Statystyczne testy nieparametryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyczne testy nieparametryczne"

Transkrypt

1 Saysycze esy ieparamerycze Tesami ieparameryczymi azywamy esy służące do weryfikaci hipoez ieparameryczych, hipoez iedoyczących warości iezaych paramerów populaci (choć czasem poęcie o ozacza hipoezy ie zakładaące rozkładu Normalego dla populaci). Ze względu a różorodość hipoez ieparameryczych, klasę esów ieparameryczych moża podzielić a asępuące podklasy: esy zgodości (z pewym rozkładem eoreyczym), w ym esy ormalości, esy edorodości, czyli zgodości dwóch (lub więce) rozkładów, esy iezależości, ie esy, w ym p. esy weryfikuące hipoezę, ze próba ma charaker losowy. W7-1 PDF creaed wih FiePri pdffacory Pro rial versio hp://

2 Badaie iezależości rozkładu dwu cech Cecha (X, Y) ma dwuwymiarowy, iezay rozkład Tes Chi-Kwadra iezależości Cecha (X, Y) ma dwuwymiarowy rozkład ciągły Współczyik korelaci ragowe Spearmaa Współczyik korelaci ragowe Kedalla Czy koleość obserwaci w próbie es losowa? es serii W7 - PDF creaed wih FiePri pdffacory Pro rial versio hp://

3 ZALEŻNOŚĆ MIĘDZY CECHAMI JAKOŚCIOWYMI /SKATEGORYZOWANYMI/ X, Y cechy obserwowae Próba: (X 1, Y 1 ),...(X k, Y m ) klasy cechy X klasy cechy Y 1... m m 1... m k k1 k... km H 0 : Cechy X i Y są iezależe H 1 : Cechy X i Y są zależe W7-3 PDF creaed wih FiePri pdffacory Pro rial versio hp://

4 Tes Chi-kwadra (c ) iezależości k m ( i i ) emp i 1 1 i i liczba obserwaci realizuących i ą warość cechy X i -ą warość Y i eoreycza liczba obserwaci realizuących i ą warość cechy X i -ą warość Y (wg. rozkładów brzegowych dla każde z ych dwu cech) Jeśli i i i m 1 N i,, N k i 1 1 k i 1 emp> kry., o hipoezę H 0 odrzucamy. kry. α, v, gdzie v (k 1) (m 1) m i i, W7-4 PDF creaed wih FiePri pdffacory Pro rial versio hp://

5 Przykład: Badao dwie właściwości wędliy: związaie (słabo związaa, związaa, dobrze związaa) oraz smakowiość (dosaecza, dobra, bardzo dobra). Aalizę przeprowadzoo dla 60 baoów wędliy. Wyiki były asępuące: X- smakowiość Y 1 -słabo związaa Y - związaa Y 3 - dobrze związaa i. X 1 - dosaecza X -dobra X 3 -b. dobra Hipoeza badawcza i saysycza brzmi: H 0 : Smakowiość wędliy (X) ie zależy od sopia związaia (Y). cechy e są iezależe W7-5 PDF creaed wih FiePri pdffacory Pro rial versio hp://

6 Kosruuemy fukcę esową oparą a rozkładzie chi-kwadra. Dae (liczebości) eoreycze N i (eśli cechy są iezależe czyli P(A B)P(A)*P(B), o rozkłady brzegowe P(A) i P(B) wyzaczaą prawdopodobieńswo podklas P(A B)): X- smakowiość Y 1 -słabo związaa Y - związaa Y 3 - dobrze związaa i. X 1 - dosaecza 4 6,5 6,5 17 X -dobra 5 8,5 8,5 X 3 -b. dobra , 1 6.5,..., W7-6 PDF creaed wih FiePri pdffacory Pro rial versio hp://

7 (9 3.97) emp (5 6.5) kry. α, v 0.05, 4 ( ) Poieważ emp> kry., o hipoezę H 0 odrzucamy. Wyiki pozwalaą swierdzić, że smakowiość badae wędliy zależy od związaia e składików. Dla podiesieia walorów sesoryczych e wędliy ależy ak prowadzić proces echologiczy, aby uzyskać możliwie awiększe e związaie Moża wyzaczyć akże współczyik koygeci P, kóry przymue warość zero, gdy wysępue całkowia iezależość cech. W7-7 PDF creaed wih FiePri pdffacory Pro rial versio hp://

8 P N+ Dla aszego przykładu P N co świadczy o duże sile związku między rozważaymi cechami. W7-8 PDF creaed wih FiePri pdffacory Pro rial versio hp://

9 TESTY ZGODNOŚCI Hipoezy ego ypu doyczą zgodości rozkładu empiryczego z rozkładem określoym przez hipoezę lub zgodości (edorodości) rozkładów pewe cechy w kilku populacach bez określaia, o aki rozkład chodzi. Z ego eż powodu esy służące do weryfikaci akich hipoez azywamy esami zgodości (edorodości). Do aczęście sosowaych esów zgodości ależą: (chi-kwadra) Pearsoa λ (lambda) Kołmogorowa-Smirowa w Shapiro-Wilka W7-9 PDF creaed wih FiePri pdffacory Pro rial versio hp://

10 Niech hipoezą zerową będzie przypuszczeie, że cecha X ma w populaci rozkład określoy dysrybuaą F 0 (x): H 0 : F( x) F0 ( x) Saysyka k ( ) 1 wobec H1 : F( x) F0 ( x) przy prawdziwości H 0 ma asympoyczy rozkład z liczbą sopi swobody vk u 1. Wielkość p es eoreyczą (o zaczy, obliczoą przy założeiu prawdziwości esowae hipoezy H 0 ) liczebością w ym przedziale, k es liczbą przedziałów klasowych, a u liczbą paramerów populacyych, szacowaych z próby. W7-10 PDF creaed wih FiePri pdffacory Pro rial versio hp://

11 Warość empiryczą saysyki ( ) emp porówuemy z warością kryyczą oczyaą z ablic saysyczych α, v k u 1 wioskuąc aalogiczie ak w pozosałych hipoezach. Elemeem kluczowym przy wykorzysaiu saysyki Chi-kwadra es wielkość p P( x ( x ; x 1 )) kóra es eoreyczym (o zaczy, obserwowaym przy założeiu prawdziwości esowae hipoezy H 0 ) prawdopodobieńswem wysąpieia obserwaci w ym przedziale. W7-11 PDF creaed wih FiePri pdffacory Pro rial versio hp://

12 Przykład: Pracodawca przypuszcza, że liczba pracowików ieobecych w róże di ygodia ie es aka sama. W celu sprawdzeia swoego przypuszczeia obserwował, przez pewie okres, liczby pracowików ieobecych w koleych diach ygodia. Wyiki obserwaci zawiera abela: dzień ygodia liczba ieobecych poiedziałek 00 worek 160 środa 140 czwarek 140 piąek 100 Badaą cechą X es dzień, w kórym pracowik był ieobecy w pracy. Jes o cecha akościowa o warościach: poiedziałek, worek,, piąek. Hipoeza badawcza, że abseca pracowika es zależa od dia ygodia pracy, może być zapisaa przez egacę, o zaczy sugeruemy brak prefereci w opuszczaiu di. W7-1 PDF creaed wih FiePri pdffacory Pro rial versio hp://

13 Zapis saysyczy ego przypuszczeia pracodawcy ma posać hipoezy: H : cecha X ma rozkład: Po. Wk. Śro. Czw. Pk. 1/5 1/5 1/5 1/5 1/5 Do weryfikaci badae hipoezy sosuemy es chi kwadra zgodości, przymuąc α Pomocicze obliczeia fukci esowe zawiera abela: i i eore. Po Wk Śro Czw Pk suma W7-13 PDF creaed wih FiePri pdffacory Pro rial versio hp://

14 Warość saysyki es wyzaczoa według formuły: emp ( (00 148) 148 ) ( ) 148 Poieważ warość kryycza α, v k u , ,4 35,68 zachodzi relaca emp > 0.05,4, czyli hipoezę o zgodości z określoym rozkładem odrzucamy. Ozacza o, że przypuszczeie pracodawcy o ierówomierym rozkładzie abseci w zakładzie pracy moża uzać za uzasadioe. W7-14 PDF creaed wih FiePri pdffacory Pro rial versio hp://

15 Tes c zgodości (edorodości) kilku rozkładów Obserwuemy ę samą cechę w kilku populacach. Ieresue as odpowiedź a pyaie, czy rozkłady e są akie same (co pociąga za sobą rówość wszyskich paramerów). Jeżeli dysrybuaę dae cechy w i e populaci ozaczymy ako F i, o hipoeza zerowa ma posać: H F F... 0 : 1 F k W7-15 PDF creaed wih FiePri pdffacory Pro rial versio hp://

16 Zasosowaie esu wymaga zesawieia próby w posaci abeli dwukierukowe. W edym kieruku umieszczamy poziomy dae cechy, w drugim populace. umer populaci klasy cechy X X 1 X... X r r 1... r k k1 k... kr Saysyka esowa ma posać: emp k r i 1 1 ( ) i i i gdzie i i W7-16 PDF creaed wih FiePri pdffacory Pro rial versio hp://

17 i ozacza liczbę obserwaci reprezeuących i ą populacę i ą klasę cechy X. Z ideksem górym, es o odpowiedia liczebość eoreycza. Przy prawdziwości H 0 saysyka a ma rozkład Pearsoa z liczbą sopi swobody v(k 1)(r 1). Wioskowaie przebiega aalogiczie ak przy iych hipoezach. W7-17 PDF creaed wih FiePri pdffacory Pro rial versio hp://

18 przykład: We wszyskich 10 sklepach pewe sieci sklepów es akie samo zaporzebowaie a mleko o róże zawarości łuszczu. sklep 0,5%,0% 3,% Warość saysyki emp wyosi 3,8. Powodue o, iż kryyczy poziom isoości (P-value) wyosi 16%. Nie ma podsaw, aby a poziomie isoości 5% odrzucić hipoezę o akim samym rozkładzie prefereci odośie zawarości łuszczu we wszyskich 10 sklepach W7-18 PDF creaed wih FiePri pdffacory Pro rial versio hp://

Statystyka Inżynierska

Statystyka Inżynierska aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości

Bardziej szczegółowo

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji

Bardziej szczegółowo

Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru:

Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru: Ćwiczeie ERYFIKACJA IPOTEZ Tesowaie hipoez: Zakładamy że wszyskie hipoezy będą weryfikowae a poziomie isoości α.. eryfikacja hipoezy o wskaźik srkry jedej zmieej losowej dyskreej Rozparjemy próbkę elemeową

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 4

Stanisław Cichocki Natalia Nehrebecka. Wykład 4 Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Porównanie dwu populacji

Porównanie dwu populacji Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :

Bardziej szczegółowo

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x

Bardziej szczegółowo

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora. D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1). TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ

Bardziej szczegółowo

DEA podstawowe modele

DEA podstawowe modele Marek Miszczński KBO UŁ 2008 - Aaliza dach graiczch (EA) cz.2 (przkład aaliza damiki rakigi) EA podsawowe modele WPROWAZENIE Efekwość (produkwość) obieku gospodarczego o es defiiowaa ako sosuek sum ważoch

Bardziej szczegółowo

Badanie zgodności z określonym rozkładem. F jest dowolnym rozkładem prawdopodobieństwa. Test chi kwadrat zgodności. F jest rozkładem ciągłym

Badanie zgodności z określonym rozkładem. F jest dowolnym rozkładem prawdopodobieństwa. Test chi kwadrat zgodności. F jest rozkładem ciągłym Badanie zgodności z określonym rozkładem H 0 : Cecha X ma rozkład F F jest dowolnym rozkładem prawdopodobieństwa Test chi kwadrat zgodności F jest rozkładem ciągłym Test Kołmogorowa F jest rozkładem normalnym

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

Konspekty wykładów z ekonometrii

Konspekty wykładów z ekonometrii Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15 Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay

Bardziej szczegółowo

Sygnały pojęcie i klasyfikacja, metody opisu.

Sygnały pojęcie i klasyfikacja, metody opisu. Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić

Bardziej szczegółowo

Statystyczny opis danych - parametry

Statystyczny opis danych - parametry Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

16 Przedziały ufności

16 Przedziały ufności 16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

H brak zgodności rozkładu z zakładanym

H brak zgodności rozkładu z zakładanym WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,...

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,... Model Lesliego Macierze Lesliego i Markowa K. Leśiak Wyodrębiamy w populaci k grup wiekowych. Po każde edostce czasu astępuą arodziy i zgoy oraz starzeie (przechodzeie do astępe grupy wiekowe). Chcemy

Bardziej szczegółowo

Wykład 11 ( ). Przedziały ufności dla średniej

Wykład 11 ( ). Przedziały ufności dla średniej Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;

Bardziej szczegółowo

ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI**

ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI** Góricwo i Geoiżyieria Rok 30 Zeszy 3/ 006 Dariusz Foszcz* ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI**. Wsęp W zmieiającej się rzeczywisości przebiegu procesów

Bardziej szczegółowo

PODSTAWY BIOSTATYSTYKI ĆWICZENIA

PODSTAWY BIOSTATYSTYKI ĆWICZENIA PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech

STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )

Bardziej szczegółowo

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Parametryczne Testy Istotności

Parametryczne Testy Istotności Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności) IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

ANALIZA PRZYCZYNOWOŚCI W ZAKRESIE ZALEŻNOŚCI NIELINIOWYCH. IMPLIKACJE FINANSOWE

ANALIZA PRZYCZYNOWOŚCI W ZAKRESIE ZALEŻNOŚCI NIELINIOWYCH. IMPLIKACJE FINANSOWE Wiold Orzeszko Magdalea Osińska Uiwersye Mikołaja Koperika w Toruiu ANALIA PRCNOWOŚCI W AKRSI ALŻNOŚCI NILINIOWCH. IMPLIKACJ FINANSOW WSTĘP Przyczyowość w sesie Gragera jes jedym z kluczowych pojęć ekoomeryczej

Bardziej szczegółowo

1. Szereg niesezonowy 1.1. Opis szeregu

1. Szereg niesezonowy 1.1. Opis szeregu kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Wybrane litery alfabetu greckiego

Wybrane litery alfabetu greckiego Wybrae litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilo η eta Θ θ theta κ kappa Λ λ lambda µ mi ν i ξ ksi π pi ρ, ϱ ro σ sigma τ tau Φ φ, ϕ fi χ chi Ψ ψ psi Ω ω omega Ozaczeia a i

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej

Bardziej szczegółowo

θx θ 1, dla 0 < x < 1, 0, poza tym,

θx θ 1, dla 0 < x < 1, 0, poza tym, Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.

Bardziej szczegółowo

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2 Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety

Bardziej szczegółowo

Temat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT. Anna Rajfura 1

Temat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT. Anna Rajfura 1 Temat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zaleŝy

Bardziej szczegółowo

Wykład 11 Testowanie jednorodności

Wykład 11 Testowanie jednorodności Wykład 11 Testowanie jednorodności Wrocław, 17 maja 2018 Test χ 2 jednorodności Niech X i, i = 1, 2,..., k będą niezależnymi zmiennymi losowymi typu dyskretnego przyjmującymi wartości z 1, z 2,..., z l,

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje

Bardziej szczegółowo

Ą ć ę ż ż Ż ć ć Ż ć ń ę ę Ż ń ż ęż ę ę Ę ż ż ĘŚ ę Ż Ż Ż Ż Ż Ż Ż Ż ż ż ń ę ęż ęż Ó ęź Ą ń ę Ś Ż ć ę Ą ę ż ę ż ć ę ę Ż ę ż ż ę ń ń ę Ą ż ę Ł Ą ę ż ę Ą ę ę Ę Ą ę ę ęć ż Ę ęż ż ę Ą Ę ę ę Ą ę ę Ą Ą Ż ć ć Ń

Bardziej szczegółowo

Klasyfikacja modeli. Metoda najmniejszych kwadratów

Klasyfikacja modeli. Metoda najmniejszych kwadratów Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Klasyfikacja modeli Modele dzielimy na: - jedno- i wielorównaniowe - liniowe i nieliniowe - sayczne i dynamiczne - sochasyczne i deerminisyczne -

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności

Estymacja przedziałowa - przedziały ufności Estymacja przedziałowa - przedziały ufości Próbę -elemetową charakteryzujemy jej parametrami (p. x, s, s ). Służą oe do ocey wartości iezaych parametrów populacji (m, σ, σ). Nazywamy je estymatorami puktowymi

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

(X i X) 2. n 1. X m S

(X i X) 2. n 1. X m S Wykład 8. Przedziały ufości i testowaie hipotez A gdy ie zamy wariacji σ 2? Załóżmy, że X ma rozkład ormaly, ale ie zamy wartości ai m ai σ 2. Jak wtedy szacować wartość średią m? Przypomijmy, że Wtedy

Bardziej szczegółowo

Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat

Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zależy

Bardziej szczegółowo

Projekt ze statystyki

Projekt ze statystyki Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statystyka Katarzya Chudy Laskowska http://kc.sd.prz.edu.pl/ WNIOSKOWANIE STATYSTYCZNE Celem aalizy statystyczej ie jest zwykle tylko opisaie (prezetacja) posiadaych daych, czyli tzw. próby statystyczej.

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Statystyka Wzory I. Analiza struktury

Statystyka Wzory I. Analiza struktury Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej

Bardziej szczegółowo

Integracja zmiennych Zmienna y

Integracja zmiennych Zmienna y Inegracja zmiennych Zmienna y jes zinegrowana rzędu d jeśli jej różnice rzędu d są sacjonarne. Zapisujemy o y ~ I ( d ). Przyjmuje się również, że zmienna sacjonarna y (jako że nie rzeba jej różnicować,

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo