Skrypt do wyk ladu. Teoria sprz eżonych klasterów i jej zastosowanie do w lasności molekularnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Skrypt do wyk ladu. Teoria sprz eżonych klasterów i jej zastosowanie do w lasności molekularnych"

Transkrypt

1 Skrypt do wyk ladu Teoria sprzeżonych klasterów i jej zastosowanie do w lasności molekularnych Tatiana Korona Pracownia Chemii Kwantowej Wydzia l Chemii Uniwersytet Warszawski (wersja 2.1d) 3 grudnia 2012 Informacja odnośnie podanej literatury: podana jest wy l acznie literatura, z której bezpośrednio korzysta lam w przygotowaniu wyk ladu. Pe lny zestaw odnośników do teorii sprzeżonych klasterów liczy lby pare tysiecy pozycji! Dr. Micha lowi Przybytkowi należa sie duże podziekowania za uważna lekture pierwszej wersji każdego rozdzia lu i za wiele uwag, które przyczyni ly sie mam nadzieje do wiekszej przejrzystości manuskryptu.

2 WYK LAD 1 1 Przestrzeń Focka Możliwe jest wyprowadzenie teorii sprzeżonych klasterów w pierwszej kwantyzacji, ale o wiele wygodniej jest zrobić to w drugiej. Za lóżmy, że mamy zbiór M spinorbitali ortonormalnych φ p (x), F-1 p = 1,2,...,M. Ze spinorbitali możemy skonstruować wyznaczniki Slatera F-2, np. dla N elektronów (N M), Φ p1,p 2,...,p N (x 1,x 2,...,x N ) = 1 N! φ p1 (x 1 ) φ p2 (x 1 )... φ pn (x 1 ) φ p1 (x 2 ) φ p2 (x 2 )... φ pn (x 2 )... φ p1 (x N ) φ p2 (x N )... φ pn (x N ) (W1-1) Dla N elektronów możemy utworzyć ( M N) liniowo niezależnych wyznaczników. Każdemuwyznacznikowipodporzadkowujemy wektor liczb obsadzeń k 1 k 2...k M (occupation number vector), gdzie k p przyjmuje wartość 0 lub 1 w zależności od tego, czy spinorbital jest wolny, czy zajety. Przyk lad 1 4 spinorbitale, 2 elektrony. Jednym z możliwych do utworzenia wyznaczników jest: Φ 13 (x 1,x 2 ) = 1 2 φ 1 (x 1 ) φ 3 (x 1 ) φ 1 (x 2 ) φ 3 (x 2 ) Odpowiada mu wektor liczb obsadzeń k = Przestrzeń wektorowa, rozpiet a na wektorach liczb obsadzeń, nazywamy przestrzenia Focka i oznaczamy F(M). Wymiar F(M) wynosi 2 M (mamy 2 możliwości obsadzenia jednego spinorbitalu oraz M spinorbitali, czyli } {{ }). F(M) dzielimy na podprzestrzenie, otrzymane przez podzia l N M razy elektronówmiedzym spinorbitali,oznaczanef(m,n),gdzien = 0,1,2,...,M: F(M) = F(M,0) F(M,1)... F(M,N)... F(M,M)(W1-2) Podprzestrzeń F(M,0) zawiera tylko jeden wektor } {{ } vac, nazywany stanem prawdziwej (inaczej: fizycznej) próżni (true vacuum M razy state). F-1 Dla wygody wprowadzamy uogólniona wspó lrzedn a x, obejmujac a wspó lrzedne przestrzenne r = (x,y,z) i wspó lrzedn a spinowa m s = ± 1. F-2 2 czyli zantysymetryzowane iloczyny spinorbitali 2

3 F(M, N) zawiera wszystkie wektory liczb obsadzeń, dla których M k p = N p=1 (W1-3) Każdy wektor z F(M) można przedstawić w postaci liniowej kombinacji wektorów bazy, czyli wektorów liczb obsadzeń: a = k a k k, gdzie a k jest liczba zespolona. Przyk lad 2 Czasteczka H 2, orbitale σ g i σ u, czyli 4 spinorbitale: σ g α, σ g β, σ u α, σ u β. Jeden z najprostszych przypadków metody CI polega na znalezieniu optymalnych wspó lczynników przy konfiguracjach elektronowych σg 2 i σu, 2 czyli Ψ = c c Można zdefiniować iloczyn skalarny 2 wektorów w przestrzeni Focka. Zacznijmy od dwóch wektorów bazy, m k = M δ mi k i δ mk = 1 jeśli wektory m i k s a takie same 0 jeśli wektory m i k sa różne i=1 Dla dowolnych wektorów mamy (W1-4) a b = km a k b m k m = k a k b k (W1-5) Zauważmy, że dzieki wprowadzeniu przestrzeni Focka swobodnie operujemy uk ladami o zmiennej ilości elektronów. 2 Operatory kreacji i anihilacji W drugiej kwantyzacji pos lugujemy sie tzw. operatorami kreacji i anihilacji w celu konstrukcji wszystkich innych operatorów i stanów. Dla przestrzeni Focka F(M) mamy M operatorów kreacji X p i M operatorów anihilacji X p F-3. Operator kreacji X p w dzia laniu na vac daje wektor liczb obsadzeń p...0 F-4. Jeślichcemyopisaćdzia lanieoperatorakreacjinadowolny wektor k, to musimy zwrócić też uwage na znak utworzonego wektora. F-3 Inna spotykana konwencja zapisu operatorów kreacji to X p. F-4 same zera oprócz jedynki na miejscu p-tym 3

4 Wracajac do interpretacji wyznacznikowej możemy powiedzieć, że operacja X p k polega na dostawieniu z lewa kolumny φ p (x 1 ) φ p (x 2 ). φ p (x N+1 ) do już istniejacego wyznacznika dla N elektronów i uzupe lnienia ostatniego wiersza o φ pi (x N+1 ): φ p (x 1 ) φ p1 (x 1 ) φ p2 (x 1 )... φ pn (x 1 ) φ p (x 2 ) φ p1 (x 2 ) φ p2 (x 2 )... φ pn (x 2 ).... φ p (x N ) φ p1 (x N ) φ p2 (x N )... φ pn (x N ) φ p (x N+1 ) φ p1 (x N+1 ) φ p2 (x N+1 )... φ pn (x N+1 ) (W1-6) Widzimy,żeabyotrzymaćwyznacznikzw laściw akolejności a kolumn, należy odpowiednia ilość razy przestawić kolumne ze spinorbitalem φ p : tyle razy, ile jest kolumn o numerze p i mniejszym od p. Przyk lad 3 M=3 X = 111 X = 111 X = 111 Ogólnie można zapisać, p 1 = ( 1) k j j=1 } {{ } Γ k p X p k 1 k 2...k p...k M = δ kp0 k 1 k p...k M }{{} Czy stan p jest wolny? = Γ k pδ kp0 k 1 k p...k M (W1-7) Jeśli spinorbital φ p jest już obsadzony, to otrzymamy X p k 1 k p...k M = 0 = X px pγ k p k 1 k p...k M (W1-8) czyli w dzia laniu na dowolny wektor k mamy X px p k = 0 (W1-9) 4

5 Podzia lajmy teraz na wektor k raz operatorem X px q, a raz X qx p, q > p: X px q k 1 k 2...k p...k q...k M = = X pδ kq0γ k q k 1 k 2...k p...1 q...k M = } {{ } k = δ kp0γ k p δ kq0γ k q k 1 k p...1 q...k M = (ponieważ p < q, mamy Γ k p = Γ k p) = δ kp0γ k pδ kq0γ k q k 1 k p...1 q...k M X qx p k 1 k 2...k p...k q...k M = = X qδ kp0γ k p k 1 k p...k q...k M = } {{ } k = δ kq0γ k q δ kp0γ k p k 1 k p...1 q...k M = = δ kp0γ k pδ kq0γ k q k 1 k p...1 q...k M (bo Γ k q = ( 1) 1p Γ k p) Dodajac stronami oba równania otrzymujemy, dla p q: (X px q +X qx p) k = 0 (W1-10) co razem z wynikiem dla p = q (równanie (W1-9)) daje X px q +X qx p = 0 = [X p,x q] + (W1-11) Jest to znana relacja antykomutacji dla operatorów kreacji. Inny zapis antykomutatora to {X p,x q}. Szukamy operatora sprzeżonego hermitowsko do X p F-5. Operatory sprzeżone hermitowsko α i α spe lniaja zależność: ( αb a ) = α a b (W1-12) X p k = 1 X p k = m m X p k = m } {{ } rozwiniecie jedynki = m m X pm k = = m = m m Γ m p δ mp0 m 1 m p...m M k = m Γ m p δ mp0δ m1 k 1 δ m2 k 2...δ 1kp...δ mm k M = = Γ k pδ kp1 k 1 k p...k M F-5 Tzn. musimy podać, jak taki operator dzia la na dowolny wektor bazy k. 5

6 Dla operatorów anihilacji mamy nastepuj ace zależności: X p k 1 k p...k M = 0 w szczególności X p vac = 0, oraz (W1-13) [X p,x q ] + = 0 (W1-14) Podzia lajmy na wektor k operatorem X px p, zwanym operatorem liczby obsadzeń (occupation-number operator), oraz operatorem X p X p: X px p k = Γ k pδ kp1x p k 1 k p...k M = (Γ k p) 2 δ kp1 k = δ kp1 k X p X p k = Γ k pδ kp0x p k 1 k p...k M = (Γ k p) 2 δ kp0 k = δ kp0 k Po zsumowaniu tych równań stronami otrzymujemy: (X px p +X p X p) k = (δ kp1 +δ kp0) k = k Dla p q postepuj ac analogicznie, jak w przypadku wyprowadzenia antykomutatora dla operatorów kreacji dostajemy: (X px q +X q X p) k = 0 (dla p q). Stad dla dowolnych p, q otrzymujemy: [X p,x q ] + = δ pq (W1-15) Wszystkie operatory i funkcje falowe sa wyrażane w drugiej kwantyzacji za pomoca operatorów kreacji i anihilacji. Ważna role odgrywaja operatory, zachowujace liczbe elektronów (oczywiście musza one posiadać taka sama liczbe operatorów kreacji, jak i anihilacji). Przyk lad 4 Przyk ladowe operatory, zachowujace liczbe elektronów: a) operator liczby elektronów (w dzia laniu na wektor k daje liczbe elektronów, p. równanie (W1-3)): ˆN = M X px p p=1 b) operator podstawienia spinorbitali (spinorbital exchange) X p q = X px q c) 2-cia lowy operator podstawiania spinorbitali (,,cia lo to elektron) Xrs pq = X px qx s X r Z prawej strony sa najpierw oba operatory anihilacji, tak aby operator Xrs pq w dzia laniu na wektory k o liczbie obsadzeń mniejszej od 2 dawa l zero (gdybyśmy np. użyli definicji X p rx q s, to dla q = r taki operator może dać niezerowy wynik w dzia laniu na wektor s...0 M!). Uwaga na zamieniona kolejność r,s! 6

7 Operator jednoelektronowy, który zapisujemy w pierwszej kwantyzacji jako: w drugiej kwantyzacji ma postać ˆf = M p,q=1 fp q = ˆf(x 1,x 2,...,x N ) = f q px px q, φ p(x)ˆf(x)φ q (x)dτ N ˆf(x i ) i=1 gdzie Operator dwuelektronowy: ĝ(x 1,x 2,...,x N ) = 1 2 w drugiej kwantyzacji ma postać ĝ = 1 2 gpq rs = M p,q,r,s=1 g rs pqx px qx s X r, N i,j=1,i j ĝ(x i,x j ) φ p(x 1 )φ q(x 2 )ĝ(x 1,x 2 )φ r (x 1 )φ s (x 2 )dx 1 dx 2 gdzie 3 Iloczyn normalny Iloczyn normalny (normal product) operatora S = S 1 S 2...S n (gdzie S i może być zarówno operatorem kreacji, jak i anihilacji), oznaczany N[S], to taka postać operatora, która ma wszystkie operatory kreacji przestawione jak najbardziej w lewo (przestawienia odbywaja sie zgodnie z regu lami antykomutacji, czyli zamiana miejscami sasiednich operatorów powoduje pomnożenie przez -1). Przyk lad 5 Znajdowanie iloczynu normalnego a) N[X 1 X 2] = X 1 X 2 b) N[X 1 X 2 ] = X 2 X 1 c) N[X 1 X 2 X 3X 3 ] = X 2 X 3 X 1X 3 Ponieważ X p vac = 0, to N[S] vac = 0, o ile S zawiera przynajmniej jeden operator anihilacji. Podobnie vac N[S] = 0, o ile S zawiera przynajmniej jeden operator kreacji. W rezultacie vac N[S] vac = 0, 7 (W1-16)

8 o ile S zawiera jakikolwiek operator kreacji badź anihilacji. 4 Kontrakcje Kontrakcja (zwana też zweżeniem) dwóch operatorów kreacji badź anihilacji S p i S q nazywamy operator: S p S q = S p S q N[S p S q ] (W1-17) Przyk lad 6 Kontrakcje dla wszystkich kombinacji operatorów kreacji i anhilacji: a) X px q = X px q N[X px q ] = 0 b) X p X q = X p X q N[X p X q] = X p X q +X qx p = δ pq c) X px q = X px q N[X px q] = 0 d) X p X q = X p X q N[X p X q ] = 0 5 Twierdzenie Wicka Twierdzenie Wicka mówi, że każdy operator może być przedstawiony w postaci: S = S 1 S 2...S n = N[S 1 S 2...S n ]+ N[S 1 S 2...S n ] (W1-18) gdzie suma przebiega po wszystkich możliwych kontrakcjach. Dzieki twierdzeniu Wicka i równaniu (W1-16), w celu obliczenia vac S vac musimy jedynie znaleźć ca lkowicie skontraktowana cześć tej sumy. 8

9 Przyk lad 7 Wyraźmy X p rx q s przez 1- i 2-cia lowy operator podstawienia spinorbitali używajac regu l antykomutacji (a) i twierdzenia Wicka (b) a) b) X p rx q s = X p X r X q X s = Xp( X qx r +δ rq )X s = } {{ } X qx r+δ rq = X px qx r X s +δ rq X px s = X px qx s X r +δ rq X px s X p rx q s = X px r X qx s = N[X px r X qx s ]+N[X px r X qx s ]+N[X px r X qx s ]+ +N[X px r X qx s ]+N[X px r X qx s ]+N[X px r X qx s ]+ +N[X px r X qx s ]+N[X px r X qx s ]+ +N[X px r X qx s ]+N[X px r X qx s ] = = X px qx r X s δ rq N[X px s ] δ rq 0 = = X px qx s X r +δ rq X px s = X pq rs +δ rq X p s Zauważmy, że wiekszość kontrakcji mogliśmy od razu odrzucić, pos lugujac sie regu lami z poprzedniego przyk ladu. 6 Próżnia Fermiego Wygodnie jest wprowadzić stan próżni Fermiego F-6. W tym celu wybieramy jeden wektor liczb obsadzeń dla N elektronów (odpowiadajacy najcześciej wyznacznikowihartree-fockadlastanupodstawowegointeresuj acejnascz asteczki). Spinorbitale zajete w tym stanie nazywamy dziurowymi (hole) i oznaczamy literami i,j,k,l, a spinorbitale niezajete czastkowymi (particle) i oznaczamy literami a, b, c, d. Dowolne spinorbitale oznaczamy literami p,q,r,s. Mamy wiec: 0 = X i 1 X i 2...X i N vac (W1-19) F-6... bo zazwyczaj startujemy z wyznacznika Hartree-Focka dla N elektronów, a wypisywanie N-krotnych kontrakcji jest co najmniej uciażliwe. 9

10 Podzia lajmy operatorami X i, X i, X a i X a na 0 : X i 0 = 0 X i 0 = Γ 0 i 1 i1 1 i2...0 i...1 in 0 a1...0 a...0 M X a 0 = Γ 0 a 1 i1 1 i2...1 i...1 in 0 a1...1 a...0 M X a 0 = 0. Widać, że operatory anihilacji dla stanów dziurowych dzia laj a na stan 0 jak operatory kreacji, a operatory kreacji dla stanów dziurowych dzia laj a nań jak operatory anihilacji. Wygodnie jest wprowadzić tymczasowo nowy zestaw operatorów, zdefiniowanych jako: Y i = X i Y i = X i Y a = X a Y a = X a i dodatkowo funkcje h i p, sprawdzajace, czy mamy do czynienia ze stanem czastkowym czy dziurowym: h(i) = 1 h(a) = 0 p(i) = 0 p(a) = 1 Wprowadzonyformalizmnazywamyformalizmemcz astkowo-dziurowym(particle-hole formalism (p-h)). Dla operatorów Y obowiazuj a te same regu ly antykomutacji, co dla operatorów X, możemy też wprowadzić iloczyn normalny (p-h) dla operatora S (oznaczany {S} lub czasami n[s]) i kontrakcje: S p S q = S p S q {S p S q } (W1-20) Podobnie jak i dla operatorów X, tak i dla operatorów Y tylko kontrakcja Y p Y q = δ pq, inne kontrakcje sa równe 0. To znaczy, że X a X b = δ ab X i X j = δ ij. (W1-21) Dla operatorów Y i nowych (,,górnych ) kontrakcji również dzia la twierdzenie Wicka. 10

11 7 Hamiltonian w formalizmie p-h Wygodnie jest wprowadzić hamiltonian w postaci iloczynu normalnej w formalizmie p-h. Dla uproszczenia od teraz, kiedy używamy operatorów typu X, pomijamy litere X i piszemy same wskaźniki. (pr qs) = p (1)q (2)r 1 12 r(1)s(2)dτ1dτ2. Wykorzystamy też od razu znajomość tego, które kontrakcje moga dawać wynik różny od zera (p. równanie (W1-21)). H = h q pp q + 1 (pr qs)p q sr = 2 pq pqrs = ( ) h q p {p q}+{p q} + 1 ( (pr qs) {p q sr}+{p q sr}+{p q sr}+ 2 pq pqrs ) +{p q sr}+{p q sr}+{p q sr}+{p q sr} = = ( ) h q p {p q}+δ pq h(p) + 1 ( (pr qs) {p q sr} δ ps h(p){q r}+ 2 pq pqrs ) +δ pr h(p){q s}+δ qs h(q){p r} δ qr h(q){p s} δ ps h(p)δ qr h(q)+δ pr h(p)δ qs h(q) = = h q p{p q}+ h i i + 1 (pr qs){p q sr} 1 (ir qi){q r}+ 2 2 pq i pqrs iqr + 1 (ii qs){q s}+ 1 (pr ii){p r} 1 (pi is){p s}+ 1 [ (ij ji) +(ii jj)] = iqs ipr ips ij = h i i + 1 ( ) (ii jj) (ij ji) + ( h q p + ) [(pq ii) (pi iq)] {p q}+ 2 i ij pq i } {{ } } {{ } E 0 fp q + 1 (pr qs){p q sr} = 2 pqrs } {{ } V N = E 0 +F N +V N = E 0 +H N W E 0 rozpoznajemy energie Hartree-Focka, a pozosta la cześć to hamiltonian w postaci iloczynu normalnego, H N = fp{p q q}+ 1 (pr qs){p q sr} (W1-22) 2 pq pqrs Zauważmy, że 0 H N 0 = 0. Literatura: 1. J. Paldus, X. Li, A critical assessment of coupled cluster method in quantum chemistry, Adv. Chem. Phys., 110, 1 (1999); 11

12 2. T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, wyd. John Wiley, 2000; rozdzia l 1 pt. Second Quantization. 12

13 WYK LAD 2 1 Wprowadzenie dok ladnej teorii sprz eżonych klasterów W teorii sprzeżonych klasterów (coupled clusters) przedstawiamy funkcje falowa w postaci Ansatzu F-1 CC Ψ = e T Φ 0 (W2-1) gdzie Φ 0 to funkcja odniesienia (referencyjna), która jest zazwyczaj wyznacznik Hartree-Focka (czyli 0 próżnia Fermiego), a T jest operatorem, produkujacym wzbudzenia z Φ 0 : T = N n=1 T n gdzie N to liczba elektronów. T n = 1 n! 2 i 1 i 2...in a 1 a 2...an t i 1i 2...i n a 1 a 2...a n } {{ } X a 1 X a 2...X a n X in...x i2 X i1 } {{ } amplituda n-cia lowy operator podstawienia spinorbitali (W2-2) Niezależne operatory podstawienia spinorbitali mamy dla i 1 > i 2 >... > i n i a 1 > a 2 >... > a n, wiec w powyższym wzorze kompensujemy,,overcounting dajac 1. Ponieważ n! 2 zbiory wskaźników (index, indices) dla spinorbitali zajetych (occupied) i wirtualnych (virtual) sa roz l aczne, mamy np. X ab ij = X ax b XjXi = X ax b XiXj = X ax ix b Xj = Xa i X b j = = X b X ax jx i = X b XjX ax i = X b jx a i co dowodzi, że operatory T komutuja: [T n,t m] = 0 (W2-3) Możnaudowodnić(Hubbard),żeoperatorT n jest,,po l aczony (connected), tzn. że nie można go wyrazić w postaci iloczynu niższych wzbudzeń. Latwo sprawdzić, że jeśli sumowanie w równaniu (W2-2) rozciaga sie do N elektronów, to Ansatz CC jest równoważny FCI (czyli FCC=FCI). W metodzie FCI (full CI) przedstawiamy funkcje falowa w postaci: Ψ FCI = N C n Φ 0. n=0 F-1 W niemieckim to s lowo ma wiele znaczeń, najlepiej pasujacym do sytuacji polskim odpowiednikiem jest s lowo,,za lożenie badź,,punkt wyjściowy. 13

14 Aby pokazać, że FCC=FCI, podajemy poniżej metode przejścia od jednego zbioru operatorów do drugiego (nie zak ladamy normalizacji funkcji FCI do jedności, zamiast tego używamy normalizacji pośredniej: Φ 0 Ψ FCC = 1). Ψ FCC = e T Φ 0 = (1+T 1 +T 2 +T T N + 1 2! T2 1 +T 1 T T 1 T N 1 +T N )Φ 0 Rozwiniecie to sie urywa, bo możemy zanihilować co najwyżej N dziur. C 0 = 1 C 1 = T 1 C 2 = T T2 1 C 3 = T 3 +T 1 T T3 1 C 4 = T 4 +T 1 T T T2 1T T Cześć,,connected po l aczona operatora C 2 Cześć,,disconnected roz l aczona operatora C 2 W wyprowadzeniu użyliśmy równania (W2-3), dzieki czemu można by lo np. zapisać 1 (T1T2 +T2T1) = T1T2. 2 Podstawiamy Ansatz CC do równania Schrödingera bez czasu: (H N +E 0 )Ψ = (E kor +E 0 )Ψ H N Ψ = E kor Ψ H N e T Φ 0 = E kor e T Φ 0 mnożymy z lewej strony przez e T e T H N e T Φ 0 = E kor Φ 0 Wykorzystujac znany wzór e A Be A = B +[B,A]+ 1 2! [[B,A],A]+ 1 3! [[[B,A],A],A]+... możemy zapisać ostatnie równanie w postaci rozwinietej (H N +[H N,T]+ 1 2! [[H N,T],T]+ 1 3! [[[H N,T],T],T] ! [[[[H N,T],T],T],T])Φ 0 = E kor Φ 0 (W2-4) Rozwiniecie to urywa sie, bo T jest operatorem wzbudzeń, a H N jest operatorem 2-cia lowym. Aby to sobie lepiej wyobrazić, sprawdźmy recznie najprostszy komutator, czyli [F N,T 1 ]. Stosujemy konwencje sumacyjna Einsteina, 14

15 czyli zak ladamy sumowanie po powtarzajacych sie wskaźnikach. Pamietamy też o tym, że i j = δ ij, ab = δ ab, natomiast inne kontrakcje, tzn. ip, a q, znikaja. Stosujemy tu uogólnione twierdzenie Wicka, które mówi, że dla operatorów, które cześciowo już sa w postaci iloczynu normalnego, nie rozpatrujemy kontrakcji wewnatrz tych iloczynów. W naszym przypadku pomijamy p q i a i. F N T 1 = f q p{p q}t i a{a i} = = f q pt i a[{p qa i}+{p qa i}+{p qa i}+{p qa i}] = = f q pt i a[{p qa i}+δ qa {p i}+δ pi {qa }+δ pi δ qa ] = = f q pt i a{p qa i}+f a pt i a{p i}+f q i ti a{qa }+f a i t i a, T 1 F N = fpt q i a{a ip q} = (bo ip i a q sa =0) = f q pt i a{p qa i} Żeby przejść z {a ip q} do {p qa i}, dokonaliśmy parzystej liczby przestawień operatorów, wiec znak sie nie zmieni l. Jak widać, komutator [F N,T 1 ] zawiera tylko takie cz lony, które maja co najmniej jeden wspólny wskaźnik, bo niezwiazana cześć F N T 1 skasuje sie z T 1 F N : [F N,T 1 ] = f a pt i a{p i}+f q i ti a{qa }+f a i t i a PonieważF N madwawskaźniki,rozwinieciekomutatorowe(równanie(w2-4)) urywa sie po dwóch cz lonach, a dla V N (cztery wskaźniki) po czterech cz lonach. Jeśli wyznacznik referencyjny Φ 0 jest optymalny, to f a i = 0 (twierdzeniebrillouina)ica lkowicieskontraktowanacześćpowyższegowzoru znika. Warto jest wyprowadzić do końca ww. wzór na komutator w przypadku orbitali kanonicznych Hartree-Focka, dla których macierz Focka jest diagonalna. Wtedy f i j = δ ijǫ i, f a b = δ ab ǫ a, f a i = 0, i w rezultacie otrzymujemy [F N,T 1] = ǫ at i a{a i}+ǫ it i a{ia }+0 = = ǫ at i a{a i} ǫ it i a{a i} = (ǫ a ǫ i)t i a{a i} 2 Podejście diagramatyczne Doszliśmy do momentu, w którym wygodnie jest wprowadzić podejście diagramatyczne. Oznaczmy pustymi kropkami operatory T n (nazywamy je wez lami (vertex)), wype lnionymi kropkami operator V N, natomiast krzyżykiem operator F N. Operatory kreacji i anihilacji X p i X p sa oznaczane przezliniezestrza lkami, przyczymlinie, odpowiadajace operatorom kreacji, wychodza z wez lów, a linie, odpowiadajace operatorom anihilacji, wchodza do wez lów (czyli obiekty czastki lub dziury sie tworza i znikaja). Operatory dziurowe sa skierowane w prawo, a operatory czastkowe w lewo. 15

16 Kontrakcja może zajść tylko wtedy, gdy l aczona linia nie zmienia kierunku. Jeśli przestawiamy diagramatycznie iloczyn operatorów AB, to operator A umieszczamy na diagramie z lewej strony. Jeśli operatory A i B komutuja (amplitudy T), to kolejność nie ma znaczenia. Zazwyczaj ustawiamy wiec amplitudy pionowo jedna nad druga. F-2 Przyk lad 1 a) T 1 = t i aa i b) T 2 = t ij ab a b ji c) V N = (pr qs){p q sr} i a i b a j Przyokazjiwygodniejestwprowadzićpojeciepoziomuwzbudzenia(excitation level). Operatory T n maja poziom wzbudzenia równy +n, natomiast poziom wzbudzenia operatorów F N i V N może być równy odpowiednio 1,0,+1 oraz 2, 1,0,+1,+2. W podejściu diagramatycznym latwo jest zobaczyć, dlaczego równanie (W2-4) urywa sie po 1 2 [[F N,T],T] i po 1 24 [[[[V N,T],T],T],T]: Można zapisać, że e T H N e T = (H N e T ) C = [H N (1+T 1 +T T2 1 +T 1 T )] C, F-2 Inna czesto spotykana konwencja rysowania diagramów to góra dó l (linia czastkowa jest skierowana do góry). 16

17 gdzie litera,,c oznacza, że bierzemy jedynie cześć po l aczon a (connected), czyli diagramy sk ladaj ace sie z,,jednego kawa lka. 3 Równania CC Równanianaenergiekorelacjiinaamplitudyotrzymujemyrzutuj ac równanie (W2-4) na odpowiednio stan próżni Fermiego i na wyznaczniki 1-,2-,...- krotnie wzbudzone. Wyznacznik jednowzbudzony otrzymujemy przez podzia lanie 1-cia lowym operatorem podstawienia spinorbitali na wyznacznik odniesienia: Φ a i = X a i 0 0 (H N e T ) C 0 = E kor 0 0 = E kor (W2-5) Φ a i (H N e T ) C 0 = E kor Φ a i 0 = 0 (W2-6) Φ ab ij (H N e T ) C 0 = E kor Φ ab ij 0 = 0 (W2-7) itd. F-3 Aby ustalić, które cz lony rozwiniecia uczestnicza w tych wzorach, wygodnie jest użyć koncepcji poziomu wzbudzenia. Dla energii korelacji sumaryczny poziom wzbudzenia operatorów musi być równy 0, wiec tylko takie cz lony moga dawać niezerowy wk lad: E kor = 0 H N (F N T 1 ) C (V N T 2 ) C (V NT 2 1) C 0 Jeszcze latwiej jest to zauważyć w podejściu diagramatycznym: operator V N może mieć maksymalnie 4 linie skierowane w prawo (2 linie czastkowe i 2 dziurowe), wiec jeśli mamy uzyskać ca lkowicie skontraktowany cz lon, to musimy dać po prawej stronie operatory T majace w sumie 4 linie, czyli 1 operator T 2 lub 2 operatory T 1. Mamy H = H N + 0 H 0, stad 0 H 0 = 0 H N H 0, a stad już wynika, że 0 = 0 H N 0. E kor = 0 (F N T 1 ) C (V N T 2 ) C (V NT1 2) C 0 W dalszych rysunkach w tym rozdziale pomijamy strza lki, ponieważ interesuje nas tylko ogólna struktura równań, np. ilukrotnie wzbudzone operatory T wystepuj a w danym równaniu. Jeśli zachodzi taka potrzeba, takie szkielety diagramów można uzupe lnić o strza lki, rysujac je na wszystkie możliwe sposoby, jak to zrobiliśmy w Przyk ladzie 1 dla operatora V N. F-3 Ψ A Ψ taki zapis czesto sie stosuje, chociaż lepiej by loby stosować zapis z jedna kreska: Ψ AΨ. Jeśli mamy dwie kreski, to dopiero ta lewa oddziela bra od ketu. 17

18 Zauważmy, że we wzorze na energie korelacji mamy jedynie operatory T 1 i T 2. Przeprowadźmy teraz podobna analize równań zrzutowanych na wyznaczniki 1- i 2-krotnie wzbudzone. W równaniach zrzutowanych na wyznaczniki 1-krotnie wzbudzone sumaryczny poziom wzbudzenia wynosi +1. Taki wynik możemy uzyskać na kilka sposobów: 0 = Φ a i [ F N + F N T 1 + F N (T T2 1 ) + (wzbudzenia: ) +V N T 1 + V N (T T2 1 ) + V N(T 3 +T 2 T T3 1 )] C 0 ( ) Zwróćmy uwage, że w równaniach zrzutowanych na wzbudzenia pojedyncze mamy co najwyżej amplitudy potrójnie wzbudzone. Przypadek +1+1, czyli F NT 1 nie daje wk ladu,,connected : Rzutowanie na wzbudzenia podwójne (uwaga na brak 1 6 T3 1 ): 0 = Φ ab ij [ F NT 2 + F N (T 3 +T 1 T 2 ) + +V N + V N T 1 + V N (T T2 1 ) + V N(T 3 +T 2 T T3 1 )+ 18

19 +V N (T 4 + T 3 T T T 2T T4 1 )] C 0 Tutaj mamy amplitudy co najwyżej poczwórnie wzbudzone. Ogólnie amplitudy n-krotnie wzbudzone pojawiaja sie po raz pierwszy w równaniach zrzutowanych na wzbudzenia (n 2)-krotne. Równania zrzutowane na wzbudzenia potrójne: 0 = Φ abc ijk [F NT 4 +F N T 3 +V N T 2 +V N (T 3 +T 2 T 1 )+V N (T 4 +T 3 T T 2T 2 1)+ +V N (T 5 +T 4 T 1 +T 3 T T2 2T T 3T T 2T 3 1)] C 0 Przypadek +2+1, czyli V NT 1 nie daje wk ladu,,connected. Zauważmy brak 1 2 T2 1 dla przypadku +1+2, 1 6 T3 1 dla przypadku 0+3 oraz 1 24 T4 1 dla przypadku 1+4, co wynika z braku możliwości po l aczenia V N z dana ilościa amplitud T. Żeby obliczyć energie korelacji, potrzebujemy amplitud pojedynczo i podwójnie wzbudzonych, ale żeby je otrzymać, musimy rozwiazać uk lad sprzeżonych równań nieliniowych na amplitudy t, zawierajacych również amplitudy potrójnie, poczwórnie itd. wzbudzone. Na marginesie: Jeślibyśmy mieli dok ladne amplitudy T 3 i T 4, to moglibyśmy je podstawić do równań (W2-6) i (W2-7) i otrzymać dok ladne T 1 i T 2 (czyli dokonalibyśmy,,odprzegniecia wyższych wzbudzeń). Te T 1 i T 2 można by nastepnie podstawić do wzoru na energie korelacji. W wyniku takiej procedury uzyskalibyśmy dok ladn a energie korelacji. Oczywiście zazwyczaj nie znamy dok ladnych T 3 i T 4, ale możemy uzyskać ich przybliżenia ze,,źród la zewnetrznego, np. z MRCI. Taka metoda poprawiania energii korelacji nosi nazwe metody poprawionej zewnetrznie (externally corrected method) (rozwijanej przez Paldusa i wsp., m.in. Piecucha). Zajmijmy sie najpierw wzorem na energie. Ponieważ obliczamy wartość 19

20 średnia z 0, szukamy jedynie pe lnych kontrakcji: E kor = 0 fpt q i a{p q}{a i}+ 1 2 (pr qs)1 4 tij ab {p q sr}{a b ji}+ pqia + pqrsijab pqrsijab 1 2 (pr qs)1 2 ti at j b {p q sr}{a i}{b j} 0 = = 0 pqiaf q pt i a{p qa i}+ + pqrsijab 1 2 (pr qs)1 4 (tij ab +2ti at j b )[{p q sra b ji}+{p q sra b ji}+ +{p q sra b ji}+{p q sra b ji} 0 = = fi a t i a + 1 [(ia jb) (ja ib)][ tij ab +ti at j b ] = ia ijab = fi a t i a + 1 [(ia jb) (ja ib)] tij ab + ia ijab + 1 [(ia jb) (ja ib)]t i 4 at j b + 1 [(ia jb) (ja ib)]t i 4 at j b = ijab ijab (zamieniamy wskaźniki i i j w ostatniej sumie) = fi a t i a + 1 [(ia jb) (ja ib)][t ij 4 ab +ti at j b tj at i b ] ia ijab Zauważmy,żecz lonwnawiasiematesam asymetriepermutacyjn azewzgledu na przestawienie wskaźników, co samo t ij ab. Jeśli jako wyznacznika odniesienia (referencyjnego) używamy zoptymalizowanego wyznacznika Hartree-Focka, to mamy fi a = 0 (twierdzenie Brillouina). Dobrze jest jednak trzymać ten cz lon w równaniach na energie korelacji oraz na amplitudy (dla amplitud dodatkowo niediagonalne f i j i f a b). Jako przyk lad użyteczności takiego podejścia może pos lużyć obliczenie momentu dipolowego metoda różnic skończonych bez relaksacji orbitalnej. Wtedy do diagonalnej (w bazie orbitali kanonicznych Hartree- Focka) macierzy f p q bedziemy mieli dodane pole U i wypadkowym operatorem Focka w polu bedzie F +U, który ma niezerowe elementy pozadiagonalne pochodzace od U. 4 Przybliżone metody CC Przybliżone metody w teorii sprzeżonych klasterów otrzymujemy a) zaniedbujac wyższe wzbudzenia w T; b) dodatkowo zaniedbujac niektóre cz lony w równaniach na amplitudy; c) wprowadzajac a posteriori, czyli po obliczeniu amplitud, poprawki do energii korelacji. 20

21 Wtabelceponiżejpodanesa przyk ladowe przybliżone metody CC, pierwsza kolumna zawiera uwzgledniany poziom T. T = a a+b a+c T 1 CCS a T 2 CCD T 1 +T 2 CCSD CC2,QCISD CCSD(T) T 1 +T 2 +T 3 CCSDT CC3,CCSDT-1 CCSDT(Q) T 1 +T 2 +T 3 +T 4 CCSDTQ a Dla energii metoda CCS jest równoważna z HF, bo jeśli fi a = 0, to Ekor CCS = ia fa i t i a = 0. Zajmijmy sie teraz najprostszym i historycznie pierwszym podejściem CCD. Równania na amplitudy t ij ab otrzymujemy z równań: Φ ab ij [F N T 2 +V N +V N T V NT 2 2] C 0 = 0 dla wszystkich i,j,a,b takich, że i > j i a > b. Po wstawieniu rozwinieć na F N, V N i T 2 i przeprowadzeniu odpowiednich kontrakcji otrzymamy uk lad równań na amplitudy t ij ab. Zauważmy, że bedzie to uk lad równań kwadratowych. Schematycznie można taki uk lad przedstawić w postaci: 0 = a I + J b IJ t J + JK c IJK t J t K, I = 1,2,...,(liczba amplitud t I ) I oznacza zbiór wskaźników (ijab). Ten uk lad równań ze wzgledu na jego duże rozmiary rozwiazujemy iteracyjnie. Uk lady równań kwadratowych maja wiele rozwiazań, nie zawsze rzeczywistych, co potencjalnie może stanowić problem w obliczeniach. Z drugiej strony wiemy o zwiazku miedzy amplitudami CC i amplitudami (liniowych) metod CI, wiec można sie spodziewać, że wybierajac odpowiedni punkt startowy i odpowiednia metode iteracyjna otrzymamy w laściwe rozwiazanie (tzn. odpowiadajace fizycznemu stanowi podstawowemu badanego uk ladu). Idea metody iteracyjnej jest nastepuj aca: dzielimy cz lon liniowy b IJ t J = d I t I + b IJt J, J J a nastepnie przenosimy d I t I na lewa strone: d I t I = a I + J b IJt J + JK c IJK t J t K. W ten sposób przygotowaliśmy równanie do procedury iteracyjnej, która wyglada nastepuj aco: d I t (n) I = a I + J b IJt (n 1) J + JK c IJK t (n 1) J t (n 1) K. 21

22 Dlaorbitalikanonicznychmamy(F N T 2 ) C = (ǫ i +ǫ j ǫ a ǫ b )t ij ab {a b ji}, wiec zazwyczaj jako d I stosujemy różnice energii orbitalnych. Jako t (0) podstawia sie najcześciej 0. Problem wielu rozwiazań równań CCD zosta l zbadany m.in. przez Kowalskiego i wsp. przy użyciu metody homotopii. Użycie metody iteracyjnej do rozwiazywania równań CC pozwala nam dodatkowouzmys lowićsobiezwi azekmiedzymetod accametod arachunku zaburzeń Møllera-Plesseta, czyli wielocia lowego rachunku zaburzeń (manybody perturbation theory MBPT) F-4. Np. w pierwszej iteracji, jeśli stosujemy orbitale kanoniczne i startujemy z zerowych amplitud, otrzymamy energie MP2. 5 Konsystencja rozmiarowa Jeśli mamy uk lad, sk ladaj acy sie z dwóch nieoddzia luj acych czasteczek A i B,toodmetodyprzybliżonejoczekujemy, żejejenergieifunkcjefalowebed a spe lnia ly warunek tzw. konsystencji rozmiarowej (size-consistency), tzn. że energia ca lego uk ladu A+B bedzie sie równa la sumie energii czasteczek A i B, obliczonych ta sama metoda. Hamiltonian takiego uk ladu H = H A +H B (oddzia lywanie V AB = 0). Ponieważ zbiór zmiennych dla A i B jest roz l aczny, to jeśli znamy rozwiazania dla A i B: H AΨ A = E AΨ A H BΨ B = E BΨ B to możemy zapisać rozwiazania dla problemu w lasnego AB jako F-4 Dla nas,,cia lo =elektron HΨ AB = E ABΨ AB, Ψ AB = Ψ AΨ B E AB = E A +E B. 22

23 Przyk lad 2 Metoda CID nie jest konsystentna rozmiarowo, podczas gdy metoda CCD jest: Ψ CID = (1+C 2 )Φ 0 Ψ CCD = e T 2 Φ 0 = (1+T T2 2 + )Φ 0 = (1+C 2 +C 4 + )Φ 0 gdzie C 2 = T 2 C 4 = 1 2 T2 2 itp. Jak widać, CCD uwzglednia też (wieksz a) cześć wzbudzeń poczwórnych, tzw.(disconnectedquadruples) patrznastepnywyk lad. Np. dla dwóch czasteczek wodoru A i B (geometria: czasteczki sa równoleg le i prostopad le do osi l acz acej środki czasteczek, odleg lość HH w czasteczce 1.4 bohra, odleg lość AB 10 bohrów; baza aug-ccpvtz), otrzymujemy nastepuj ace wyniki w j.at.: EAB CCD = 2, EA CCD = 2, EAB CID = 2, Dla uk ladu 2-elektronowego E CID = E CCD. Czego brakuje metodzie CID w tym przypadku: Ψ CID A Ψ CID B = (1+C2 A )(1+C2 B )Φ A 0Φ B 0 = = (1+C2 A +C2 B + C2 A C2 B } {{ } )Φ A 0Φ B 0 wzbudzenia poczwórne, nie uwzgledniane w CID dla dimeru Literatura: 1. J. Paldus, X. Li, A critical assessment of coupled cluster method in quantum chemistry, Adv. Chem. Phys., 110, 1 (1999); 2. R.J. Bartlett, Coupled-cluster theory: an overview of recent developments, w Modern Electronic Structure Theory, wyd. D. R. Yarkony, Signapore,

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Notatki do wyk ladu IV (z 27.10.2014)

Notatki do wyk ladu IV (z 27.10.2014) Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z 7.10.014) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r

{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r to w pobliżu dna (lub szczytu) pasma (k k 0 ) zależność E(k) jest paraboliczna ale z mas a m m 0 Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane)

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V (z 03.11.014) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio

Bardziej szczegółowo

Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium

Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium Zastosowanie Robotów laboratorium Ćwiczenie 6 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.002.01, 7 Listopada, 2005 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac: SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadanie Zbadać czy wektor v mażna przedstawić jako kombinację liniową wektorów e i

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10)

gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) 5.5. Wyznaczanie zer wielomianów 79 gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) gdzie stopieñ wielomianu p 1(x) jest mniejszy lub równy n, przy

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Metody symulacji w nanotechnologii

Metody symulacji w nanotechnologii Metody symulacji w nanotechnologii Jan Iwaniszewski A. Formalizm operatorowy Załóżmy, że nasz układ kwantowy posiada dyskretny zbiór funkcji własnych ϕ k, k =,,.... Tworzą one bazę w całej przestrzeni

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Układy wieloelektronowe

Układy wieloelektronowe Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1).

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1). kwiecień 9 Ćwiczenia IV Zadania Zadanie Obliczyć kanoniczna sum e statystyczna funkcj e podzia lu, energi e swobodna i ciep lo w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly Rozwiazanie :

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

Symetria w obliczeniach molekularnych

Symetria w obliczeniach molekularnych Zak lad Metod Obliczeniowych Chemii UJ 15 marca 2005 1 2 Możliwości przyspieszenia obliczeń 3 GAMESS 2004 4 Zastosowania symetrii Zmniejszenie zapotrzebowania na zasoby (procesor, pami eć, dysk) Utrzymanie

Bardziej szczegółowo