POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI

Wielkość: px
Rozpocząć pokaz od strony:

Download "POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI"

Transkrypt

1 POLIECHNIKA POZNAŃSKA INSYU KONSRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI ĆWICZENIE PROJEKOWE NR 2 DYNAMIKA RAM WERSJA KOMPUEROWA Z PRZEDMIOU MECHANIKA KONSRUKCJI Wykonał: Kamil Sobczyński WBiIŚ; SUM; 2KBI I rok; semestr II Prowadzący: mgr inż. A. Kaczor POZNAŃ 21

2 ĆWICZENIE PROJEKOWE Z PRZEDMIOU MACHANIKA KONSRUKCJI Zawartość opracowania. I. Strona tytułowa II. Karta projektowa/konsultacyjna III. Opis techniczny 1. Podstawa opracowania 2. Podstawowe założenia obliczeń IV. Obliczenia 1. Dynamika ram wersja komputerowa II semestr studiów uzupełniających magisterskich Kamil Sobczyński 2

3 III. Opis techniczny 1. Podstawa opracowania a) Ćwiczenia projektowe z przedmiotu Mechanika konstrukcji, b) J. Rakowski, Mechanika budowli WPP, Poznań 27, c) d) 2. Podstawowe założenia obliczeń a) Projekt nr 2 Dynamika ram wersja komputerowa Dane: kąt nachylenia pręta nr 4: α=26.565, sztywność ramy EJ const., przekrój pręta rygli (pręt nr 1 i 4) IPE3, h. 3m, przekrój pręta słupów (pręt nr 2 i 3) IPE24, h. 24m, współczynnik sprężystości podłużnej: E 25 GPa. Szukane: obliczyć częstości drgań własnych, narysować pierwsze trzy postacie drgań własnych. Założenie: przyjęto, że 1 pręt = 1 element, II semestr studiów uzupełniających magisterskich Kamil Sobczyński 3

4 IV. Obliczenia 1. Dynamika ram wersja komputerowa Schemat konstrukcji: Przemieszczenia w układzie globalnym i lokalnym: Przyjęto do obliczeń, że ramę tworzą pręty stalowe: rygiel (pręt 1 i 4): IPE3, 4 J 98cm, 2 A 69.cm,.2kg / m 54, słup (pręt 2 i 3): IPE24, 4 J 425cm, 2 A 46.1cm,.2kg / m 36, sztywność prętów: (1i4) EJ (1i4) Przeprowadzono redukcję statyczną: pręt nr 4 przegub na lewym końcu N m, (2i3) 2 EJ N m, EA N, (2i3) EA 9455 N. II semestr studiów uzupełniających magisterskich Kamil Sobczyński 4

5 abela powiązań: układ L pręt układ G pręt układ G pręt układ G pręt układ G MACIERZE SZYWNOŚCI UKŁADU Pręt nr 1 (obustronnie utwierdzony): Macierz sztywności w układzie globalnym: K1= Macierz transformacji jest macierzą jednostkową i zachodzi K 1 =K 1. Układ lokalny pokrywa się z układem globalnym. K ~ K K ~ K ( e ) ( e) ( e) ( e) cosα sinα 1 C= sinα cosα = ~ I C = C 1 1 = 1 1 II semestr studiów uzupełniających magisterskich Kamil Sobczyński 5

6 Pręt nr 2 (obustronnie utwierdzony): Macierz sztywności w układzie lokalnym: K2= ransformacja do układu globalnego: ~ K ( e ) K ( e) 1 1 = = 1 1 Macierz sztywności elementu 2 po transformacji: K2= II semestr studiów uzupełniających magisterskich Kamil Sobczyński 6

7 Pręt nr 3 (obustronnie utwierdzony): Macierz sztywności w układzie lokalnym: K3= ransformacja do układu globalnego: ~ K ( e ) K ( e) 1 1 = = 1 1 Macierz sztywności elementu 3 po transformacji: K3= II semestr studiów uzupełniających magisterskich Kamil Sobczyński 7

8 Pręt nr 4 (z przegubem na lewym końcu): Macierz sztywności w układzie lokalnym: K4= ransformacja do układu globalnego: ~ K ( e ) K ( e),9,4,4,9 =,9,4,4,9,9,4,4,9 =,9,4,4,9 Macierz sztywności elementu 4 po transformacji: K4= II semestr studiów uzupełniających magisterskich Kamil Sobczyński 8

9 Macierz sztywności układu [K]x1 3 układu po agregacji: II semestr studiów uzupełniających magisterskich Kamil Sobczyński 9

10 MACIERZE MAS UKŁADU Pręt nr 1 (obustronnie utwierdzony): Macierz mas w układzie globalnym: M1= ,3 45,2 1 1,7 71, 34,8 41,9 2 71, 64,5 41,9 48,4 3 45,2 9,3 4 34,8 41,9 1,7 71, 5 41,9 48,4 71, 64,5 6 Macierz transformacji jest macierzą jednostkową i zachodzi M 1 =M 1. Układ lokalny pokrywa się z układem globalnym. M ~ M M ~ M ( e ) ( e) ( e) ( e) ~ I cosα sinα 1 C= sinα cosα = C = C 1 1 = 1 1 II semestr studiów uzupełniających magisterskich Kamil Sobczyński 1

11 Pręt nr 2 (obustronnie utwierdzony): Macierz mas w układzie lokalnym: M2= ,2 15, ,6 11,9 11,6 7, 14 11,9 5,4 7, 4, 15 15,1 3,2 1 11,6 7, 33,6 11,9 2 7, 4, 11,9 5,4 3 ransformacja do układu globalnego: ~ M ( e ) M( e) 1 1 = = 1 1 Macierz mas elementu 2 po transformacji: M2= ,6 11,9 11,6 7, 13 3,2 15, ,9 5,4 7, 4, 15 11,6 7, 33,6 11,9 1 15,1 3,2 2 7, 4, 11,9 5,4 3 II semestr studiów uzupełniających magisterskich Kamil Sobczyński 11

12 Pręt nr 3 (obustronnie utwierdzony): Macierz mas w układzie lokalnym: M3= ,2 15,1 1 33,6 11,9 11,6 7, 11 11,9 5,4 7, 4, 12 15,1 3, ,6 7, 33,6 11,9 14 7, 4, 11,9 5,4 15 ransformacja do układu globalnego: ~ M ( e ) M( e) 1 1 = = 1 1 Macierz mas elementu 3 po transformacji: M3= ,6 11,9 11,6 7, 1 3,2 15, ,9 5,4 7, 4, 12 11,6 7, 33,6 11, ,1 3,2 14 7, 4, 11,9 5,4 15 II semestr studiów uzupełniających magisterskich Kamil Sobczyński 12

13 Pręt nr 4 (z przegubem na lewym końcu): Macierz mas w układzie lokalnym: M4= , 5, ,4 42,2 66, ,5 11, 7 42,2 147,2 145,2 8 66,5 145,2 18,3 9 ransformacja do układu globalnego: ~ M ( e ) M( e),9,4,4,9 =,9,4,4,9,9,4,4,9 =,9,4,4,9 Macierz mas elementu 4 po transformacji: M4= ,1 11,8 48,8 3,3 29, ,8 77,3 3,3 43,9 59, ,8 3,3 11,2 18,5 64,9 7 3,3 43,9 18,5 137,9 129,8 8 29,8 59,5 64,9 129,8 18,3 9 II semestr studiów uzupełniających magisterskich Kamil Sobczyński 13

14 Macierz mas układu [M] układu po agregacji: ,3 45,2 11,6 7, 1 33,6 11, ,7 71, 3,2 71, 64,5 11,9 5,4 34,8 41,9 15,1 2 41,9 48,4 7, 4, ,2 9, ,8 41,9 1,7 71, ,9 48,4 71, 64, ,2 18,5 64,9 48,8 3, ,5 137,9 129,8 3,3 43,9 64,9 129,8 18,3 29,8 59,5 33,6 11,9 11,6 7, 3,2 15,1 11,9 5,4 7, 4, 33,6 11, ,6 7, 48,8 3,3 29,8 11,6 7, 33,6 11, ,1 11,8 3, ,1 3,3 43,9 59,5 15,1 3, ,8 77,3 11,9 5,4 14 7, 4, 7, 4, 11,9 5, ,9 11,9 11,6 7, ,8 71, 15, ,9 71, 69,9 7, 4, ,6 7, 162,3 11, ,1 11,8 137, , 4, 1, II semestr studiów uzupełniających magisterskich Kamil Sobczyński 14

15 Macierz sztywności układu [K]: Po uwzględnieniu warunków podparcia q 412 = oraz redukcji momentów M 16 =, otrzymujemy macierz. K= Macierz mas układu [M]: Po uwzględnieniu warunków podparcia q 412 = oraz redukcji momentów M 16 =, otrzymujemy macierz. M= ,9 11,9 11,6 7, 1 13,8 71, 15,1 2 11,9 71, 69,9 7, 4, 3 11,6 7, 162,3 11, ,1 11,8 137,7 14 7, 4, 1,8 15 Równanie równowagi dynamicznej układu (drgania własne):.. K q M q q q sin( t) (1) ( M) q (2) K 2 (3) Podstawiając macierze K i M do równania (2) wyznaczamy wartości własne λ oraz wektory własne q. Rozwiązaniem równania jest 6 wartości własnych λ i 6 wektorów własnych q. Obliczenia wykonano w programie UPW. Częstości kołowe drgań własnych na podstawie wzoru (3). Wartości własne i częstości kołowe drgań własnych: λ [rad 2 /s 2 ] , 1234, 16855, , , 13238, ω [rad/s] 57,8 196,8 1268,3 152,9 1859,7 3638,4 II semestr studiów uzupełniających magisterskich Kamil Sobczyński 15

16 Wektory własne dla 3 pierwszych częstości kołowych drgań własnych w układzie globalnym: q1 1,1891 q2 1,36215 q3 1, , , , ,4251 3, , , , , , , , , , , ransformacja do układu lokalnego: q ~ i q i 1 CZĘSOŚĆ KOŁOWA DRGAŃ WŁASNYCH: Pręt nr 1 (obustronnie utwierdzony): cosα sinα 1 C= sinα cosα = C = C 1,1891,2 1 1,17594, ,4251 1,43 3 = 1 q1= 1= II semestr studiów uzupełniających magisterskich Kamil Sobczyński 16

17 Pręt nr 2 (obustronnie utwierdzony): 1,13896, ,1595,131 14,354883, = 1 q2=,1891 2=, ,17594,2 2 1,4251 1,43 3 Pręt nr 3 (obustronnie utwierdzony): = 1 q3=, =, ,1595,131 14,354883, Pręt nr 4 (z przegubem na lewym końcu):,9,4,13896,7 13,4,9,1595,153 14,354883, =,9,4 q4= 4= 7,4, CZĘSOŚĆ KOŁOWA DRGAŃ WŁASNYCH: II semestr studiów uzupełniających magisterskich Kamil Sobczyński 17

18 Pręt nr 1 (obustronnie utwierdzony): 1,36215,36 1 1,29613,296 2,589191,589 3 = 1 q1= 1= Pręt nr 2 (obustronnie utwierdzony): 1,36215, ,29613,36 14,589191, = 1 q2=,1891 2=, ,17594,2 2 1,4251 1,43 3 Pręt nr 3 (obustronnie utwierdzony): = 1 q3=, =, ,286232,762 14,425473, II semestr studiów uzupełniających magisterskich Kamil Sobczyński 18

19 Pręt nr 4 (z przegubem na lewym końcu):,9,4,762276,554 13,4,9,286232,597 14,425473, =,9,4 q4= 4= 7,4, CZĘSOŚĆ KOŁOWA DRGAŃ WŁASNYCH: Pręt nr 1 (obustronnie utwierdzony): 1,37975,38 1 1,436356,436 2,33335,333 3 = 1 q1= 1= Pręt nr 2 (obustronnie utwierdzony): 1,181243, ,27445, , 1, 15 = 1 q2=, =, ,436356,38 2,33335,333 3 II semestr studiów uzupełniających magisterskich Kamil Sobczyński 19

20 Pręt nr 3 (obustronnie utwierdzony): = 1 q3=, =, ,27445, , 1, 15 Pręt nr 4 (z przegubem na lewym końcu):,9,4,181243,285 13,4,9,27445, , 1, 15 =,9,4 q4= 4= 7,4,9 8 9 Postacie drgań własnych Przemieszczenia punktów na długości elementów (prętów) w oparciu o przemieszczenia węzłowe i funkcje kształtu: u ~ ( ~ x ) q~ N ( ~ x) q~ N ( ~ ) x v ~ ( ~ x ) q~ ( ~ ) ~ ( ~ ) ~ ( ~ ) ~ ( ~ 2 N2 x q3 N3 x q5 N5 x q6 N6 x) II semestr studiów uzupełniających magisterskich Kamil Sobczyński 2

21 1 POSAĆ DRGAŃ WŁASNYCH: Pręt nr 1, L=5.m (obustronnie utwierdzony): [m] N1 N2 N3 N4 N5 N6 u ~ ( ~ x ) [m] v ~ ( ~ x) [m] 1 1,1891, ,25,75,844,73,25,156,234,1418, ,5,5,5,625,5,5,625,946, ,75,25,156,234,75,844,73,473, Pręt nr 2, L=2.5m (obustronnie utwierdzony): [m] N1 N2 N3 N4 N5 N6 u ~ ( ~ x ) [m] v ~ ( ~ x) [m] 1 1,1595,13896,63,75,844,352,25,156,117,122797, ,25,5,5,313,5,5,313,145,5379 1,88,25,156,117,75,844,352,15822, ,5 1 1,17594,1891 Pręt nr 3, L=2.5m (obustronnie utwierdzony): [m] N1 N2 N3 N4 N5 N6 u ~ ( ~ x ) [m] v ~ ( ~ x) [m] 1 1,63,75,844,352,25,156,117,26274, ,25,5,5,313,5,5,313,52548, ,88,25,156,117,75,844,352,78821,1432 2,5 1 1,1595,13896 Pręt nr 4, L=5.59m (z przegubem na lewym końcu): [m] N1 N2 N3 N4 N5 N6 u ~ ( ~ x ) [m] v ~ ( ~ x) [m] 1 1,777, ,4,75,633,25,367,655,52558, ,8,5,313,5,688 1,48,3539, ,19,25,86,75,914,917,17519,1319 5, II semestr studiów uzupełniających magisterskich Kamil Sobczyński 21

22 2 POSAĆ DRGAŃ WŁASNYCH: Pręt nr 1, L=5.m (obustronnie utwierdzony): [m] N1 N2 N3 N4 N5 N6 ) u ~ ( ~ x [m] ~ ( ~ x) v [m] 1 1,36215, ,25,75,844,73,25,156,234,27161, ,5,5,5,625,5,5,625,1818, ,75,25,156,234,75,844,73,954, Pręt nr 2, L=2.5m (obustronnie utwierdzony): [m] N1 N2 N3 N4 N5 N6 ) u ~ ( ~ x [m] ~ ( ~ x) v [m] 1 1,286232,762276,63,75,844,352,25,156,117,28877,4323 1,25,5,5,313,5,5,313,291181, ,88,25,156,117,75,844,352,293656, ,5 1 1,29613,36215 Pręt nr 3, L=2.5m (obustronnie utwierdzony): [m] N1 N2 N3 N4 N5 N6 ) u ~ ( ~ x [m] ~ ( ~ x) v [m] 1 1,63,75,844,352,25,156,117,71558, ,25,5,5,313,5,5,313,143116, ,88,25,156,117,75,844,352,214674, ,5 1 1,286232, Pręt nr 4, L=5.59m (z przegubem na lewym końcu): [m] N1 N2 N3 N4 N5 N6 ) u ~ ( ~ x [m] ~ ( ~ x) v [m] 1 1,553794, ,4,75,633,25,367,655,415346, ,8,5,313,5,688 1,48,276897, ,19,25,86,75,914,917,138449, , II semestr studiów uzupełniających magisterskich Kamil Sobczyński 22

23 3 POSAĆ DRGAŃ WŁASNYCH: Pręt nr 1, L=5.m (obustronnie utwierdzony): [m] N1 N2 N3 N4 N5 N6 ) u ~ ( ~ x [m] ~ ( ~ x) v [m] 1 1,37975, ,25,75,844,73,25,156,234,23981,1341 2,5,5,5,625,5,5,625,153988,131 3,75,25,156,234,75,844,73,76994, Pręt nr 2, L=2.5m (obustronnie utwierdzony): [m] N1 N2 N3 N4 N5 N6 ) u ~ ( ~ x [m] ~ ( ~ x) v [m] 1 1,27445,181243,63,75,844,352,25,156,117,314927, ,25,5,5,313,5,5,313,35543, ,88,25,156,117,75,844,352,39588, ,5 1 1,436356,37975 Pręt nr 3, L=2.5m (obustronnie utwierdzony): [m] N1 N2 N3 N4 N5 N6 ) u ~ ( ~ x [m] ~ ( ~ x) v [m] 1 1,63,75,844,352,25,156,117,68613, ,25,5,5,313,5,5,313,137225, ,88,25,156,117,75,844,352,25838, ,5 1 1,27445, Pręt nr 4, L=5.59m (z przegubem na lewym końcu): [m] N1 N2 N3 N4 N5 N6 ) u ~ ( ~ x [m] ~ ( ~ x) v [m] 1 1,284846, ,4,75,633,25,367,655,213635,1448 2,8,5,313,5,688 1,48,142423, ,19,25,86,75,914,917,71212,1413 5, II semestr studiów uzupełniających magisterskich Kamil Sobczyński 23

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Politechnika Poznańska Wydział Budownictwa i Inżynierii Środowiska Instytut Konstrukcji Budowlanych Zakład Mechaniki Budowli Studia Stacjonarne II Stopnia I rok Semestr II 21/211 STATECZNOŚĆ RAM WERSJA

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Projekt nr 4. Dynamika ujęcie klasyczne

Projekt nr 4. Dynamika ujęcie klasyczne Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ temperatury)

OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ temperatury) Poliechnika Poznańska Wydział Achiekuy Budownicwa i Inżynieii Śodowiska ĆWICZENIE NR 4 OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ empeauy) Sieocki Damian ok sudiów: III semes: VI g. 8 Poznań METODA PRZEMIESZCZEŃ

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń

Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń opracowanie: mgr inż. Jolanta Bondarczuk-Siwicka, mgr inż. Andrzej

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor POLITECHNIKA POZNAŃKA INTYTUT KONTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli Ćwiczenie nr 4 WYZNACZANIE IŁ W PRĘTACH KRATOWNIC PŁAKICH Prowadzący: mgr inŝ. A. Kaczor Wykonał: Dariusz Włochal gr. B6 rok

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

Linie wpływu w belce statycznie niewyznaczalnej

Linie wpływu w belce statycznie niewyznaczalnej Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też

Bardziej szczegółowo

Uwaga: Linie wpływu w trzech prętach.

Uwaga: Linie wpływu w trzech prętach. Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

Obliczanie układów statycznie niewyznaczalnych metodą sił.

Obliczanie układów statycznie niewyznaczalnych metodą sił. POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt wykonał: Krzysztof Wójtowicz Konsultacje: dr inż. Przemysław Litewka Obliczanie układów statycznie niewyznaczalnych

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Drgania Mechaniczne Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MBM 1 S 0 5 61-1_0 Rok: III Semestr: 5 Forma studiów: Studia stacjonarne

Bardziej szczegółowo

PRAKTYCZNE METODY OBLICZENIOWE PRZYKŁAD NA PODSTAWIE REALNEJ KONSTRUKCJI WPROWADZANEJ DO PROGRAMU AUTODESK ROBOT STRUCTURAL ANALYSIS

PRAKTYCZNE METODY OBLICZENIOWE PRZYKŁAD NA PODSTAWIE REALNEJ KONSTRUKCJI WPROWADZANEJ DO PROGRAMU AUTODESK ROBOT STRUCTURAL ANALYSIS 1 PRAKTYCZNE METODY OBLICZENIOWE PRZYKŁAD NA PODSTAWIE REALNEJ KONSTRUKCJI WPROWADZANEJ DO PROGRAMU AUTODESK ROBOT STRUCTURAL ANALYSIS Budynki halowe przegląd wybranych ustrojów konstrukcyjnych 2 Geometria

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk, Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ... 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia

Bardziej szczegółowo

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ 3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie

Bardziej szczegółowo

PROJEKT NR PROJEKT NR 3 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

PROJEKT NR PROJEKT NR 3 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 3 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Dla zadanego układu należy 1) Obliczyć

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3 ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

P. Litewka Efektywny element skończony o dużej krzywiźnie

P. Litewka Efektywny element skończony o dużej krzywiźnie 4.5. Macierz mas Macierz mas elementu wyprowadzić można według (.4) wykorzystując wielomianowe funkcje kształtu (4. 4.). W tym przypadku wzór ten przyjmie postać: [ m~ ] 6 6 ~ ~ ~ ~ ~ ~ gdzie: m = [ N

Bardziej szczegółowo

Pręt nr 4 - Element żelbetowy wg PN-EN :2004

Pręt nr 4 - Element żelbetowy wg PN-EN :2004 Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

A/B. Zadanie 1. Wyznaczenie linii wpływu Nα, Tα oraz Mα dla przedstawionej poniżej ramy. a) Grupa A. L wra =1- x 10

A/B. Zadanie 1. Wyznaczenie linii wpływu Nα, Tα oraz Mα dla przedstawionej poniżej ramy. a) Grupa A. L wra =1- x 10 Poliechnika Poznańska Insyu Konsrukcji Budowlanych Zakład Mechaniki Budowli 4.2.25 rozwiązania zadań - kolokwium poprawkowe MB, III rok, s. dzienne mgr /B Zadanie. Wyznaczenie linii wpływu N, T oraz M

Bardziej szczegółowo

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora. DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania

Bardziej szczegółowo

Opracowanie: Emilia Inczewska 1

Opracowanie: Emilia Inczewska 1 Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu Schemat statyczny zawiera informacje, takie jak: geometria i połoŝenie tarcz (ciał sztywnych), połączenia tarcz z fundamentem i ze sobą, rodzaj, połoŝenie i wartość obciąŝeń czynnych. wszystkie elementy

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

16. KONSTRUKCJE STATYCZNIE NIEWYZNACZALNE

16. KONSTRUKCJE STATYCZNIE NIEWYZNACZALNE Część 3 16. KONSTRUKCJE STATYCZNIE NIEWYZNACZALNE 1 16. KONSTRUKCJE STATYCZNIE NIEWYZNACZALNE 16.1. METODA SIŁ 16.1.1. Obliczanie sił wewnętrznych Z rozważań poprzedniego rozdziału wynika, że istnieje

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 017/018 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury Analiza I i II rzędu W analizie I rzędu stosuje się zasadę zesztywnienia, tzn. rozpatruje się nieodkształconą, pierwotną geometrię konstrukcji, niezależnie od stanu obciążenia. Gdy w obliczeniac statycznyc

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

ĆWICZENIE 6 Kratownice

ĆWICZENIE 6 Kratownice ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Konstrukcje metalowe Wykład VI Stateczność

Konstrukcje metalowe Wykład VI Stateczność Konstrukcje metalowe Wykład VI Stateczność Spis treści Wprowadzenie #t / 3 Wyboczenie giętne #t / 15 Przykład 1 #t / 45 Zwichrzenie #t / 56 Przykład 2 #t / 83 Niestateczność lokalna #t / 88 Zapobieganie

Bardziej szczegółowo

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego Streszczenie Dobór elementów struktury konstrukcyjnej z warunku ustalonej niezawodności, mierzonej wskaźnikiem niezawodności β. Przykład liczbowy dla ramy statycznie niewyznaczalnej. Leszek Chodor, Joanna

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ

MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ Zadanie 6 1. Narysować linie wpływu wszystkich reakcji i momentów podporowych oraz momentu i siły tnącej w przekroju - dla belki. 2. Obliczyć rzędne na wszystkich liniach wpływu w czterech punktach: 1)

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika analityczna Nazwa w języku angielskim: Analytical Mechanics Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Specjalność

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Mechanika Budowli Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/6. Wydział Mechaniczny PWR. Nazwa w języku polskim: Mechanika I. Nazwa w języku angielskim: Mechanics I

KARTA PRZEDMIOTU 1/6. Wydział Mechaniczny PWR. Nazwa w języku polskim: Mechanika I. Nazwa w języku angielskim: Mechanics I Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika I Nazwa w języku angielskim: Mechanics I Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Stopień studiów i forma:

Bardziej szczegółowo

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych.

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych. Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Inżynieria bezpieczeństwa Nazwa przedmiotu: Mechanika techniczna Charakter przedmiotu: podstawowy, obowiązkowy Typ studiów: inżynierskie pierwszego

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,

Bardziej szczegółowo

WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH

WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE,

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo