚLE WYDOBYWCZYM Edward CHLEBUS, Joaa HELMAN, Mara ROSIENKIEWICZ, Paweł STEFANIAK Streszczee: Nejszy artykuł

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version WIII/1

PDF created with FinePrint pdffactory Pro trial version  WIII/1 Statystyka opsowa Statystyka zajmuje sę zasadam metodam uogólaa wyków otrzymaych z próby losowej a całą populację (czyl zborowość, z której została pobraa próba). Take postępowae azywamy woskowaem statystyczym.

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne TATYTYKA MATEMATYCZNA WYKŁAD Wadomośc wstępe tatystyka to dyscypla aukowa, której zadaem jest wykrywae, aalza ops prawdłowośc występujących w procesach masowych. Populacja to zborowość podlegająca badau

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

Badania niezawodnościowe i statystyczna analiza ich wyników

Badania niezawodnościowe i statystyczna analiza ich wyników Badaa ezawodoścowe statystycza aalza ch wyków. Co to są badaa ezawodoścowe jak sę je przeprowadza?. Metody prezetacj opsu daych pochodzących z eksperymetu 3. Sposoby wyzaczaa rozkładu zmeej losowej a podstawe

Bardziej szczegółowo

PROJEKT BUDOWLANY WYKONAWCZY

PROJEKT BUDOWLANY WYKONAWCZY USŁUGI PROJEKTOWE I BUOWLANE JANUSZ BYSTRZYŃSKI BIAŁA POLASKA UL. BITTNERA 15 TEL. +48 083 344-36-29 PROJEKT BUOWLANY WYKONAWCZY Temat: REMONT KANAŁÓW SANITARNYCH W UL. GROTA ROWECKIEGO Adres obektu: Masto

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

Badania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć

Badania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć Algorytm smpleks adaa operacyje Wykład adaa operacyje dr hab. ż. Joaa Józefowska, prof.pp Istytut Iformatyk Orgazacja zajęć 5 godz wykładów dr hab. ż. J. Józefowska, prof. PP Obecość a laboratorach jest

Bardziej szczegółowo

IV. ZMIENNE LOSOWE DWUWYMIAROWE

IV. ZMIENNE LOSOWE DWUWYMIAROWE IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Analiza wyniku finansowego - analiza wstępna

Analiza wyniku finansowego - analiza wstępna Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe

Bardziej szczegółowo

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =? Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017 PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Marzec 07 PODRĘCZNIKI Wstęp do aalzy błędu pomarowego Joh R. Taylor Wydawctwo Naukowe PWN Warszawa 999

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona: Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

ZARYS METODY OCENY TRWAŁOSCI I NIEZAWODNOSCI OBIEKTU Z UWZGLEDNIENIEM CZYNNIKA LUDZKIEGO I PŁASZCZYZNY LICZB ZESPOLONYCH

ZARYS METODY OCENY TRWAŁOSCI I NIEZAWODNOSCI OBIEKTU Z UWZGLEDNIENIEM CZYNNIKA LUDZKIEGO I PŁASZCZYZNY LICZB ZESPOLONYCH Zdzsław IDZIASZEK 1 Mechatrocs ad Avato Faculty Mltary Uversty of Techology, 00-908 Warsaw 49, Kalskego street r zdzaszek@wat.edu.pl Norbert GRZESIK Avato Faculty Polsh Ar Force Academy, 08-51 Dębl, Dywzjou

Bardziej szczegółowo

J. Wyrwał, Wykłady z mechaniki materiałów METODA SIŁ Wprowadzenie

J. Wyrwał, Wykłady z mechaniki materiałów METODA SIŁ Wprowadzenie J. Wyrwał Wykłady z mechak materałów.. ETODA SIŁ... Wprowadzee etoda sł est prostą metodą rozwązywaa (obczaa reakc podporowych oraz wyzaczaa sł przekroowych) statycze ewyzaczaych (zewętrze wewętrze) układów

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI

WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI GIEŁDOWYCH PRZY UŻYCIU ALGORYTMÓW GENETYCZNYCH mgr ż. Marc Klmek Katedra Iformatyk Państwowa Wyższa Szkoła Zawodowa m. Papeża Jaa Pawła II w Bałej Podlaskej Streszczee:

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach dr ż. Jolata Wojar Zakład Metod Iloścowych, Wydzał Ekoom Uwersytet Rzeszowsk Przestrzeo-czasowe zróżcowae stopa wykorzystaa techolog formacyjo- -telekomukacyjych w przedsęborstwach WPROWADZENIE W czasach,

Bardziej szczegółowo

METODY ANALIZY DANYCH DOŚWIADCZALNYCH

METODY ANALIZY DANYCH DOŚWIADCZALNYCH POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

ELEMENTY TEORII MOŻLIWOŚCI

ELEMENTY TEORII MOŻLIWOŚCI ELEMENTY TEORII MOŻLIWOŚCI Opracował: M. Kweselewcz Zadeh (978) wprowadzł pojęce rozkładu możlwośc jako rozmyte ograczee, kóre odzaływuje w sposób elastyczy a wartośc przypsae daej zmeej. Defcja. Nech

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA INSTYTUT TECHNOLOGII MECHANICZNEJ ZAKŁAD UKŁADÓW MECHATRONICZNYCH DYNAMIKA OBRABIAREK

POLITECHNIKA SZCZECIŃSKA INSTYTUT TECHNOLOGII MECHANICZNEJ ZAKŁAD UKŁADÓW MECHATRONICZNYCH DYNAMIKA OBRABIAREK POLITECHNIKA SZCZECIŃSKA INSTYTUT TECHNOLOGII MECHANICZNEJ ZAKŁAD UKŁADÓW MECHATRONICZNYCH DYNAMIKA OBRABIAREK Pomar przestrzeego ruchu bryły sztywej Opracował: Mrosław Pajor Władysław Lsewsk Metoda dośwadczalego

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym. Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Olejowe śrubowe sprężarki powietrza. Seria R55-75kW

Olejowe śrubowe sprężarki powietrza. Seria R55-75kW Olejowe śrubowe sprężark powetrza Sera R55-75kW Nowy pozom ezawodośc, efektywośc wydajośc Śrubowe sprężark powetrza ser R frmy Igersoll Rad to połączee ajlepszych, sprawdzoych kostrukcj techolog z owym,

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

Projekt 2 2. Wielomiany interpolujące

Projekt 2 2. Wielomiany interpolujące Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce.

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce. Metody probablstycze statystyka Wykład 7: Statystyka opsowa. Rozkłady prawdopodobestwa wystpujce w statystyce. Podstawowe pojca Populacja geerala - zbór elemetów majcy przyajmej jed włacwo wspól dla wszystkch

Bardziej szczegółowo