Równania różniczkowe cząstkowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Równania różniczkowe cząstkowe"

Transkrypt

1 Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch Rzędem równania nazwam najwższ rząd wstępującej w równaniu pochodnej cząstkowej niewiadomej funkcji Definicja: Całką szczególną lub rozwiązaniem szczególnm równania różniczkowego cząstkowego rzędu n w obszarze D nazwam funkcję która posiada ciągłe pochodne cząstkowe do rzędu n włącznie spełniającą dane równanie w każdm punkcie tego obszaru Przkład : Sprawdzić że funkcja u( jest rozwiązaniem szczególnm równania u u w obszarze D Jest to równanie różniczkowe cząstkowe rzędu pierwszego Funkcja z u( ma ciągłe pochodne cząstkowe Podstawiając oraz równania widzim że równanie jest spełnione dla dowolnch ( D u u do Definicja: Całką ogólną lub rozwiązaniem ogólnm równania różniczkowego cząstkowego nazwam zbiór wszstkich całek szczególnch równania Przkład: Znaleźć rozwiązanie ogólne równania: u u dlatego u C oraz C nie zależ od zmiennej Oznacza to że u H ( gdzie funkcja H jest dowolną funkcją określoną na która posiada ciągłą pochodną rzędu pierwszego Następnie: u H ( d F( C a tutaj C nie zależ od Rozwiązaniem ogólnm jest funkcja: u( F( G( ) natomiast funkcje F (t) oraz G (t) są dowolnmi funkcjami określonmi na o ciągłch pochodnch rzędu pierwszego także na Definicja: Zagadnienie Cauch ego (zagadnienie początkowe) dla równania u f ( u ) polega na wznaczeniu takiego rozwiązania z u( tego równania w obszarze D warunek początkow u( ( u Twierdzenie: Jeżeli funkcja f v v v ) jest analitczna w pewnm otoczeniu punktu ( 3 v4 które spełnia ( z v ) i funkcja ( jest analitczna w pewnm otoczeniu to istnieje takie otoczenie punktu ) w którm zagadnienie Cauche go ma dokładnie jedno rozwiązanie analitczne ( Przkład: Znaleźć rozwiązanie równania u spełniające warunek początkow u( RRCzI /9

2 Szukam funkcji z u( spełniającej dane równanie różniczkowe cząstkowe rzędu pierwszego której wkresem jest pewna powierzchnia nazwam ją powierzchnią całkową Z warunku początkowego wnika że częścią wspólną tej powierzchni oraz płaszczzn jest parabola z leżąca na tej płaszczźnie z Interpretacja warunku początkowego ) Znajdujem rozwiązanie ogólne równania: u u u d u C gdzie C nie zależ od u( F( ) - rozwiązanie ogólne F() dowolna funkcja określona na która posiada ciągłą pochodną ) Korzstam z warunku początkowego u( ) celem znalezienia funkcji F () : F( ) F( ) Odp: Rozwiązaniem szczególnm równania spełniającm dan warunek początkowe jest funkcja: u ( z Paraboloida hiperboliczna z RRCzI /9

3 Równania o pochodnch cząstkowch rzędu drugiego liniowe względem niewiadomej funkcji u ( Definicja: Równaniem różniczkowm cząstkowm rzędu drugiego liniowm względem niewiadomej funkcji u( nazwam równanie: (*) A u B u C u D u E u F u G gdzie A A( B B( C C( D D( E E( F F( nazwam współcznnikami a G G( nazwam wrazem wolnm Jeżeli G ( to równanie (*) nazwam równaniem jednorodnm Zakładam że współcznniki równania oraz wraz woln mają ciągłe pochodne cząstkowe rzędu drugiego w pewnm obszarze płaskim D oraz że A B C dla każdego punktu należącego do D Definicja: Wróżnikiem równania (*) nazwam funkcję: ( B 4 A C Definicja: Jeżeli dla każdego ( należącego do obszaru D D : ) ( to równanie (*) nazwam równaniem tpu hiperbolicznego w obszarze D ) ( to równanie (*) nazwam równaniem tpu parabolicznego w obszarze D 3) ( to równanie (*) nazwam równaniem tpu eliptcznego w obszarze D Przkład: Podać obszar w którch zachowuje się tp równania: ( ) u u ( ) u u u ( 4( ) ) 4( ) równanie tpu hiperbolicznego (na rs zielon D D D ) 4( ) równanie tpu parabolicznego (na rs czerwon - nie jest obszarem) 3) 4( ) równanie tpu eliptcznego (na rs niebieski) Odp: Równanie jest tpu hiperbolicznego na obszarze D a jest tpu eliptcznego na obszarze D oraz obszarze D W dalszm ciągu zajmiem się równaniami dla którch wróżnik jest stałego znaku na obszarze D Definicja: Przekształcenie: h( g( nazwam przekształceniem nieosobliwm obszaru D wted i tlko wted gd w tm obszarze spełnione są warunki: a) funkcje h( g( mają ciągłe pochodne cząstkowe rzędu drugiego h ( h ( b) g ( g ( Twierdzenie: Tp równania jest niezmiennikiem przekształcenia nieosobliwego obszaru D RRCzI 3/9

4 Definicja: Postacią kanoniczną równania (*) nazwam równanie: ) u ( u u u ) dla równania tpu hiperbolicznego ) u ( u u u ) lub u ( u u u ) dla równania tpu parabolicznego 3) u u ( u u u ) dla równania tpu eliptcznego Twierdzenie: Istnieje przekształcenie nieosobliwe obszaru D za pomocą którego równanie (*) można przekształcić do postaci kanonicznej Definicja: Krzwą ( const dla ( D nazwam krzwą charakterstczną lub charakterstką równania (*) gd funkcja ( ma ciągłe pochodne cząstkowe rzędu pierwszego i jest rozwiązaniem równania: B C A Twierdzenie: Równania różniczkowe zwczajne: d d d d A B C gd A lub C B A gd C d d d d są równaniami krzwch charakterstcznch równania Ponadto jeżeli równanie (*) jest na obszarze D tpu: ) hiperbolicznego to ma dwie rodzin charakterstk rzeczwistch ) parabolicznego to ma jedną rodzinę charakterstk rzeczwistch 3) eliptcznego to ma dwie rodzin charakterstk zespolonch Metod sprowadzanie równania (*) do postaci kanonicznej ) Dla tpu hiperbolicznego: Mam dwie rodzin charakterstk rzeczwistch: d B d B a) gd A lub d A d A d B d B b) gd C d C d C Oznaczając równania charakterstk: h( C g( C stosujem przekształcenie h( g( )Dla równania tpu parabolicznego: Mam jedną rodzinę charakterstk rzeczwistch: d B a) gd A lub d A d B b) gd C d C Oznaczając h( C stosujem przekształcenie: h ( h ( h( g( gdzie g ( dowolna funkcja taka że g ( g ( Najczęściej wgodnie jest przjąć g( lub g( RRCzI 4/9

5 3) Dla równania tpu eliptcznego: d B i d B i a) gd A lub d A d A d B i d B i b) gd C d C d C Oznaczając h( i g( C oraz h( i g( C stosujem przekształcenie: h( g( Przkład : Sprowadzić do postaci kanonicznej równanie: u u u u na obszarze D ( : Badam tp równania: A B C zatem B 4AC 4 dla ( D stąd wnioskujem że równanie jest eliptczne na D Tworzm równanie charakterstk d d d B i d B i ( ) ( ) a stąd d d d A d A d i d i d d ( ) i C ( ) i C Otrzmaliśm dwie rodzin charakterstk: ( ) i C oraz ( ) i C Sprowadzam wjściowe równanie do postaci kanonicznej dokonując zamian zmiennch wprowadzając nowe zmienne gdzie Wrażam wstępujące w rozpatrwanm równaniu pochodne cząstkowe względem zmiennch przez pochodne cząstkowe względem nowch zmiennch Ponieważ więc: u u u u u 4 u 8 u 4 u u u 4 u 4 u 4 u u Podstawiam obliczone pochodne do danego równania otrzmując: u u u u Ponieważ a postać kanoniczna wjściowego równania jest następująca: u u u u RRCzI 5/9

6 Przkład : Znaleźć rozwiązanie ogólne równania: ) u u ( u u ) a na obszarze D ( : Badam tp równania: A B C zatem B 4AC 4 dla ( D stąd wnioskujem że równanie jest hiperboliczne na D Tworzm równanie charakterstk d d d ( ) a stąd zatem C oraz C d d d Otrzmaliśm dwie rodzin charakterstk: C C gdzie C C dowolne stałe Sprowadzam wjściowe równanie do postaci kanonicznej dokonując zamian zmiennch wprowadzając nowe zmienne gdzie Wrażam wstępujące w rozpatrwanm równaniu pochodne cząstkowe względem zmiennch przez pochodne cząstkowe względem nowch zmiennch Ponieważ 4 4 u więc u u u 4 u u u u u u u u u u u u u u Podstawiam obliczone pochodne do danego równania otrzmując: u 4 Ostatecznie: u F( ) G( ) Wracając do starch zmiennch uzskujem odpowiedź: u( F( G( ) gdzie funkcje F (t) oraz G (t) są dowolnmi funkcjami o ciągłch pochodnch rzędu drugiego określonmi na D b ) u u u ( u u ) Postępujem analogicznie jak w poprzednim przkładzie Badam tp równania: A B C zatem B 4AC dla ( D wnioskujem że równanie jest paraboliczne na D stąd RRCzI 6/9

7 Tworzm równanie charakterstk d d d B d ( ) a stąd zatem C d d d A d Otrzmaliśm jedną rodzinę charakterstk: C gdzie C dowolna stała Sprowadzam wjściowe równanie do postaci kanonicznej dokonując zamian zmiennch wprowadzając nowe zmienne gdzie Określiliśm przekształcenie nieosobliwe ponieważ Wrażam wstępujące w rozpatrwanm równaniu pochodne cząstkowe względem zmiennch przez pochodne cząstkowe względem nowch zmiennch Ponieważ więc: u u u u u u u u u u Podstawiam obliczone pochodne do danego równania otrzmując: u u u u u u Sprowadzam powższe równanie do równania różniczkowego zwczajnego dokonując podstawienia: v Uwzględniając że u rozwiązaniem jest funkcja: Wobec przjętch oznaczeń v dv u otrzmujem równanie liniowe jednorodne: v v którego d v C e gdzie C nie zależ od u F( ) e u F( ) e d F e C tu również C nie zależ od Ostatecznie: u F( ) e G( ) Wracając do starch zmiennch uzskujem odpowiedź: u( F( e G( Funkcje F ( t) G t są dowolnmi funkcjami o ciągłch pochodnch rzędu drugiego na D oraz Zagadnienie graniczne W teorii równań różniczkowch zwkle poszukujem rozwiązania równania które spełnia pewne dodatkowe warunki zwane warunkami granicznmi W zależności od interpretacji nazwam je warunkami początkowmi lub brzegowmi Warunki te określają rozwiązanie szczególne które nie zawsze są jednoznaczne Poszukiwanie rozwiązania równania spełniającego warunki graniczne nazwam zagadnieniem granicznm Przkład 3 Znaleźć rozwiązanie równania: 9u 9u u spełniające warunki początkowe: () u ( () u ( RRCzI /9

8 z P stczna Interpretacja graficzna warunków początkowch Warunek pierwsz obrazuje czerwona linia która przedstawia krzwą będąca częścią wspólną szukanej powierzchni z =u( i płaszczzn = Jest nią parabola z leżąca na płaszczźnie XOZ Warunek drugi mówi że stczna (zielona prosta) do krzwej będącej częścią wspólną szukanej powierzchni i płaszczzn w punkcie P ( u( ) ) ma współcznnik kierunkow równ to znacz jest równoległa do osi OY Uwzględniając dodatkowo warunek pierwsz P ( ) Postępując podobnie jak w przkładach oraz 3 otrzmujem rozwiązanie ogólne równania postaci: ( ) u( F(5 3 G( 3 gdzie F ( t) G( t) są dowolnmi funkcjami które mają ciągłe pochodne rzędu drugiego na Celem znalezienia funkcji F ( t) G( t) korzstam a warunków początkowch ( ) u( oznacza że u( ) Jednocześnie z postaci ( ) otrzmujem: u( ) F (5) G () a stąd F ( 5) G () () u ( można zapisać następująco u ( ) Korzstając z rozwiązania ogólnego ( ) obliczam: u ( F (5 3 3 G ( 3 ( 3) Przjmując otrzmujem ( ) 3F (5) 3G () To znacz że 3F (5) 3G () u oraz F (5) G () Całkując ostatnie równanie stronami względem zmiennej widzim że: F(5) G() C a co za tm idzie: F(5) 5G() C 5 Podkreślone równania tworzą układ F(5) G() F(5) 5 C którego rozwiązaniem jest para funkcji: F(5) 5G() C G() 6 C Podstawiając Przjmują t 3t t 5 funkcję F zapisujem w postaci F( t) 5 C F( t) C 5 5 t 3t t funkcję G zapisujem w postaci G( t) 6 C G( t) C RRCzI 8/9

9 Podstawiam znalezione funkcje do postaci rozwiązania ogólnego ( ) dla funkcji F przjmując: t 5 3 a dla funkcji G : t 3 3(5 3 3( 3 Otrzmujem: u( C C 5 Po redukcji wrażeń podobnch rozwiązanie wjściowego równanie spełniające dane warunki początkowe przbiera postać u( 89 Wkresem tej funkcji jest paraboloida eliptczna z P Niebieskim kolorem narsowano część wspólną paraboloid i płaszczzn Przkład 4 Znaleźć rozwiązanie równania 9u 9u u spełniające warunki: ( ) u( ( ) () u( ( ) gd ( ) ( ) Rozwiązanie ogólne równania jest następujące: ( ) u( F(5 3 G( 3 Zapisujem warunki w postaci 5 ( ) u( ) ( ) oraz ( ) u( ) ( ) 3 3 Podstawiając je do rozwiązania ogólnego otrzmujem t ( ) F() G() ( ) G() ( ) F() a stąd dla t G( t) ( ) F() t ( ) F( ) G() ( ) F( ) ( ) G() czli gd t to F( t) ( ) G() Podstawiam znalezione funkcje do postaci rozwiązania ogólnego ( ) dla funkcji F przjmując t 5 3 a dla funkcji G : t Otrzmujem: u( F() G() Dla znalezienia wartości wrażenia F( ) G() korzstam z warunku () bądź () w obu przpadkach przjmując ( ) F() G() ( ) oraz ( ) F () G() ( ) Ponieważ ) ( ) rozwiązanie jest następujące: ( u ( RRCzI 9/9

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego NIELINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego ma postać:

Bardziej szczegółowo

Rozwiązywanie układu równań metodą przeciwnych współczynników

Rozwiązywanie układu równań metodą przeciwnych współczynników Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną

Bardziej szczegółowo

(rachunek różniczkowy dot. funkcji ciągłych)

(rachunek różniczkowy dot. funkcji ciągłych) Podstaw matematczne (rachunek różniczkow dot. unkcji ciągłch) 1) Pochodna unkcji 1 zmiennej () de. () d ( ) d d d lim h ( h) h ( ) (h) () h UWAGA: () tg(α) tangens kąta nachlenia stcznej Warunki e k s

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Elementy algebry i analizy matematycznej II

Elementy algebry i analizy matematycznej II Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu

Bardziej szczegółowo

KURS FUNKCJE WIELU ZMIENNYCH

KURS FUNKCJE WIELU ZMIENNYCH KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)

Bardziej szczegółowo

Metody matematyczne w technologii materiałów Krzysztof Szyszkiewicz

Metody matematyczne w technologii materiałów Krzysztof Szyszkiewicz Kinetka formalna jest działem kinetki chemicznej zajmującm się opisem przebiegu reakcji chemicznch za pomocą równao różniczkowch. W przpadku reakcji homogenicznch (w objętości), g skład jest jednorodn

Bardziej szczegółowo

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................

Bardziej szczegółowo

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci .. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)

Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A) Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać

Bardziej szczegółowo

Pochodna funkcji wykład 5

Pochodna funkcji wykład 5 Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Pierwiastki kwadratowe z liczby zespolonej

Pierwiastki kwadratowe z liczby zespolonej Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C

Bardziej szczegółowo

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III) Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

ZADANIA Z MATEMATYKI DLA WYDZIAŁU IMIR

ZADANIA Z MATEMATYKI DLA WYDZIAŁU IMIR ZADANIA Z MATEMATYKI DLA WYDZIAŁU IMIR ZADANIA w semestrze zimowm Teoria zbiorów funkcje. Podać interpretację geometrczną zbiorów: A B jeżeli A = i B = A B X = X X X gdzie X = gdzie A= { : } B = d) { }

Bardziej szczegółowo

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe Rozwiązanie równań stanu dla układów liniowch - pola wektorowe Przgotowanie: Dariusz Pazderski Wprowadzenie Rozważm liniowe równanie stanu układu niesingularnego stacjonarnego o m wejściach: ẋ = A+ Bu,

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej

Rachunek różniczkowy funkcji jednej zmiennej Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

Wykład 10. Funkcje wielu zmiennych

Wykład 10. Funkcje wielu zmiennych Wkład 1. Funkcje wielu zmiennch dr Mariusz Grządziel 6 maja 1 (ostatnie poprawki: 1 maja 1) Funkcje wielu zmiennch Przestrzeń dwuwmiarowa, oznaczana w literaturze matematcznej smbolem R, może bć utożsamiona

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych

Rozwiązywanie równań różniczkowych Rozwiązwanie równań różniczkowch. Równanie różniczkowe zwczajne. rzęu A. Metoa rkfie - zaimplementowana w Mathcazie metoa Rungego-Kutt. rzęu ze stałm krokiem całkowania: rkfie(,,ma, N, P) gzie: ma N P

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32 PRÓBNA MATURA ZADANIE ( PKT) Wskaż liczbę, której % jest równe 8. A) B) C), D) ZADANIE ( PKT) Odległość liczb od liczb -8 na osi liczbowej jest równa A) 8 B) + 8 C) + 8 D) 8 ZADANIE ( PKT) Wskaż rsunek,

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Ruch po równi pochyłej

Ruch po równi pochyłej Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które

Bardziej szczegółowo

Przenoszenie niepewności

Przenoszenie niepewności Przenoszenie niepewności Uwaga wstępna: pojęcia niepewność pomiarowa i błąd pomiarow są stosowane wmiennie. Załóżm, że wielkość jest funkcją wielkości,,, dla którch niepewności (,, ) są znane (wnikają

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego

Bardziej szczegółowo

Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15

Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15 Analiza Matematczna II., kolokwium rozwiazania 9 stcznia 05, godz. 6:5 9:5 0. Podać definicj e zbioru miar 0. Udowodnić, że jeśli A = {(x,, z) : (x )(x + + z ) = 0}, to l (A) = 0. Zbiorem miar zero jest

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

Z funkcji zdaniowej x + 3 = 7 można otrzymać zdania w dwojaki sposób:

Z funkcji zdaniowej x + 3 = 7 można otrzymać zdania w dwojaki sposób: Z funkcji zdaniowej + 3 = 7 można otrzmać zdania w dwojaki sposób: podstawiając w tej funkcji zdaniowej za stałe będące nazwami liczb np. 4 2 itp. poprzedzając tę funkcję zdaniową zwrotami: dla każdego

Bardziej szczegółowo

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5. WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja

Bardziej szczegółowo

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Komputerowe Laboratorium Mechaniki 2M135 / 2M31. L a bora t o rium n r 6 TEMAT:

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Komputerowe Laboratorium Mechaniki 2M135 / 2M31. L a bora t o rium n r 6 TEMAT: KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Komputerowe Laboratorium Mechaniki 2M135 / 2M31 Zawartość: OPRACOWANIE TEORETYCZNE L a bora t o rium n r 6 M e c haniki T echnicznej TEMAT: Modelowanie i

Bardziej szczegółowo

MATURA PRÓBNA 2 KLASA I LO

MATURA PRÓBNA 2 KLASA I LO IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Mikroekonomia II. Narz ¾edzia matematyczne. f 0 (x) = 0. f (x) = 5. f 0 (x) = ax a 1 = ax a 1. f (x) = p x = x 1 2. d (bf(x)) dx.

Mikroekonomia II. Narz ¾edzia matematyczne. f 0 (x) = 0. f (x) = 5. f 0 (x) = ax a 1 = ax a 1. f (x) = p x = x 1 2. d (bf(x)) dx. Mikroekonomia II Narz edzia matematczne Pochodne. Funkcja sta a f () = b f 0 () = 0 f () = 5 f 0 () = 0 2. Funkcja wk adnicza f () = a f 0 () = a a = a a f () = p = 2 f 0 () = 2 2 = 2 2. Funkcja logartmiczna

Bardziej szczegółowo

W. Guzicki Zadanie 30 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 30 z Informatora Maturalnego poziom rozszerzony 1 W. uzicki Zadanie 0 z Informatora Maturalnego poziom rozszerzon Zadanie 0. an jest sześcian (zobacz rsunek), którego krawędź ma długość 5. unkt i dzielą krawędzie i w stosunku :, to znacz, że 0. łaszczzna

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

11. CZWÓRNIKI KLASYFIKACJA, RÓWNANIA

11. CZWÓRNIKI KLASYFIKACJA, RÓWNANIA OBWODY SYGNAŁY Wkład : Czwórniki klasfikacja, równania. CZWÓRNK KLASYFKACJA, RÓWNANA.. WELOBEGNNK A WELOWROTNK CZWÓRNK Definicja. Jeśli: wielobiegunnik posiada parzstą liczbę zacisków (tzn. mn) zgrupowanch

Bardziej szczegółowo

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów. Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób

Bardziej szczegółowo

Definicja wartości bezwzględnej. x < x y. x =

Definicja wartości bezwzględnej. x < x y. x = 1.9. WARTOŚĆ BEZWZGLĘDNA Definicja wartości bezwzględnej... gd... 0 =... gd... < 0 Własności wartości bezwzględnej 0 = = = n a n = a, gd n jest liczbą parzstą Przkład 1.9.1. Oblicz: a) b) c) 1 d) 0 e)

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

ANALIZA MATEMATYCZNA

ANALIZA MATEMATYCZNA ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Temat wykładu: Równania różniczkowe Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Zagadnienia 1. Terminologia i oznaczenia 2. Definicje 3. Przykłady Anna Rajfura, Matematyka na kierunku Biologia

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE UKŁADY JEDNOWYMIAROWE Część III UKŁADY NIELINIOWE 1 15. Wprowadzenie do części III Układ nieliniowe wkazją czter właściwości znacznie różniące je od kładów liniowch: 1) nie spełniają zasad sperpozcji,

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Interpolacja. Układ. x exp. = y 1. = y 2. = y n

Interpolacja. Układ. x exp. = y 1. = y 2. = y n MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?

Bardziej szczegółowo

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy. rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów

Bardziej szczegółowo

19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego

19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego 19. Wbrane układ regulacji Przkład 19.1 19.1. Korekcja nieliniowa układów w K s 2 Rs. 19.1. Schemat blokow układu orginalnego 1 Zbadać możliwość stabilizacji układu za pomocą nieliniowego prędkościowego

Bardziej szczegółowo

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami? MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm

Bardziej szczegółowo

więc powyższy warunek będzie zapisany jako dy dt

więc powyższy warunek będzie zapisany jako dy dt Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Wprowadzenie DEFINICJA. Równaniem różniczkowm zwczajnm rzędu pierwszego nazwam równanie posaci gdzie f : f (, ), () U jes daną funkcją. Rozwiązaniem

Bardziej szczegółowo

Scenariusz lekcji matematyki z wykorzystaniem komputera

Scenariusz lekcji matematyki z wykorzystaniem komputera Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Wpłw współcznników a i b na położenie wkresu funkcji liniowej. (Rsowanie wkresów prz użciu arkusza kalkulacjnego EXCEL.) Czas zajęć: 9 min Cele:

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Elementy równań różniczkowych

Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936

Bardziej szczegółowo

Matematyka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowych

Matematyka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowych Matematka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowch. Znale¹ ekstrema lokalne funkcji f(, ) = ( 2 + 2 2 )e (2 + 2 ) Odp. Jedno minimum (w p. (, )),

Bardziej szczegółowo