Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010"

Transkrypt

1 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne zagadnienia programowania liniowego (ZPL) nieroz l acznie zwi azana jest z tabelami simplex. Poniżej pokażemy, że algorytm ten można zrealizować wsposób bardziej intuicyjny. Z wiadomych powodów ograniczymy siȩ do ilustracji metody na przyk ladach. Bȩdziemy zak ladali, że ZPL typu m n dane jest w postaci standardowej, a wiȩc w notacji macierzowej wygl ada nastȩpuj aco: gdzie R n D x cx max, x D x 0,Gx b oraz x, b, 0, c, G oznaczaj a odpowiednio macierze stopnia: n 1, m 1, n 1, 1 n i m n. Z w lasności ZPL wiadomo, że jeśli jest ono ograniczone i niesprzeczne, to istnieje co najmniej jedna decyzja x op (zwana optymaln a), że cx cx op dla każdej decyzji x D. Zadaniem algorytmu simplex jest skonstruowanie ci agu decyzji x o, x 1, x 2,..., x k, takich że cx o < cx 1 <...<cx k = cx op. Każdy etap powyższej procedury, który dla j 1 z decyzji x j robi decyzjȩ x j+1 nazwiemy iteracj a. W metodzie simplex każda iteracja jest efektem zadzia lania tej samej procedury. Dlatego metoda simplex jest niczym innym jak wielokrotnym powtórzeniem takich iteracji. Na przyk ladach dwóch ZPL pokażemy w jaki sposób można zrealizować ten zamys l, nie wykorzystuj ac do tego celu tablic simplex. Zaczniemy od przypadku pojedynczej iteracji. 1

2 2 PRZYPADEK POJEDYNCZEJ ITERACJI 2 Przypadek pojedynczej iteracji Niech dane bȩdzie ZPL z funkcj a celu FC wpostacianalitycznej R 3 D (x 1,x 2,x 3 ) FC (x 1,x 2,x 3 )=2x 1 + x 2 +3x 3 max, gdzie oraz x 1,x 2,x 3 D x 1 0,x 2 0,x 3 0, x 1 +2x 2 +3x 3 5 2x 1 +3x 2 +5x 3 8 3x 1 + x 2 +3x 3 4. Etap 1 konstrukcja nowego ZPL Skonstruujemy najpierw nowe ZPL typu m (n+m) odpowiadaj ace ZPL wtensposób aby warunki ograniczaj ace można by lo zapisaćzapomoc a uk ladu równań liniowych. W tym celu zdefiniujemy m =3kolejneargumentyx 4,x 5,x 6 nowej funkcji celu FC,gdzie x 4 =5 (x 1 +2x 2 +3x 3 ) x 5 =8 (2x 1 +3x 2 +5x 3 ) x 6 =4 (3x 1 + x 2 +3x 3 ). Pozwala nam to zdefiniować ZPL z funkcj a celu FC : D R, gdzie (x 1,x 2,x 3,x 4,x 5,x 6 ) D R 6 oraz x j 0, j=1, 2,...,6, x 1 +2x 2 +3x 3 + x 4 =5 2x 1 +3x 2 +5x 3 + x 5 =8 3x 1 + x 2 +3x 3 + x 6 =4 FC (x 1,x 2,x 3,x 4,x 5,x 6 )=2x 1 + x 2 +3x 3 +0x 4 +0x 5 +0x 6 max. Zauważmy, że wtedy FC (x 1,x 2,x 3,x 4,x 5,x 6 )=FC (x 1,x 2,x 3 )dlakażdej decyzji (x 1,x 2,x 3 ) D. Wtzw. zerowym kroku iteracji bierzemy x o =(0, 0, 0, 5, 8, 4). Zauważmy, że x o D, czyli jest decyzj a dlazpl oraz FC (x o )=0. 2

3 2 PRZYPADEK POJEDYNCZEJ ITERACJI Etap2 pierwszy krok iteracji Pokażemy w jaki sposób można skonstruować decyzjȩ x 1 zmieniaj ac w odpowiedni sposób postać decyzji x o, tak aby FC (x o ) <FC (x 1 ). W tym celu argumenty funkcji celu FC podzielimy na dwie kategorie: zmienne bazowe x 4,x 5,x 6, zmienne niebazowe x 1,x 2,x 3. Modyfikacja decyzji x o polega na tym, że jedna z aktualnych zmiennych niebazowych (nazwiemy j a zmienn a wchodz ac a) zajmie miejsce zmiennej bazowej (nazwiemy j a zmienn a wychodz ac a). Dla ustalenia postaci zmiennej wchodz acej skorzystamy z bardzo prostej w lasności: jeśli w wyrażeniu liniowym c 1 x 1 + c 2 x 2 + c 3 x 3 zmianie ma ulec tylko wartość pojedynczego argumentu, to najwiȩkszy przyrost wartości takiego wyrażenia zaobserwujemy, jeśli tym argumentem bȩdzie x j,przy którym znajduje siȩ najwiȩkszy dodatni wspó lczynnik c j. W naszym przypadku, ponieważ c 1 =2,c 2 =1,c 3 =3,bȩdzie nim argument x 3.Określiliśmy zatem postać zmiennej wchodz acej. Uwaga 2.1 Gdyby wszystkie wsp lczynniki c j < 0, tox op =(0, 0, 0), oileb 0. Abu ustalić nazwȩ zmiennej wychodz acej, a w efekcie aktualn a postać zmiennych bazowych, musimy wyznaczyć wartość zmiennej wchodz acej x 3. W tym celu skorzystamy z: uwagi, że ponieważ wśród zmiennych niebazowych, zmiennymi które nie wchodz a s a x 1,x 2,tozachowuj a one swoje dotychczasowe wartości, a wiȩc x 1 = x 2 =0; warunków brzegowych dla aktualnych zmiennych bazowych, czyli po uwzglȩdnieniu powyższego x x 3 0 x 3 5 3, x x 3 0 x 3 8 5, x x 3 0 x

4 2 PRZYPADEK POJEDYNCZEJ ITERACJI Ponieważ powyższe trzy nierówności musz a zachodzić jednocześnie, oznacza to, że najwiȩksz a dopuszczaln a wartości a argumentu x 3 może być liczba najmniejsza spośród liczb po prawej stronie każdej z nierówności, czyli 4. Przyjmujemy, że 3 x 3 = 4. Wtedy (pamiȩtamy, że x 3 1 = x 2 = 0) z definicji zmiennych bazowych dostaniemy: x 4 =1,x 5 = 4 3,x 6 =0, co pozwala nam zdefiniować postać decyzji x 1 =(0, 0, 4 3, 1, 4 3, 0) D. Zauważmy, że 0=FC (x o ) <FC (x 1 )=4. Wreszcie znamy nazwȩ zmiennej wychodz acej: jest to ta, która przyjmuje najmniejsz a wartość spośród aktualnych zmiennych bazowych, czyli x 6. W takim razie możemy zrealizować pierwsz a iteracjȩ: ustalamy aktualn a postać zmiennych bazowych: stare zm. bazowe zm. wchodz aca zm. wychodz aca aktualne zm. bazowe x 4,x 5,x 6 x 3 x 6 x 3,x 4,x 5 ustalamy aktualn apostać ZPL: w tym celu bierzemy warunek ograniczaj acy, wktórym wystȩpuje zmienna wychodz aca, czyli x 6 i wyznaczamy z niego zmienn a x 3 now a zmienn awchodz ac a x 6 =4 3x 1 x 2 3x 3 x 3 = 4 3 x x x 6. Korzystaj ac z powyższego zwi azku, wyliczamy wartości kolejnych zmiennych bazowych x 4,x 5, czyli 4 x 4 =5 x 1 2x 2 3( 3 x x 2 1 ) 3 x 6 =1+2x 1 x 2 + x 6, 4 x 5 =8 2x 1 3x 2 5( 3 x x 2 1 ) 3 x 6 = x x x 6. Ustalamy aktualn a postać funkcji celu 4 FC (x 1,x 2,x 6,x 3,x 4,x 5 )=2x 1 +x 2 +3( 3 x x 2 1 ) 3 x 6 =4 x 1 x 6. 4

5 2 PRZYPADEK POJEDYNCZEJ ITERACJI Zakończyliśmy procedurȩ pierwszej iteracji. pracy. Podsumujmy efekty naszej 1. Ponieważ FC = FC,wiȩczpowyższego oryginalna funkcja celu FC ma postać FC (x 1,x 2,x 6 )=4 x 1 x (x 1,x 2,x 6 ) D x 1 0,x 2 0,x 6 0 oraz gdzie jak pamiȩtamy x 1 +2x 2 +3x 3 5 2x 1 +3x 2 +5x 3 8 3x 1 + x 2 +3x 3 4. x 3 = 4 3 x x x 6. Z aktualnej postaci funkcji celu wnosimy, że brak jest kolejnej zmiennej wchodz acej (wszystkie wspó lczynniki s a ujemne). Oznacza to, że druga iteracja jest zbȩdna. Rzeczywiście, w naszym przypadku FC (x 1,x 2,x 6 )=4 x 1 x 6 4iFC (x 1 )=FC (0, 0, 4 3 )=4, co dowodzi, że x op =(0, 0, 4 3 ). 5

6 3 PRZYPADEK DWÓCH ITERACJI 3 Przypadek dwóch iteracji Niech dane bȩdzie ZPL z funkcj a celu FC wpostacianalitycznej R 3 D (x 1,x 2,x 3 ) FC (x 1,x 2,x 3 )=3x 1 + x 2 +2x 3 max, gdzie oraz x 1,x 2,x 3 D x 1 0,x 2 0,x 3 0, x 1 +2x 2 + x 3 4 2x 1 + x 2 + x 3 3 x 1 x 2 +4x 3 2. Etap 1 konstrukcja nowego ZPL 1. definicja zmiennych bazowych: x 4 =4 x 1 2x 2 x 3 2. konstrukcja ZPL gdzie x 5 =3 2x 1 x 2 x 3 x 6 =2 x 1 + x 2 4x 3, FC : D R, FC (x 1,x 2,x 3,x 4,x 5,x 6 )=FC (x 1,x 2,x 3 ), (x 1,x 2,x 3,x 4,x 5,x 6 ) D x j 0, oraz warunki ograniczaj ace opisane s a warunkami definiuj acymi zmienne bazowe w punkcie 1, 3. konstrukcja decyzji pocz atkowej x o =(0, 0, 0, 4, 3, 2), FC (x o )=0. Etap 2 I krok iteracji aktualne zmienne bazowe: x 4,x 5,x 6, aktualne zmienne niebazowe: x 1,x 2,x 3, zmienna wchodz aca: z definicji FC jest ni a x 1, 6

7 3 PRZYPADEK DWÓCH ITERACJI ustalenie wartości tej zmiennej: dla x 2 = x 3 = 0, z warunków ograniczaj acych dla ZPL x x 1 0 x 1 4 sk ad x 1 = 3 2, x x 1 0 x x x 1 0 x 1 2, ustalenie zmiennej wychodz acej: dla x 2 = x 3 =0,x 1 = 3 2, zmienne bazowe przyjmuj a wartości: x 4 =4 3 2 = 5 2 idlategojestni a x 5, x 5 = =0 x 6 =2 3 2 = 1 2, postać decyzjix 1 : nowe zmienne bazowe: x 1,x 4,x 6, x 1 =( 3 2, 0, 0, 5 2, 0, 1 2 ),FC (x 1 )= 9 2, aktualizacja ZPL: z warunku na aktualn a zmienn a wychodz ac a wyznaczamy aktualn a zmienn awchodz ac a, czyli x 5 =3 2x 1 x 2 x 3 x 1 = x x x 5 ipopodstawieniudox 4,x 6 dostaniemy ( 3 x 4 = x x 3 1 ) 2 x 5 2x 2 x 3 = x x x 5 ( 3 x 6 = x x 3 1 ) 2 x 5 + x 2 4x 3 = x 2 2 x x 5, gdzie, ponieważ zmiennymi niebazowymi teraz s a x 2,x 3,x 5,aktualnapostać funkcji celu jest nastȩpuj aca 3 FC (x 2,x 3,x 5,x 1,x 4,x 6 )=3( x x 3 1 ) 2 x 5 + x 2 +2x 3 idlatego FC (x 2,x 3,x 5,x 1,x 4,x 6 )= x x x 5 max.

8 3 PRZYPADEK DWÓCH ITERACJI Etap 3 II krok iteracji aktualne zmienne bazowe: x 1,x 4,x 6, aktualne zmienne niebazowe: x 2,x 3,x 5, zmienna wchodz aca: z ostatniej definicji FC jest ni a x 3, ustalenie wartości tej zmiennej: dla x 2 = x 5 = 0 (patrz postać x 1 ), z warunków ograniczaj acych dla ZPL (patrz aktualizacja ZPL w kroku I) x x 3 0 x 3 3 sk ad x 3 = 1, x x 3 0 x 3 5 x x 3 0 x 3 1, ustalenie zmiennej wychodz acej: dla x 2 = x 5 =0,x 3 = 1, zmienne bazowe przyjmuj a wartości: x 1 = = 10 x 4 = = 1 idlategojestni a x 6, postać decyzjix 2 : x 2 = nowe zmienne bazowe: x 1,x 3,x 4, x 6 = =0, ( 10, 0, 1, 1, 0, 0 ),FC (x 2 )= 32, aktualizacja ZPL: z warunku na aktualn a zmienn a wychodz ac a (patrz aktualizacja ZPL w kroku I) wyznaczamy aktualn a zmienn awchodz ac a, czyli x 6 = x 2 2 x x 5 x 3 = x x 5 2 x 6 x 1 = x 2 1 2( x x 5 2 x 6 8 ) 1 2 x 5 = 10 5 x 2 4 x x 6

9 3 PRZYPADEK DWÓCH ITERACJI x 4 = x ( + 3 x x 5 2 ) x x 5 = 1 12 x x x 6, gdzie, ponieważ zmiennymi niebazowymi teraz s a x 2,x 5,x 6,aktualnapostać funkcji celu jest nastȩpuj aca FC (x 2,x 5,x 6,x 1,x 3,x 4 )= x 2 + 2( x x 5 2 ) x x 5, idlatego FC (x 2,x 5,x 6,x 1,x 3,x 4 )= 32 2 x 2 10 x 5 1 x 6 max. Na podstawie aktualnej postaci funkcji celu widzimy, że nie ma kolejnej zmiennej wchodz acej. Jednocześnie (pamiȩtamy, że x 2 0,x 5 0,x 6 0) FC (x) 32 dla każdej decyzji x. Ponieważ FC ( 10, 0, 1 )=FC (x 2 )= 32,wiȩc x op =( 10, 0, 1 ), co kończy procedurȩ. Uwaga 3.1 Zaprezentowany na dwóch przyk ladach algorytm ma jedn a wadȩ może siȩ zapȩtlić, tzn. może zdarzyć siȩsytuacja,że po kilku krokach wrócimy do tych samych zmiennych bazowych. Oczywiście istnieje wyjście z takiej sytuacji, o czym z oczywistych powodów nie napiszemy. Nie mniej jednak uważamy, że warto przedstawionej wyżej metodzie poświȩcić uwagȩ jest ona bardziej intuicyjna i prostsza od przeprowadzenia aniżeli metoda tablic simplex. 9

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1

A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 ALGORYTM SYMPLEKS Model liniowy nazywamy modelem w postaci standardowej jeżeli wszystkie ograniczenia s a w postaci równości i wszystkie zmienne

Bardziej szczegółowo

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie 1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku ( Rozdział 1 Grafy skierowane W tym rozdziale zajmiemy siȩ algorytmami wyszukiwania najkrótszej drogi w grafach skierowanych Każdej krawȩdzi

Bardziej szczegółowo

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie.

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie. 176 Wtȩp do tatytyki matematycznej trści wynika że H o : p 1 przeciwko hipotezie H 3 1: p< 1. Aby zweryfikować tȩ 3 hipotezȩ zatujemy tet dla frekwencji. Wtedy z ob 45 1 150 3 1 3 2 3 150 0 346. Tymczaem

Bardziej szczegółowo

MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Rekurencja 11 Wieże Hanoi Rekurencja jest to zdolność podprogramu (procedury lub funkcji) do wywoływania samego siebie Zacznijmy

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Rozdzia l 8. Pojȩcie liczby porz adkowej

Rozdzia l 8. Pojȩcie liczby porz adkowej Rozdzia l 8. Pojȩcie liczby porz adkowej 1. Liczby naturalne a liczby porz adkowe Oto cztery pierwsze liczby naturalne zapisane wed lug różnych czterech notacji w porz adku od najmniejszej do najwiȩkszej:,

Bardziej szczegółowo

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii

Bardziej szczegółowo

2.2 Model odsetek prostych 9

2.2 Model odsetek prostych 9 2.2 Model odsetek prostych 9 Uwaga 2.2.2 Komentarza wymaga znaczenie stopy bazowej. Z definicji wynika, że i T = FV PV, co wcale nie oznacza, że wartość indeksu i PV T zależy od wartości pocz atkowej PV.Wskaźnik

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych dr inż. Ryszard Rębowski 1 OPIS ZJAWISKA Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych 8 listopada 2015 1 Opis zjawiska Będziemy obserwowali proces tworzenia

Bardziej szczegółowo

Równania różniczkowe cz astkowe rzȩdu pierwszego

Równania różniczkowe cz astkowe rzȩdu pierwszego Równania różniczkowe cz astkowe rzȩd pierwszego 1 Równania liniowe jednorodne Rozważmy równanie a 1 ( 1,..., n ) 1 +... + a n ( 1,..., n ) n = 0, (1) gdzie a i, i = 1,..., n s a dane, a fnkcja = ( 1,...,

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

Układy równań liniowych. Ax = b (1)

Układy równań liniowych. Ax = b (1) Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m

Bardziej szczegółowo

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1 3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ

Bardziej szczegółowo

Liniowe uk lady sterowania.

Liniowe uk lady sterowania. Liniowe uk lady sterowania Rozwi azywanie liniowych rownań stanu Uk lady z czasem ci ag lym Liniowe stacjonarne równania stanu Przyk lad: Uk lad sterowania tarcz a obrotow a prȩt sprȩżysty tarcza obrotowa

Bardziej szczegółowo

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

W poszukiwaniu kszta ltów kulistych

W poszukiwaniu kszta ltów kulistych W poszukiwaniu kszta ltów kulistych Piotr Mankiewicz April 4, 2005 Konwersatorium dla doktorantów Notacje 1 Cia lo wypuk le - wypuk ly, domkniȩty podzbiór ograniczony w R n. Odleg lość geometryczna dwóch

Bardziej szczegółowo

Rozdzia l 3. Relacje binarne

Rozdzia l 3. Relacje binarne Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA. Spis pojȩċ teoretycznych

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA. Spis pojȩċ teoretycznych 1 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Spis pojȩċ teoretycznych 1. Podstawowe pojȩcia: doświadczenie losowe, zdarzenie elementarne, zdarzenie losowe, przestrzeń zdarzeń elementarnych, zbiór zdarzeń

Bardziej szczegółowo

Programowanie matematyczne

Programowanie matematyczne dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

A. Kasperski, M. Kulej, BO -Wyk lad 5, Optymalizacja sieciowa 1

A. Kasperski, M. Kulej, BO -Wyk lad 5, Optymalizacja sieciowa 1 A. Kaperki, M. Kulej, BO -Wyk lad, Opymalizacja ieciowa 1 Zagadnienie makymalnego przep lywu (MP). Przyk lad. W pewnym mieście inieje fragmen wodoci agów zadany w poaci naȩpuj acej ieci: 1 Luki oznaczaj

Bardziej szczegółowo

Rozdzia l 6. Wstȩp do statystyki matematycznej. 6.1 Cecha populacji generalnej

Rozdzia l 6. Wstȩp do statystyki matematycznej. 6.1 Cecha populacji generalnej Rozdzia l 6 Wstȩp do statystyki matematycznej 6.1 Cecha populacji generalnej W rozdziale tym zaprezentujemy metodȩ probabilistycznego opisu zaobserwowanego zjawiska. W takim razie (patrz rozdzia l 2.4)zjawiskotobȩdziemy

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Programowanie matematyczne. czȩść I: programowanie liniowe. Andrzej Cegielski

Programowanie matematyczne. czȩść I: programowanie liniowe. Andrzej Cegielski Programowanie matematyczne czȩść I: programowanie liniowe Andrzej Cegielski ii Spis treści 1 Wstȩp 1 1.1 Zadania programowania matematycznego.......... 1 1. Oznaczenia i proste fakty...................

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Wprowadzenie do teorii sterowania

Wprowadzenie do teorii sterowania Wprowadzenie do teorii sterowania Literatura podstawowa T. Kaczorek i inni, Podstawy teorii sterowania, WNT, Warszawa 2005. T. Kaczorek, Teoria sterowania i systemów, PWN, Warszawa 1996. T. Kaczorek, Teoria

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio

Bardziej szczegółowo

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj

Bardziej szczegółowo

gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10)

gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) 5.5. Wyznaczanie zer wielomianów 79 gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) gdzie stopieñ wielomianu p 1(x) jest mniejszy lub równy n, przy

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas

Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Ćwiczenie 1. Niech W = {(x 1, x 2, x 3 ) K 3 : x 2 1 + x 2 2 + x 2 3 = x 1 x 2 + x 2 x 3 + x 3 x 1 }. Czy W jest podprzestrzeni a gdy

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m. Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym.

Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym. Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym. Po wyznaczeniu optymalnego nominalnego) procesu sterowania x o, u o nasuwa siȩ kwestia podtrzymywania tego procesu w warunkach ma lych

Bardziej szczegółowo

f (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno

f (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno Zadanie 1 x 2 2mx+4m 3=0 ma dwa różne pierwiastki? Odp: m ( ; 1) (3 ; ) Zadanie 2 mx 2 +(2m 2) x+m+1=0 ma dwa różne pierwiastki? Odp: m ( ;0) (0; 1 3 ) Zadanie 3 ma jeden pierwiastek? Odp: m = -2, m =

Bardziej szczegółowo