Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyk lad 6 Podprzestrzenie przestrzeni liniowych"

Transkrypt

1 Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I) suma dowolnych dwu wektorów należacych do V 1 należy do V 1, (II) jeśli α V 1 i a K, to a α V 1. Uwaga 6.2. Wektor zerowy θ należy do każdej podprzestrzeni V 1 przestrzeni V. Rzeczywiście, ponieważ V 1, wiec istnieje α V 1 i wówczas z (II) mamy, że 0 α V 1, skad z w lasności 5.15 jest θ V 1. Uwaga 6.3. Podprzestrzeń V 1 przestrzeni liniowej V jest przestrzeni liniow wzgledem dodawania wektorów zredukowanego do V 1 i mnożenia przez skalary zredukowanego do V 1. Sprawdzenie prawdziwości aksjomatów A1-A8 nie przedstawia trudności. Np. z (II) oraz z w lasności 5.16 wynika, że α V 1 dla każdego α V 1. Każda przestrzeń liniowa V zawiera co najmniej dwie podprzestrzenie: zbiór V oraz podprzestrzeń z lożon tylko z wektora θ. Pierwsz z tych podprzestrzeni nazywamy niew laściwa, a drug zerowa. Twierdzenie 6.4. Cześć wspólna dowolnej niepustej rodziny podprzestrzeni danej przestrzeni liniowej V jest podprzestrzeni przestrzeni V. Dowód. Niech W bedzie dowoln niepust rodzin podprzestrzeni przestrzeni liniowej V i niech W 0 = W. Z uwagi 6.2 mamy, że θ W dla każdego W W. Zatem θ W 0. Niech W W α, β W 0. Wtedy α, β W dla każdego W W, skad α + β W dla każdego W W, wiec α + β W 0. Jeśli a R oraz α W 0, to α W dla każdego W W, skad a α W dla każdego W W, wiec a α W 0. Zatem W 0 jest podprzestrzeni przestrzeni V. 2 Podprzestrzenie generowane i ich w lasności Twierdzenie 6.5. Niech V bedzie przestrzeni liniow i niech A bedzie dowolnym podzbiorem przestrzeni V. Istnieje najmniejsza (w sensie inkluzji) podprzestrzeń przestrzeni V zawierajac A. Dowód. Oznaczmy przez W rodzine wszystkich podprzestrzeni W przestrzeni V takich, że A W. Rodzina W jest niepusta, bo np. V W. Z twierdzenia 6.4 mamy, że W 0 = W W W jest podprzestrzeni przestrzeni V, a ponieważ A W dla każdego W W, wiec A W 0. Niech teraz V 1 bedzie podprzestrzeni przestrzeni V taka, że A V 1. Wtedy V 1 W, skad W 0 V 1. Zatem W 0 jest najmniejsz w sensie inkluzji podprzestrzeni przestrzeni V zawierajac zbiór A. 1

2 Uwaga 6.6. Najmniejsz podprzestrzeń przestrzeni liniowej V zawierajac zbiór A V nazywamy podprzestrzeni rozpiet na podzbiorze A lub generowan przez podzbiór A i oznaczamy przez lin(a). Z tego określenia wynika od razu, że lin( ) = {θ. Jeśli zbiór A jest skończony i A = {α 1, α 2,..., α n, to zamiast lin({α 1, α 2,..., α n ) bedziemy pisali lin(α 1, α 2,..., α n ). Zauważmy, że dla każdego α V jest lin(α) = {a α : a R. Rzeczywiście, α = 1 α {a α : a R oraz dla dowolnych a, b R mamy, że a α+b α = (a+b) α i a (b α) = (ab) α, wiec {a α : a R jest podprzestrzeni przestrzeni V zawierajac α. Jeżeli zaś W jest podprzestrzeni przestrzeni V taka, że α W, to dla dowolnego a R jest a α W, skad {a α : a R W. Zatem lin(α) = {a α : a R. Ponadto z definicji podprzestrzeni generowanej wynika od razu, że jeżeli A i B s podzbiorami przestrzeni liniowej V takimi, że A B, to lin(a) lin(b). Twierdzenie 6.7. Niech V 1, V 2,..., V n bed podprzestrzeniami przestrzeni liniowej V. Wówczas zbiór V 1 + V V n = {α 1 + α α n : α i V i dla i = 1, 2,..., n jest podprzestrzeni przestrzeni V. Ponadto V 1 + V V n = lin(v 1 V 2... V n ). Dowód. Niech α i V i dla i = 1, 2,..., n. Wtedy α i = θ +. {{.. + θ +α i + θ +. {{.. + θ, skad α i V V n dla i = 1, 2,..., n. Zatem V 1... V n V V n. Niech α, β V V n. Wtedy istniej α i, β i V i dla i = 1, 2,..., n takie, że α = α α n i β = β β n, skad α + β = (α 1 + β 1 ) (α n + β n ) V V n, bo α i + β i V i dla i = 1, 2,..., n. Ponadto dla a K mamy, że a α i V i dla i = 1, 2,..., n, skad z w lasności 5.20 a α = a α a α n V V n. Zatem V V n jest podprzestrzenia przestrzeni V zawierajac zbiór V 1... V n. Niech teraz W bedzie dowoln podprzestrzeni przestrzeni V taka, że V 1... V n W. Weźmy dowolne α V V n. Wtedy istniej α i V i dla i = 1, 2,..., n takie, że α = α α n. Ale α 1,..., α n W, wiec α W. Zatem V V n W. Stad V V n lin(v 1... V n ). Ale lin(v 1... V n ) jest najmniejsz podprzestrzenia przestrzeni V zawierajac zbiór V 1... V n, wiec stad V V n = lin(v 1... V n ). Twierdzenie 6.8. Dla dowolnych wektorów α 1,..., α n przestrzeni liniowej V zachodzi wzór: lin(α 1,..., α n ) = {a 1 α a n α n : a 1,..., a n R. Dowód. Ponieważ α i lin(α i ) dla i = 1, 2,..., n, wiec {α 1,..., α n lin(α 1 )... lin(α n ), skad lin(α 1,..., α n ) lin(lin(α 1 )... lin(α n )). Ponadto {α i {α 1,..., α n, wiec lin(α i ) lin(α 1,..., α n ) dla i = 1, 2,..., n. Zatem lin(lin(α 1 )... lin(α n )) lin(α 1,..., α n ). Stad lin(α 1,..., α n ) = lin(lin(α 1 )... lin(α n )) = lin(α 1 )+...+lin(α n ) = {a 1 α a n α n : a 1,..., a n R na mocy twierdzenia 6.7 i uwagi 6.6. i 1 n i 2

3 Twierdzenie 6.9. Dla dowolnych podzbiorów X i Y przestrzeni liniowej V zachodzi wzór: lin(x Y ) = lin(x) + lin(y ). Dowód. Mamy, że X lin(x) lin(x) + lin(y ) i Y lin(y ) lin(x) + lin(y ), wiec X Y lin(x) + lin(y ). Ale lin(x Y ) jest najmniejsz podprzestrzeni zawierajac zbiór X Y, wiec stad lin(x Y ) lin(x) + lin(y ). Dalej, X X Y lin(x Y ), skad lin(x) lin(x Y ) oraz Y X Y lin(x Y ), wiec lin(y ) lin(x Y ). Stad lin(x) + lin(y ) lin(x Y ) i ostatecznie lin(x Y ) = lin(x) + lin(y ). Z twierdzenia 6.9 mamy natychmiast nastepuj acy Wniosek Dla dowolnych wektorów α 1,..., α n, β 1,..., β m przestrzeni liniowej V zachodzi wzór: lin(α 1,..., α n, β 1,..., β m ) = lin(α 1,..., α n ) + lin(β 1,..., β m ). Twierdzenie Dla dowolnego podzbioru X przestrzeni liniowej V i dla każdego wektora α V : α lin(x) lin(x {α) = lin(x). Dowód. Za lóżmy, że lin(x {α) = lin(x). Ponieważ X {α lin(x {α), wiec stad X {α lin(x), skad α lin(x). Na odwrót, niech teraz α lin(x). Wtedy lin(α) lin(x), skad lin(α) + lin(x) = lin(x). Ale z twierdzenia 6.9, lin(x {α) = lin(x) + lin(α), wiec lin(x {α) = lin(x). 3 Kombinacja liniowa wektorów Definicja Niech V bedzie przestrzeni liniowa. Powiemy, że wektor α V jest kombinacj liniow wektorów α 1, α 2,..., α n V, jeżeli istniej skalary a 1, a 2,..., a n R (zwane wspó lczynnikami tej kombinacji) takie, że α = a 1 α 1 + a 2 α a n α n. (1) Uwaga Twierdzenie 6.8 możemy wypowiedzieć nastepuj aco: lin(α 1,..., α n ) sk lada sie ze wszystkich kombinacji liniowych wektorów α 1,..., α n. Twierdzenie Niech X bedzie dowolnym niepustym podzbiorem przestrzeni liniowej V nad cia lem R. Wówczas lin(x) jest zbiorem wszystkich kombinacji liniowych wszystkich skończonych podzbiorów zbioru X. Dowód. Oznaczmy przez V 1 zbiór wszystkich kombinacji liniowych wszystkich skończonych podzbiorów zbioru X. Dla α X mamy, że α = 1 α V 1, wiec X V 1. Ponieważ X, wiec V 1. Niech a R oraz α, β V 1. Wtedy istniej α 1,..., α n, β 1,..., β m X takie, że α = a 1 α a n α n oraz β = b 1 β b m β m. Zatem a α = (aa 1 ) α (aa n )α n V 1 oraz α lin(α 1,..., α n ) i β lin(β 1,..., β m ), wiec z wniosku 3

4 6.10, α + β lin(α 1,..., α n, β 1,..., β m ), czyli na mocy uwagi 6.13 α + β V 1. Stad V 1 jest podprzestrzeni przestrzeni V zawierajac X. Niech W bedzie dowoln podprzestrzenia przestrzeni V zawierajac X. Wtedy dla dowolnych α 1,..., α n X mamy, że α 1,..., α n W, skad dla dowolnych a 1,..., a n R jest a 1 α a n α n W. Zatem V 1 W, czyli V 1 jest najmniejsz podprzestrzeni przestrzeni X zawierajac zbiór X. Zatem V 1 = lin(x). Twierdzenie Niech α, α 1,..., α n, β 1,..., β m bed wektorami przestrzeni liniowej V. Jeżeli wektor α jest kombinacj liniow wektorów β 1,..., β m oraz dla i = 1, 2,..., m wektor β i jest kombinacj liniow wektorów α 1,..., α n, to wektor α jest kombinacj liniow wektorów α 1,..., α n. Dowód. Z uwagi 6.13 mamy, że β 1,..., β m lin(α 1,..., α n ). Zatem lin(β 1,..., β m ) lin(α 1,..., α n ). Ale z uwagi 6.13 α lin(β 1,..., β m ), wiec stad α lin(α 1,..., α n ), czyli z uwagi 6.13 wektor α jest kombinacj liniow wektorów α 1,..., α n. Przyk lad Niech n N. W przestrzeni R n określamy wektory ε 1 = [1, 0, 0,..., 0], ε 2 = [0, 1, 0,..., 0], ε 3 = [0, 0, 1,..., 0],..., ε n = [0, 0, 0,..., 1] Dla dowolnych skalarów a 1,..., a n R a 1 ε 1 = [a 1, 0, 0,..., 0] a 2 ε 2 = [0, a 2, 0,..., 0] a 3 ε 3 = [0, 0, a 3,..., 0] a n ε n = [0, 0, 0,..., a n ] wi ec po dodaniu stronami tych równości uzyskamy wzór: [a 1, a 2,..., a n ] = a 1 ε 1 + a 2 ε a n ε n. (2) Z tego wzoru wynika zatem, że każdy wektor przestrzeni R n jest kombinacj liniow wektorów ε 1,..., ε n, czyli R n = lin(ε 1,..., ε n ). Mówimy też, że wektory ε 1,..., ε n generuj przestrzeń R n., 4 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V. Wyróżniamy nastepuj ace operacje elementarne nad uk ladem wektorów (α 1,..., α n ): O1. Zamiana miejscami wektorów α i z α j (dla i j) oznaczana przez w i w j. Oczywiście operacja ta jest do siebie odwrotna. O2. Pomnożenie i-tego wektora przez niezerowy skalar a R, oznaczenie: a w i. Ponieważ dla a 0 jest a 1 (a α i ) = (a 1 a) α i = 1 α i = α i, wiec operacj odwrotn do a w i jest operacja a 1 w i. 4

5 O3. Dodanie do wektora α i wektora α j (dla i j) pomnożonego przez dowolny skalar a R, oznaczenie: w i + a w j. Ponieważ (α i + a α j ) + ( a) α j = α i + a α j + ( (a α j )) = α i, wiec operacj odwrotn do operacji w i + a w j jest operacja w i + ( a) w j. Twierdzenie Jeżeli uk lad wektorów (β 1,..., β n ) przestrzeni liniowej V powstaje z uk ladu wektorów (α 1,..., α n ) przez kolejne wykonanie skończonej liczby operacji elementarnych, to lin(β 1,..., β n ) = lin(α 1,..., α n ). Dowód. Indukcja pozwala nam ograniczyć sie do jednej operacji. Ponadto operacje elementarne s odwracalne, wiec wystarczy wykazać, że lin(β 1,..., β n ) lin(α 1,..., α n ), czyli, że {β 1,..., β n lin(α 1,..., α n ). Dla operacji O1 jest to oczywiste. Dla operacji O2 mamy, że β j = α j dla j i oraz β i = a α i lin(α 1,..., α n ). Dla operacji O3 β k = α k dla k i oraz β i = α i + a α j lin(α 1,..., α n ). Przyk lad Sprawdzimy, czy wektor [1, 2, 3] należy do podprzestrzeni W = lin([1, 3, 2], [1, 2, 1], [2, 5, 3]) przestrzeni liniowej R 3. Po wykonaniu operacji w 2 w 1, w 3 2w 1 uzyskamy na mocy twierdzenia 6.17, że W = lin([1, 3, 2], [0, 1, 1], [0, 1, 1]) = lin([1, 3, 2], [0, 1, 1]) = {x [1, 3, 2]+y [0, 1, 1] : x, y R = {[x, 3x y, 2x y] : x, y R. Zatem [1, 2, 3] W wtedy i tylko wtedy, gdy istniej x, y R takie, że [1, 2, 3] = [x, 3x y, 2x y], czyli gdy x = 1 oraz 3x y = 2x y = 1, a wiec gdy x = 1 i x = 0. Uzyskana sprzeczność pokazuje, że [1, 2, 3] W. 5 Liniowa niezależność wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V. Powiemy, że uk lad wektorów (α 1,..., α n ) jest liniowo zależny, jeżeli istniej skalary a 1,..., a n R nie wszystkie równe 0 i takie, że a 1 α a n α n = θ. Przyk lad Wektory θ, α 1,..., α n V s liniowo zależne, bo np. 1 θ + 0 α α n = θ oraz 1 0. Uwaga Jeżeli uk lad wektorów (α 1,..., α n ) jest liniowo zależny, to dla dowolnej bijekcji f : {1, 2,..., n {1, 2,..., n uk lad (α f(1),..., α f(n) ) też jest liniowo zależny. Przyk lad Wektory α, α, α 1,..., α n s liniowo zależne, bo 1 α + ( 1) α + 0 α α n = θ i

6 Definicja Powiemy, że uk lad wektorów (α 1,..., α n ) przestrzeni liniowej V jest liniowo niezależny, jeżeli nie jest on liniowo zależny, tzn. a1,...,a n R [a 1 α a n α n = θ a 1 =... = a n = 0]. Przyk lad Ze wzoru (2) wynika od razu, że uk lad wektorów (ε 1,..., ε n ) przestrzeni R n jest liniowo niezależny. Uwaga Z uwagi 6.20 wynika, że jeśli uk lad wektorów (α 1,..., α n ) przestrzeni liniowej V jest liniowo niezależny (w skrócie lnz), to dla dowolnej bijekcji f : {1, 2,..., n {1, 2,..., n uk lad (α f(1),..., α f(n) ) też jest liniowo niezależny. Ponadto z przyk ladu 6.21 wynika, że wtedy α i α j dla i j. Możemy zatem powiedzieć, że zbiór wektorów {α 1,..., α n jest liniowo niezależny. Dalej, z przyk ladu wynika, że θ {α 1,..., α n. Jeżeli X = {β 1,..., β k jest niepustym podzbiorem zbioru {α 1,..., α n, to zbiór X też jest liniowo niezależny, gdyż w przeciwnym wypadku istnia lyby skalary b 1,..., b k nie wszystkie równe 0 i takie, że b 1 β b k β k = θ i wówczas uzupe lniajac ciag (b 1,..., b k ) zerami uzyskamy ciag (a 1,..., a n ) taki, że a 1 α a n α n = θ, wbrew liniowej niezależności zbioru {α 1,..., α n. Z uwagi 6.24 wynika zatem, że definicj e liniowej niezależności można rozszerzyć na dowolne podzbiory przestrzeni liniowej. Definicja Powiemy, że podzbiór X przestrzeni liniowej V jest liniowo niezależny (w skrócie lnz), jeżeli każdy skończony podzbiór zbioru X jest liniowo niezależny. Zbiór pusty wektorów uważamy za liniowo niezależny. Z uwagi 6.24 oraz z tej definicji mamy od razu nastepuj ace Twierdzenie Dowolny podzbiór liniowo niezależnego zbioru wektorów przestrzeni liniowej jest zbiorem liniowo niezależnym. Przyk lad W przestrzeni liniowej V = R[x] zbiór {1, x, x 2,... jest liniowo niezależny. Przyk lad Jeżeli α jest niezerowym wektorem przestrzeni liniowej V, to zbiór {α jest liniowo niezależny. Rzeczywiście, niech a R b edzie takie, że a α = θ. Wtedy z uwagi 5.19 mamy, że a = 0, czyli zbiór {α jest lnz. Twierdzenie Jeżeli uk lad wektorów (β 1,..., β n ) przestrzeni liniowej V powstaje z uk ladu (α 1,..., α n ) przez kolejne wykonanie skończonej liczby operacji elementarnych, to uk lad (β 1,..., β n ) jest liniowo niezależny wtedy i tylko wtedy, gdy uk lad (α 1,..., α n ) jest liniowo niezależny. Dowód. Indukcja pozwala nam ograniczyć sie do jednej operacji elementarnej. Ponadto operacje elementarne s odwracalne, wiec wystarczy wykazać, że jeżeli uk lad (α 1,..., α n ) jest lnz, to uk lad (β 1,..., β n ) jest lnz. Dla operacji O1 jest to oczywiste. Dla operacji O2 mamy, że β j = α j dla j i oraz β i = a α i dla pewnego a 0. Weźmy dowolne a 1,..., a n R takie, że a 1 β a n β n = θ. Wtedy a 1 α (a i a) α i a n α n = θ. Stad z liniowej 6

7 niezależności uk ladu (α 1,..., α n ) mamy, że a 1 = a 2 =... = a i a =... = a n = 0. Ale a 0, wiec stad a 1 =... = a i =... = a n = 0, czyli uk lad (β 1,..., β n ) jest lnz. Dla operacji O3 bez zmniejszania ogólności możemy zak ladać, że b 1 = α 1 +a α 2 oraz β j = α j dla j = 2,..., n. Weźmy dowolne a 1,..., a n R takie, że a 1 β a n β n = θ. Wtedy a 1 (α 1 + a α 2 ) + a 2 α a n α n = θ, czyli a 1 α 1 + (a 1 a+a 2 ) α a n α n = θ, skad z lnz uk ladu (α 1,..., α n ) mamy, że a 1 = a 1 a + a 2 = a 3 =... = a n = 0, czyli a 1 = a 2 =... = a n = 0, a wiec uk lad (β 1,..., β n ) jest lnz. Twierdzenie Niech X b edzie zbiorem liniowo niezależnym wektorów przestrzeni liniowej V. Wówczas dla każdego wektora α V : α lin(x) [α X lub zbiór X {α jest liniowo zależny]. Dowód.. Za lóżmy, że α lin(x). Wtedy α X, gdyż X lin(x). Zatem zbiór X {α jest liniowo zależny. Ale zbiór X jest liniowo niezależny, wiec istniej parami różne wektory α 1,..., α n X takie, że zbiór {α, α 1,..., α n jest liniowo zależny. Zatem istniej skalary a, a 1,..., a n R nie wszystkie równe 0 i takie, że a α+a 1 α a n α n = θ. Stad z liniowej niezależności wektorów α 1,..., α n wynika, że a 0. Zatem α = ( a 1 a ) α ( an a ) α n lin(x), czyli α lin(x) na mocy twierdzenia 6.14 i mamy sprzeczność.. Na mocy twierdzenia 6.14 istniej α 1,..., α n X oraz a 1,..., a n R takie, że α = a 1 α a n α n. Zatem 1 α+( a 1 ) α ( a n ) α n = θ, skad wynika, że α X albo α X i zbiór X {α jest liniowo zależny. 7

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Wyk lad 11 Przekszta lcenia liniowe a macierze

Wyk lad 11 Przekszta lcenia liniowe a macierze Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013 Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Rozdzia l 3. Relacje binarne

Rozdzia l 3. Relacje binarne Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia

Bardziej szczegółowo

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

4 Przekształcenia liniowe

4 Przekształcenia liniowe MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami

Bardziej szczegółowo

020 Liczby rzeczywiste

020 Liczby rzeczywiste 020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne

Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne 1. Kresy wzglȩdem dowolnego zbioru liczb porz adkowych Poświȩcimy teraz uwagȩ przede wszystkich kratowym w lasnościom klasy

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

A. Strojnowski - Twierdzenie Jordana 1

A. Strojnowski - Twierdzenie Jordana 1 A Strojnowski - Twierdzenie Jordana 1 Zadanie 1 Niech f b edzie endomorfizmem skończenie wymiarowej przestrzeni V nad cia lem charakterystyki różnej od 2 takim, że M(f) nie jest diagonalizowalna ale M(f

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Skończone rozszerzenia ciał

Skończone rozszerzenia ciał Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo

Przestrzeń liniowa i przekształcenie liniowe

Przestrzeń liniowa i przekształcenie liniowe opracował Maciej Grzesiak Przestrzeń liniowa i przekształcenie liniowe W algebrze rozpatruje się zbiory abstrakcyjne Natura elementów zbioru się nie liczy Na elementach rozpatruje się działania spełniające

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

Uniwersytet w Białymstoku. Wykład monograficzny

Uniwersytet w Białymstoku. Wykład monograficzny Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Endomorfizmy liniowe

Endomorfizmy liniowe Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej.

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Zagadnienie diety. Jak wymieszać wymieszać pszenice, soje i maczk e rybna by uzyskać najtańsza

Bardziej szczegółowo

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Zadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2

Zadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2 Zadania z GAL-u Listopad 2004 1 Rozwia zać uk lady równań: 11 12 13 14 15 { 2x + 3y = 1 3x + y = 0 x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 3x + y + z = 1 x + 2z = 6 3y + 2z = 0 2x + 3y + 2z = 1 3x + 4y

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

GAL. zestawy do prac domowych z rozwiązaniami semestr zimowy 2011/2012. Wydział MIM UW

GAL. zestawy do prac domowych z rozwiązaniami semestr zimowy 2011/2012. Wydział MIM UW GAL zestawy do prac domowych z rozwiązaniami semestr zimowy / Wydział MIM UW wersja z października Spis treści Układy równań Liczby zespolone 7 Przestrzenie liniowe, kombinacje liniowe Podprzestrzenie

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie 1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ

Bardziej szczegółowo

Pojȩcie przestrzeni metrycznej

Pojȩcie przestrzeni metrycznej ROZDZIA l 1 Pojȩcie przestrzeni metrycznej Definicja 1.1. Dowolny niepusty zbiór X z funkcja ρ : X X [0, ), spe lniaja ca naste puja ce trzy warunki M1: ρ(x, y) = 0 x = y, M2: ρ(x, y) = ρ(y, x), M3: ρ(x,

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Algebra liniowa z geometrią. wykład I

Algebra liniowa z geometrią. wykład I Algebra liniowa z geometrią wykład I 1 Oznaczenia N zbiór liczb naturalnych, tutaj zaczynających się od 1 Z zbiór liczb całkowitych Q zbiór liczb wymiernych R zbiór liczb rzeczywistych C zbiór liczb zespolonych

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X

Bardziej szczegółowo

Wstęp do komputerów kwantowych

Wstęp do komputerów kwantowych Wprowadzenie do mechaniki kwantowej Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Wprowadzenie do mechaniki kwantowej Podstawy matematyczne 1 Algebra liniowa Bazy i liniowa niezależność

Bardziej szczegółowo

Analiza matematyczna I

Analiza matematyczna I Analiza matematyczna I 1 Spis treści 1 Wstep. Ograniczenia i kresy zbiorów. 4 1.1 Oznaczenia..................................... 4 1.2 Zbiory liczbowe................................... 4 1.3 Kwantyfikatory...................................

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

Przestrzenie liniowe w zadaniach

Przestrzenie liniowe w zadaniach Przestrzenie linioe zadaniach Zadanie 1. Cz ektor [3, 4, 4 jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5 przestrzeni R 3? Roziazanie. Szukam x,, z R takich, że [3, 4, 4 x [1, 1, 1 + [1, 0,

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Wyk lad 3 Grupy cykliczne

Wyk lad 3 Grupy cykliczne Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

Łatwy dowód poniższej własności pozostawiamy czytelnikowi. Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:

Bardziej szczegółowo

1 Pierścienie, algebry

1 Pierścienie, algebry Podstawowe Własności Pierścieni Literatura Pomocnicza: 1. S.Balcerzyk,T.Józefiak, Pierścienie przemienne, PWN 2. A.Białynicki-Birula, Algebra, PWN 3. J.Browkin, Teoria ciał, PWN 4. D.Cox, J.Little, D.O

Bardziej szczegółowo