Notatki do wyk ladu IV (z )

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Notatki do wyk ladu IV (z 27.10.2014)"

Transkrypt

1 Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z ) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba ca lkowita o wartościach mi edzy 0 a n-1) W doświadczeniu Sterna-Gerlacha (191 r. - atomy srebra przelatywa ly miedzy biegunami niejednorodnego magnesu) atomy zachowywa ly sie tak, jakby momenty magnetyczne zwiazane z ich momentami pedu mog ly przyjać jedna z dwóch orientacji w polu magnetycznym. l + 1 = (3) l = 1???????? (4) POSTULAT: Elektron ma pewien dodatkowy moment pedu S niezwiazany z ruchem orbitalnym elektronu wokó l jadra SPIN Wartość kwadratu spinu: s(s + 1), gdzie s = 1 Wartość rzutu spinu: m s, magnetyczna spinowa liczba kwantowa m s = + 1 albo m s = - 1 ψ nlm (r, θ, ϕ) nie wystarcza. Trzeba wprowadzić funkcje spinowa. Ŝ α = 1 (1 + 1) α; Ŝ β = 1 (1 + 1) β (5) Ŝ z α = 1 α; Ŝ z β = 1 β (6) φ nlmms = ψ nlm σ ms (7) σ 1 = α, σ 1 = β (8)

2 Ścis le rozwiazania równania Schrödingera sa znane tylko dla kilku najprostszych uk ladów (czastka w pudle, rotator sztywny, oscylator harmoniczny, atom wodoru). Dla wiekszych uk ladów znajdowane sa rozwiazania przybliżone (czesto bardzo dok ladne). Zasada wariacyjna Dla dowolnej (porzadnej) funkcji próbnej ϕ ε = ϕ Ĥϕdτ ϕ ϕdτ E 0 (9) gdzie E 0 oznacza energi e stanu podstawowego. Czastka o masie m w jednowymiarowym pudle potencja lu o d lugości L = 1. Funkcja próbna ϕ = c 1 f 1 (x) + c f (x)), gdzie f 1 (x) = x x f (x) = x x 3 Funkcja próbna ϕ = c 1 (x x ) + c (x x 3 ) ( kandydatka na funkcje opisujac a w przybliżeniu stan czastki w pudle. WAŻNE: spe lnia warunki brzegowe, które musi spe lniać rozwi azanie dla czastki w pudle o d lugości L = 1, czyli ϕ(0) = 0 i ϕ(1) = 0) c 1 i c parametry o nieznanej wartości liczbowej ε = ϕ Ĥϕdτ ϕ ϕdτ = (10) 1 [c 0 1f 1 (x) + c f (x)]( ) d [c m dx 1 f 1 (x)) + c f (x)]dx 1 [c 0 1f 1 (x) + c f (x)][c 1 f 1 (x) + c f (x)]dx (11) gdzie H 11 = H = H 1 = H 1 = ε = H 11c 1 + H 1c 1 c + H c S 11 c 1 + S 1 c 1 c + S c f 1 (x)ĥf 1(x)dx; S 11 = f (x)ĥf (x)dx; S = f 1 (x)ĥf (x)dx; S 1 = S 1 = 0 (1) f 1 (x)f 1 (x)dx (13) f (x)f (x)dx (14) 1 0 f 1 (x)f (x)dx (15)

3 H 11 = H 1 = H 1 = h ; S 4π m 11 = 1 ; H 30 = h ; S 60π m = 1 ; 105 h 48π m ; S 1 = S 1 = 1 60 ε c 1 = 0, Wygodniej obliczyć pochodne wzgl edem c 1 i c dla: Pochodna wzgl edem c 1 : ε = ε(c 1, c ) (16) ε c = 0 (17) H 11 c 1 + H 1c 1 c + H c = ε(s 11c 1 + S 1c 1 c + S c ) (18) H 11 c 1 + H 1 c = ε(s 11 c 1 + S 1 c )+ (19) Pochodna wzgl edem c : + ε c 1 (S 11 c 1 + S 1 c 1 c + S c ) (0) H 1 c 1 + H c = ε(s 1 c 1 + S c )+ (1) + ε c (S 11 c 1 + S 1 c 1 c + S c ) () ε c 1 = 0, ε c = 0, ε min = ɛ (3) (H 11 ɛs 11 )c 1 + (H 1 ɛs 1 )c = 0 (4) (H 1 ɛs 1 )c 1 + (H ɛs )c = 0 (5) Nietrywialne rozwiazania, jeśli wyznacznik macierzy wspó lczynników jest równy 0: H 11 ɛs 11 H 1 ɛs 1 H 1 ɛs 1 H ɛs = 0 3

4 Po rozwini eciu wyznacznika i podstawieniu wartości liczbowych H 11, S 11 itd. Dwa pierwiastki równania: ɛ h ɛ 1600π m + h 4 960π 4 m = 0 (6) ɛ 1 = 5h 4π m (7) ɛ = 1h 4π m (8) ɛ 1 < ɛ (9) Po podstawieniu ɛ 1 = 5h zamiast ɛ otrzymuje sie 4π m jako rozwi azanie uk ladu równań: Po znormalizowaniu: c 1 = C, c = 0 φ 1 = 30(x x ) 5.48(x x ) (30) Dok ladne wartości energii dla czastki w pudle potencja lu: Jeśli L = 1, to E 1 = h 8m E n = n h 8mL ɛ 1 = 5h h π m 8m (31) ɛ 1 > E 1 (3) Po podstawieniu ɛ = 1h zamiast ɛ otrzymuje sie 4π m jako rozwi azanie uk ladu równań: Po znormalizowaniu: c 1 = 1, c = 1 φ = 10( 1 (x x ) + (x x 3 )) (33) 14.49x(1 x) 8.98x (1 x) (34) Jeśli L = 1, to E = 4h 8m ɛ = 1h 4π m h 8m (35) ɛ > E (36) 4

5 Postulat nierozróżnialności jednakowych czastek Funkcja falowa Φ(1, ) opisuje stan dwóch czastek, przy czym wszystkie wspó lrzedne (przestrzenne i spinowa) jednej czastki oznaczono w skrócie jako 1, a dla drugiej czastki jako. Czastki sa nierozróżnialne. Φ(1, ) = Φ(, 1) (37) Uogólnienie dla dowolnie wielu czastek Φ(1, ) = ±Φ(, 1) (38) Φ(1,, 3, 4,..., n) = Φ(, 1, 3, 4,..., n) (39) funkcja symetryczna wzgledem przestawienia (permutacji) dowolnych dwóch nierozróżnialnych czastek Φ(1,, 3, 4,..., n) = Φ(, 1, 3, 4,..., n) (40) funkcja antysymetryczna wzgledem przestawienia (permutacji) dowolnych dwóch nierozróżnialnych czastek Uk lady czastek, dla których spinowa liczba kwantowa s = 1, czyli np dla elektronu i innych fermionów opisywane sa przez funkcje falowe antysymetryczne wzgledem permutacji czastek. Uk lady bozonów opisywane sa przez funkcje symetryczne wzgledem permutacji czastek. 5

6 Jeśli wszystkie wspó lrzedne elektronu 1 sa takie same jak dla elektronu, co zapisujemy: Φ(1,, 3, 4,..., n) = Φ(1, 1, 3, 4,..., n), to Φ(1,, 3, 4,..., n) = Φ(, 1, 3, 4,..., n) (41) oznacza i musi być wówczas Φ(1, 1, 3, 4,..., n) = Φ(1, 1, 3, 4,..., n) (4) Φ(1, 1, 3, 4,..., n) = 0 (43) Zatem także Φ(1, 1, 3, 4,..., n) = 0 (44) czyli g estość prawdopodobieństwa znalezienia dwóch jednakowych fermionów w tym samym punkcie przestrzeni wynosi 0. Atom dwuelektronowy (atom helu, Z=): Dla uproszczenia: jednostki atomowe, nieskończenie cieżkie jadro: Atom wieloelektronowy (liczba elektronów n) Ĥ = r 1 r + 1 r 1 (45) Ĥ = 1 n i i=1 n i=1 Z r i + n i>j=1 1 r ij (46) Jednoelektronowa funkcja falowa ψ zależaca tylko od wspó lrzednych przestrzennych elektronu - orbital Jednoelektronowa funkcja falowa ϕ zależaca zarówno od wspó lrzednych przestrzennych jak i do spinu elektronu - spinorbital 6

7 PRZYBLIŻENIE JEDNOELEKTRONOWE Każdemu elektronowi przyporzadkowujemy oddzielny spinorbital, a funkcje falowa opisujac a stan uk ladu wieloelektronowego tworzymy z tych spinorbitali. Dwa elektrony - dwa różne spinorbitale Φ (1, ) = ϕ 1 (1)ϕ ()? (47) funkcja falowa musi być antysymetryczna wzgl edem permutacji elektronów Φ (1, ) = ϕ 1 (1)ϕ () ϕ 1 ()ϕ (1) (48) Φ(1, ) = 1 [ϕ 1 (1)ϕ () ϕ 1 ()ϕ (1)] (49) 1 Dzieki wspó lczynnikowi funkcja Φ(1, ) jest znormalizowana, jeśli ϕ 1 (1) i ϕ () sa ortogonalne i znormalizowane Φ(1, ) = 1 ϕ 1 (1) ϕ 1 () ϕ (1) ϕ () (50) Dla uk ladu n-elektronowego Φ(1,,..., n) = 1 n! ϕ 1 (1) ϕ 1 ()... ϕ 1 (n) ϕ (1) ϕ ()... ϕ (n).... ϕ n (1) ϕ n ()... ϕ n (n) (51) Wyznacznik Slatera 7

8 Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa opisujac a stan uk ladu n-elektronowego ma postać wyznacznika Slatera Do wyrażenia: ε = Φ ĤΦdτ Φ Φdτ E 0 (5) podstawiamy operator Ĥ dla danego uk ladu wieloelektronowego i funkcj e Φ w postaci wyznacznika Slatera Jak znaleźć najlepsze orbitale, z których skonstruowana jest funkcja Φ w postaci wyznacznika Slatera? (dla zainteresowanych wyprowadzenie: np. PWN 007, Uz. 6.4, str ) W. Ko los, J.Sadlej, Atom i czasteczka, Dla atomu helu: ϕ 1 = ψ 1 α, ϕ = ψ 1 β, gdzie ψ = ψ(x 1, y 1, z 1 )=ψ 1 (1) (orbital atomowy). Taki sam orbital może opisywać drugi elektron: ψ 1 (x, y, z ) =ψ 1 () Równanie różniczkowo-ca lkowe określajace optymalne orbitale Równanie Focka: Dla helu: 1 orbital ˆF (1)ψ 1 (1) = ε 1 ψ 1 (1) (53) ˆF - operator Focka ˆF (1) = 1 1 r 1 + V ee (1) (54) V ee (1) potencja l pochodzacy od oddzia lywania z drugim elektronem (opisywanym przez taki sam orbital ψ 1 ) V ee (1) = J 1 (1) K 1 (1) (55) Ogólna definicja operatorów Ĵq(1) i ˆKq (1): Ĵ q (1)ψ p (1) = [ ψq () 1 ψ q ()dτ]ψ p (1) (56) r 1 operator kulombowski operator wymienny ˆK q (1)ψ p (1) = [ ψ q() 1 r 1 ψ p ()dτ]ψ q (1) (57) 8

9 Ograniczona metoda Hartree-Focka - RHF (Restricted Hartree- Fock) Rozważamy uk lady z parzysta liczba elektronów (prostsze równania). Dla neonu n=10. Potrzeba 10 spinorbitali. Można je utworzyć z 5 orbitali: ϕ 1 = ψ 1 α, ϕ = ψ 1 β, ϕ 3 = ψ α, ϕ 4 = ψ β, ϕ 5 = ψ 3 α, ϕ 6 = ψ 3 β, ϕ 7 = ψ 4 α, ϕ 8 = ψ 4 β, ϕ 9 = ψ 5 α, ϕ 10 = ψ 5 β, Dla uk ladu n-elektronowego - n/ orbitali. (W równaniu Focka wystepuj a wspó lrzedne jednego elektronu, tu przyk ladowo 1) ˆF (1)ψ p (1) = ε p ψ p (1) p = 1,, 3, 4, 5 (58) ˆF (1) = r 1 + ˆV ee (1) (59) ˆV ee (1) operator odpowiadajacy energii potencjalnej elektronu w statycznym uśrednionym polu wytworzonym przez pozosta le elektrony (z których każdy opisywany jest przez orbital) ˆF (1)ψ p (1) = ε p ψ p (1) (60) ψp (1) ˆF (1)ψ p (1)dτ 1 = ε p ψp (1)ψ p(1)dτ 1 (61) ε p = ψp(1)( 1 1)ψ p (1)dτ 1 ψp(1) ψ p (1)dτ 1 + r 1 ψ p(1) ˆV ee ψ p (1)dτ 1 (6) ε p - efektywna energia elektronu opisywanego orbitalem ψ p ˆV ee zawiera operatory: kulombowskie Ĵq i wymienne ˆK q Operator kulombowski wk lady postaci: ψ p (1)ψ p(1) 1 r 1 ψ q ()ψ q()dτ 1 dτ (63) odpychanie elektronów opisywanych przez orbitale ψ p i ψ q wk lady pochodzace od operatora ˆK q nie wystepuj a w oddzia lywaniu ladunków klasycznych 9

10 Energia ca lkowita w metodzie Hartree-Focka E HF : E HF p ε p (64) Energia ca lkowita NIE JEST RÓWNA sumie energii orbitalnych odpowiadaj acych orbitalom obsadzonym przez elektrony Suma energii orbitalnych - podwójne liczenie oddzia lywania mi edzy elektronami E HF = p ε p E ee (65) gdzie E ee - wk lad do energii pochodzacy od oddzia lywania miedzy elektronami Jak rozwiazać: ˆF (1)ψ p (1) = ε p ψ p (1) równanie pseudow lasne Operator Focka ˆF zależy od orbitali ψ p, czyli od szukanych rozwiazań równania! Metoda iteracyjna rozwiazywania równania Focka START - przybliżone orbitale ( byle jakie ) 1. zbudowanie operatora Focka z orbitali obsadzonych. rozwiazanie równania Focka orbitale (lepsze) 3. wybranie orbitali obsadzonych (niskie energie orbitalne) 4. sprawdzenie, czy energia ca lkowita uleg la istotnemu obniżeniu: TAK - powrót do punktu 1 NIE - KONIEC Metoda pola samouzgodnionego SCF (Self Consistent Field) 10

11 Orbitale atomowe: ˆF (1)ψ p (1) = ε p ψ p (1) (66) - cześć katowa jak dla atomu wodoru (symetria sferyczna) - cz eść przestrzenna inna niż dla atomu wodoru ε p - energia orbitalna zależność od n i od l Metody: numeryczne rozwiazanie równania obliczanie analitycznych przybliżeń do orbitali ψ p = m c pi χ i, (67) i=1 gdzie χ i tzw. funkcje bazy, c pi -poszukiwane wspó lczynniki (metoda Hartree- Focka- Roothaana) Energia orbitalna ε p - interpretowana jako energia elektronu poruszajacego sie w polu adra i uśrednionym polu potencja lu pozosta lych elektronów j Można interpretować ε p jako energie elektronu w atomie, ale jest to pojecie wynikajace z przyjecia przybliżenia jednoelektronowego. Nie istnieje żadna metoda doświadczalna pozwalajaca na dok ladne wyznaczenie energii określonego elektronu w atomie (lub innym uk ladzie wieloelektronowym). Energia jonizacji: E jonizacji = E jonu E atomu E jonizacji,p - energia potrzebna do oderwania od atomu elektronu opisywanego przez orbital ψ p Twierdzenie Koopmansa E jonizacji,p ε p 11

12 Metoda RHF - uk lady zamkni etopow lokowe Uk lady otwartopow lokowe: Metoda ROHF (Restricted Open-Shell Hartree-Fock) np. dla 5 elektronów spinorbitale: ψ 1 α, ψ 1 β, ψ α, ψ β, ψ 3 α, gdzie ψ i oznacza orbital Metoda UHF (Unrestricted Hartree-Fock) np. dla 5 elektronów spinorbitale: ψ 1 α, ψ 1 β, ψ α, ψ β, ψ 3 α, różne orbitale dla różnych spinów Sens fizyczny (interpretacja statystyczna) - tylko kwadrat modu lu funkcji falowej opisujacej wszystkie elektrony danego atomu. Opis stanu uk ladu wieloelektronowego za pomoca (nawet najlepszej) funkcji Hartree- Focka energia uk ladu obarczona b l edem wynikajacym z zastosowania przybliżenia jednoelektronowego E kor = E HF E dok Energia korelacji - b l ad pope lniany, gdy energia jest obliczana za pomoca najlepszej funkcji Hartree-Focka (E HF ) Przybliżenie jednoelektronowe pozwala wyrazić strukture elektronowa atomu za pomoca jego konfiguracji, czyli przyporzadkowania elektronów orbitalom (zgodnie z zakazem Pauliego). Konfiguracja atomu w stanie podstawowym. Na przyk lad, dla atomu He: 1s Konfiguracja atomu w stanie wzbudzonym. Na przyk lad, dla atomu He w jednym ze stanów wzbudzonych: 1s 1 s 1 1

13 Trzeba rozważać energi e (stan) atomu wieloelektronowego jako ca lości. Atom He w jednym ze stanów wzbudzonych: 1s 1 s 1 1 Ψ = 1 [ψ 1s(1) ψ s () + ψ s (1) ψ 1s ()][α(1) β() β(1) α()] (68) singlet 1 [ψ 1s(1) ψ s () ψ s (1) ψ 1s ()]α(1) α() (69) 1 [ψ 1s(1) ψ s () ψ s (1) ψ 1s ()][α(1) β() + β(1) α()] (70) 1 [ψ 1s(1) ψ s () ψ s (1) ψ 1s ()]β(1) β() (71) 3 Ψ tryplet (3 funkcje falowe) 13

14 Oznaczenia: ψ 1s jako 1s, ψ s jako s Funkcja falowa dla singletu 1 Ψ = 1 [1s(1) s() + s(1) 1s()][α(1) β() β(1) α()] (7) 1 Ψ = 1 [1s(1)α(1)s()β() + s(1)α(1)1s()β() (73) 1s(1)β(1)s()α() s(1)β(1)1s()α()] (74) = 1 ( 1s(1)α(1) 1s()α() s(1)β(1) s()β() (75) 1s(1)β(1) 1s()β() s(1)α(1) s()α() ) == 1 (W 1 W ) (76) Jedna z funkcji falowych dla trypletu (M S =0, wartość rzutu wypadkowego spinu na wyróżniony kierunek wynosi 0) 3 Ψ = 1 [1s(1) s() s(1) 1s()][α(1) β() + β(1) α()] (77) 1 Ψ = 1 [1s(1)α(1)s()β() s(1)α(1)1s()β() (78) +1s(1)β(1)s()α() s(1)β(1)1s()α()] (79) = 1 ( 1s(1)α(1) 1s()α() s(1)β(1) s()β() + (80) 1s(1)β(1) 1s()β() s(1)α(1) s()α() ) == 1 (W 1 + W ) (81) Zatem, te same konfiguracje (wyznaczniki) pojawiaja sia dla różnych stanów wzbudzonych (tu zarówno dla stanu singletowego jak dla trypletowego atomu helu). Funkcja falowa w postaci jednego wyznacznika nie nadaje si e do opisu stanu uk ladu otwartopow lokowego, dla którego wyst epuje pojedyncze obsadzenie wi ecej niż jednego orbitalu, a spin ca lkowity jest niższy niż najwyższy możliwy dla danej konfiguracji. Metoda UHF (Unrestricted Hartree-Fock; jeden wyznacznik - różne orbitale dla różnych spinów) może prowadzić do niefizycznych stanów, które nie maja określonej wartości ca lkowitego spinu. 14

15 Cz eści przestrzenne funkcji falowej dla stanów wzbudzonych 1 S (singlet) i 3 S (tryplet) atomu helu można w przybliżeniu przedstawić jako: Ψ sing = 8 ( e ( r 1) [1 r ]e ( r ) + e ( r ) [1 r 1 ]e ( r 1) ) Ψ trip = 8 ( e ( r 1) [1 r ]e ( r ) e ( r ) [1 r 1 ]e ( r 1) ) Interesuje nas prawdopodobieństwo znalezienia elektronu w określonej odleg lości r od jadra (dla elektronu 1 (r 1 ) i (r )) Po wykonaniu wykresów: (r 1 r Ψ sing ) (r 1 r Ψ trip ) widać wyraźnie, że rozk lad g estości elektronowej jest inny dla singletu i dla trypletu. Oddzia lywanie elektrostatyczne elektronów zależy od ich spinów (rozk lad g estości elektronowej zależy od spinów elektronów) Konfiguracja elektronowa nie określa stanu atomu wieloelektronowego. 15

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V (z 03.11.014) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

Układy wieloelektronowe

Układy wieloelektronowe Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające

Bardziej szczegółowo

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu.

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu. Notatki do wyk ladu VI Stany atomu wieloelektronowego o określonej energii. Konfiguracja elektronowa atomu - zbiór spinorbitali, wykorzystywanych do konstrukcji funkcji falowej dla danego stanu atomu;

Bardziej szczegółowo

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B: Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()

Bardziej szczegółowo

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B: Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()

Bardziej szczegółowo

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa Notatki do wyk ladu VI (z 18.11.2013) Symbol termu: 2S+1 L (1) L -liczba kwantowa ca lkowitego orbitalnego momentu pedu Duże litery S, P, D, F, itd. dla L=0, 1, 2, 3, itd. 2S+1 - multipletowość; S - liczba

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Wykład 16: Atomy wieloelektronowe

Wykład 16: Atomy wieloelektronowe Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Wyk lad 6 Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Uk lady modelowe czastka swobodna czastka na barierze potencja lu czastka w pudle oscylator harmoniczny oscylator Morse

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Chemia kwantowa makroczasteczek dla III roku biofizyki; kurs WBt-ZZ28

Chemia kwantowa makroczasteczek dla III roku biofizyki; kurs WBt-ZZ28 Chemia kwantowa makroczasteczek konspekt wyk ladu dla III roku biofizyki; kurs WBt-ZZ28 Mariusz Radoń (ostatnia aktualizacja: 5 czerwca 2017) Z uwagi na roboczy charakter niniejszych notatek moga sie w

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

Teoria funkcjona lu g Density Functional Theory (DFT)

Teoria funkcjona lu g Density Functional Theory (DFT) Teoria funkcjona lu g estości Density Functional Theory (DFT) Cz eść slajdów tego wyk ladu pochodzi z wyk ladu wyg loszonego przez dra Lukasza Rajchela w Interdyscyplinarnym Centrum Modelowania Matematycznego

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład X

INŻYNIERIA BIOMEDYCZNA. Wykład X INŻYNIERIA BIOMEDYCZNA Wykład X 2015-12-25 1 Mechanika kwantowa opiera się na dwóch prawach Dualizm korpuskularno-falowy (de Broglie a) λ h p Zasada nieoznaczoności Heisenberga p x h/(4 ) Gęstość prawdopodobieństwa

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ

Bardziej szczegółowo

Metoda Hückla. edzy elektronami π. Ĥ ef (i) (1) i=1. kinetyczna tego elektronu oraz energie

Metoda Hückla. edzy elektronami π. Ĥ ef (i) (1) i=1. kinetyczna tego elektronu oraz energie Notatki do wyk ladu X (z 08.12.2014) Metoda Hückla Uproszczona wersja metody orbitali molekularnych (MO) w przybliżeniu liniowej kombinacji orbitali atomowych (LCAO) stosowana do opisu struktury elektronowej

Bardziej szczegółowo

Ćwiczenia # 8: Reakcje rodnikowe Kopolimeryzacja germylenu i chinonu

Ćwiczenia # 8: Reakcje rodnikowe Kopolimeryzacja germylenu i chinonu Ćwiczenia # 8: Reakcje rodnikowe Kopolimeryzacja germylenu i chinonu Opis ten znajdziesz w sieci pod adresem: https://www.student.chemia.uj.edu.pl/~tborowsk Uwagi lub/i zapytania prosz e kierować na adres

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Modelowanie, wybór i budowa modelu procesu. Modelowanie matematyczne. Maszyny matematyczne. Modelowanie fizyczne. Energia w reakcjach.

Modelowanie, wybór i budowa modelu procesu. Modelowanie matematyczne. Maszyny matematyczne. Modelowanie fizyczne. Energia w reakcjach. Modelowanie, wybór i budowa modelu procesu. Modelowanie służy do poznania danego procesu, po przez zastąpienie go uproszczonym układem, który odzwierciedla jedynie wybrane cechy procesu. Analizę informacji

Bardziej szczegółowo

Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp

Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp dr inż. Paweł Scharoch, dr Jerzy Peisert Instytut Fizyki Politechniki Wrocławskiej, 03.02.2005r. Streszczenie: wyjaśnienie pojęcia

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Metoda oddzia lywania konfiguracji (CI)

Metoda oddzia lywania konfiguracji (CI) Metoda oddzia lywania konfiguracji (CI) Spinorbitale: obsadzone φ a i wirtualne φ r : ɛ a ɛ HOMO, ɛ r ɛ LUMO ê r a wykonuje podstawienie φ a φ r, np. ê 7 2 φ 1 φ 2 φ 3... φ N = φ 1 φ 7 φ 3... φ N Operator

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

Fizyka atomowa r. akad. 2012/2013

Fizyka atomowa r. akad. 2012/2013 r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu

Bardziej szczegółowo

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3 Liczby kwantowe Rozwiązaniem równania Schrödingera są pewne funkcje własne, które można scharakteryzować przy pomocy zestawu trzech liczb kwantowych n, l, m. Liczby kwantowe nie mogą być dowolne, muszą

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Wykład 3: Atomy wieloelektronowe

Wykład 3: Atomy wieloelektronowe Wykład 3: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

Rotacje i drgania czasteczek

Rotacje i drgania czasteczek Rotacje i drgania czasteczek wieloatomowych Gdy znamy powierzchnie energii potencjalnej V( R 1, R 2,..., R N ) to możemy obliczyć poziomy energetyczne czasteczki. Poziomy te sa w ogólności efektem: rotacji

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Chemia Ogólna wykład 1

Chemia Ogólna wykład 1 Chemia Ogólna wykład 1 Materia związki chemiczne cząsteczka http://scholaris.pl/ obojętne elektrycznie indywiduum chemiczne, złożone z więcej niż jednego atomu, które są ze sobą trwale połączone wiązaniami

Bardziej szczegółowo

Wartość n 1 2 3 4 5 6 Symbol literowy K L M N O P

Wartość n 1 2 3 4 5 6 Symbol literowy K L M N O P 3.4 Liczby kwantowe Funkcja falowa jest wyrażeniem matematycznym, które opisuje elektron jako cząstkę o właściwościach falowych a to oznacza, że każdemu z elektronów w atomie możemy przyporządkować jedną

Bardziej szczegółowo

Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano.

Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano. Chemia teoretyczna to dział chemii zaliczany do chemii fizycznej, zajmujący się zagadnieniami związanymi z wiedzą chemiczną od strony teoretycznej, tj. bez wykonywania eksperymentów na stole laboratoryjnym.

Bardziej szczegółowo

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony Materiał powtórzeniowy do sprawdzianów - konfiguracja elektronowa, elektrony walencyjne, współczesny układ pierwiastków chemicznych, przykładowe zadania z rozwiązaniami. I. Budowa atomu i model atomu wg.

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

Inżynieria Biomedyczna. Wykład XII

Inżynieria Biomedyczna. Wykład XII Inżynieria Biomedyczna Wykład XII Plan Wiązania chemiczne Teoria Lewisa Teoria orbitali molekularnych Homojądrowe cząsteczki dwuatomowe Heterojądrowe cząsteczki dwuatomowe Elektroujemność Hybrydyzacja

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

Elementy fizyki kwantowej. Obraz interferencyjny. Funkcja falowa Ψ. Funkcja falowa Ψ... Notatki. Notatki. Notatki. Notatki. dr inż.

Elementy fizyki kwantowej. Obraz interferencyjny. Funkcja falowa Ψ. Funkcja falowa Ψ... Notatki. Notatki. Notatki. Notatki. dr inż. Elementy fizyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 013/14 1 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Obraz interferencyjny

Bardziej szczegółowo

Spektroskopia magnetyczna

Spektroskopia magnetyczna Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Wykład 27. Elementy współczesnej fizyki atomów i cząsteczek.

Wykład 27. Elementy współczesnej fizyki atomów i cząsteczek. 1 Wykład 7 Elementy współczesnej fizyki atomów i cząsteczek. 1.1 Atom wodoru w mechanice kwantowej. Znalezienie poziomów energetycznych elektronu w atomie wodoru (a także układów wodoropodobnych: jonu

Bardziej szczegółowo

Uk lady modelowe II - oscylator

Uk lady modelowe II - oscylator Wyk lad 4 Uk lady modelowe II - oscylator Model Prawo Hooke a F = m d 2 x = kx = dv dt2 dx Potencja l Równanie ruchu V = 1 2 kx2 d 2 x dt 2 + k m x = 0 Obraz klasyczny Rozwiazania k x = A sin t = A sin

Bardziej szczegółowo

Elementy fizyki kwantowej. Obraz interferencyjny. Motto. Funkcja falowa Ψ. Notatki. Notatki. Notatki. Notatki. dr inż.

Elementy fizyki kwantowej. Obraz interferencyjny. Motto. Funkcja falowa Ψ. Notatki. Notatki. Notatki. Notatki. dr inż. Elementy fizyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Obraz interferencyjny De Broglie

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki

Bardziej szczegółowo

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń: Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Zakaz Pauliego Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Zakaz Pauliego Układ okresowy pierwiastków Novosibirsk Russia September 00 W-6 (Jarosewic) slajdy Na podstawie preentacji prof. J. Rutkowskiego Budowa atomów Atomy wieloelektronowe Zaka Pauliego Układ okresowy pierwiastków Atomy wieloelektronowe

Bardziej szczegółowo

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych.

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek Geometria cząsteczek decyduje zarówno o ich właściwościach fizycznych jak i chemicznych, np. temperaturze wrzenia,

Bardziej szczegółowo

Korelacja elektronowa

Korelacja elektronowa Korelacja elektronowa oraz metody jej uwzgl edniania oparte na funkcji falowej Mariusz Radoń 04.04.2017 11.04.2017 Wymiana i korelacja kulombowska W metodzie HF Elektrony o jednakowych spinach nie moga

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1).

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1). kwiecień 9 Ćwiczenia IV Zadania Zadanie Obliczyć kanoniczna sum e statystyczna funkcj e podzia lu, energi e swobodna i ciep lo w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly Rozwiazanie :

Bardziej szczegółowo

Ćwiczenie 3. Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe *

Ćwiczenie 3. Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe * Ćwiczenie 3 Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe * 1 Ćwiczenie 3 Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe * I. Narysuj etylen a) Wybierz Default

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

struktura atomowa 9 grudnia 2016 struktura atomowa

struktura atomowa 9 grudnia 2016 struktura atomowa 9 grudnia 2016 układ okresowy 1869 - układ Mendelejewa (60 znanych pierwiatków), układ według mas atomowych, z periodycznie powtarzającymi się własnościami chemicznymi, przewidział istnienie: galu (odkrycie

Bardziej szczegółowo

0900 FS2 2 FAC. Fizyka atomu i cząsteczki FT 8. WYDZIAŁ FIZYKI UwB KOD USOS: Karta przedmiotu. Przedmiot moduł ECTS. kierunek studiów: FIZYKA 2 st.

0900 FS2 2 FAC. Fizyka atomu i cząsteczki FT 8. WYDZIAŁ FIZYKI UwB KOD USOS: Karta przedmiotu. Przedmiot moduł ECTS. kierunek studiów: FIZYKA 2 st. WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS2 2 FAC Karta przedmiotu Przedmiot moduł ECTS Fizyka atomu i cząsteczki FT 8 kierunek studiów: FIZYKA 2 st. specjalność: FIZYKA TEORETYCZNA Formy zajęć wykład konwersatorium

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Chemia teoretyczna (023) 1. Informacje ogólne koordynator modułu dr hab. Monika Musiał, prof. UŚ rok akademicki

Bardziej szczegółowo

Atomy wieloelektronowe i cząsteczki

Atomy wieloelektronowe i cząsteczki Atomy wieloelektronowe i cząsteczki 1 Atomy wieloelektronowe Wodór ma liczbę atomową Z=1 i jest prostym atomem. Zawiera tylko jeden elektron i jeden proton stąd potencjał opisuje oddziaływanie kulombowskie

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 13. Fizyka atomowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek

Bardziej szczegółowo

Korelacja elektronowa w metodzie elongacji

Korelacja elektronowa w metodzie elongacji March 28, 2006 1 2 3 4 5 6 Waskie gard la metody jednowyznacznikowe wyznaczanie ca lek dwuelektronowych potrzebnych do budowy macierzy Focka: formalnie O(N 4 ), asymptotycznie O(N 2 ) diagonalizacja macierzy

Bardziej szczegółowo

Wykład Atomy wieloelektronowe, układ okresowy pierwiastków.

Wykład Atomy wieloelektronowe, układ okresowy pierwiastków. Wykład 36 36. Atomy wieloelektronowe, układ okresowy pierwiastków. Fizycy badający strukturę atomów wieloelektronowych starali się odpowiedzieć na fundamentalne pytanie, dlaczego wszystkie elektrony w

Bardziej szczegółowo

Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści

Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, 2011 Spis treści Przedmowa 15 Przedmowa do wydania drugiego 19 I. PODSTAWY I POSTULATY 1. Doświadczalne podłoŝe mechaniki kwantowej

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY. Monika Musiał. c.us.edu.pl/ mm

PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY. Monika Musiał.  c.us.edu.pl/ mm PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY http://zcht.mf c.us.edu.pl/ mm przybliżenie jednoelektronowe Układy wieloelektronowe- atomy i cz asteczki zawieraj ace dwa i wiȩcej elektronów; układy

Bardziej szczegółowo

TEORETYCZNE BADANIE STRUKTURY ELEKTRONOWO-OSCYLACYJNEJ I PROCESU FOTODYSOCJACJI CZĄSTECZKI LITU. Patryk Jasik

TEORETYCZNE BADANIE STRUKTURY ELEKTRONOWO-OSCYLACYJNEJ I PROCESU FOTODYSOCJACJI CZĄSTECZKI LITU. Patryk Jasik Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Katedra Fizyki Teoretycznej i Informatyki Kwantowej Rozprawa doktorska TEORETYCZNE BADANIE STRUKTURY ELEKTRONOWO-OSCYLACYJNEJ I PROCESU

Bardziej szczegółowo

CHEMIA WARTA POZNANIA

CHEMIA WARTA POZNANIA Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Wydział Chemii UAM Poznań 2011 Część I Atom jest najmniejszą częścią pierwiastka chemicznego, która zachowuje jego właściwości chemiczne

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Normalizacja funkcji falowej

Normalizacja funkcji falowej Normalizacja funkcji falowej Postulaty mechaniki kwantowej Zadanie. Wyznacz stałą normalizacyjną i podaj postać funkcji unormowanej: Ψ = Ncosαx) dla x [, a] Opis sposobu rozwiązania zadania krok po kroku:.

Bardziej szczegółowo

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa Widmo sodu, serie p główna s- ostra d rozmyta f -podstawowa Przejścia dozwolone w Na Reguły wyboru: l =± 1 Diagram Grotriana dla sodu, z lewej strony poziomy energetyczne wodoru; należy zwrócić uwagę,

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków organicznych

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia III. Zadanie 1. Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B.

Zadania. kwiecień 2009. Ćwiczenia III. Zadanie 1. Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B. kwiecień 009 Ćwiczenia III Zadania Zadanie 1 Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B Udowodnić że jeżeli ln Ω A (E A < ln Ω B(E B E A E B to energia przep lynie z uk

Bardziej szczegółowo

Konwersatorium 1. Zagadnienia na konwersatorium

Konwersatorium 1. Zagadnienia na konwersatorium Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują

Bardziej szczegółowo

24 Spin i efekty relatywistyczne

24 Spin i efekty relatywistyczne 4 Spin i efekty relatywistyczne 4. Doświadczenie Sterna Gerlacha Zauważmy, że klasycznie na moment magnetyczny µ w stałym polu magnetycznym B działa moment siły N = µ B. (4.) Efektem tego oddziaływania

Bardziej szczegółowo

Chemia kwantowa - proste modele

Chemia kwantowa - proste modele Uniwersytet Warszawski Wydział Chemii Małgorzata Jeziorska, Aleksandra Tucholska Michał Hapka, Tomasz Grining Chemia kwantowa - proste modele Skrypt dla studentów zainteresowanych raczej innymi działami

Bardziej szczegółowo

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Kondensacja Bosego-Einsteina

Kondensacja Bosego-Einsteina Kondensacja Bosego-Einsteina W opisie kwantowo-mechanicznym stan konkretnego uk ladu fizycznego jest określony poprzez funkcje falowa ψ r, r 2,...), gdzie r i oznaczaja po lożenia poszczególnych cza stek.

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w

Bardziej szczegółowo