9. PODSTAWY TEORII PLASTYCZNOŚCI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "9. PODSTAWY TEORII PLASTYCZNOŚCI"

Transkrypt

1 9. PODSTAWY TEORII PLASTYCZNOŚCI PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co będzie się działo z materiałem po przekroczeniu pewnych odkształceń odwracalnych czyli tzw. sprężystych. W tym wykładzie postaramy się krótko omówić podstawowy teorii plastyczności. Będziemy tu analizować zatem stan, kiedy przekroczone zostaną odkształcenia sprężyste. Pojawią się odkształcenia nieodwracalne nazywane plastycznymi. Do analizy materiału plastycznego wprowadzamy naprężenia ij, prędkości czyli przyrosty przemieszczeń opisywane jako u i oraz prędkości odkształceń plastycznych, które występują podczas plastycznego płynięcia oznaczane przez ij P. W teorii ciał idealnie plastycznych definiujemy plastyczne płynięcie jako proces, w którym naprężenia nie zależą od skali czasu. Oznacza to, że np. podczas przeprowadzenia prób jednoosiowego rozciągania, przeprowadzonych z różnymi prędkościami odkształceń, wartości naprężeń będą niezmienne i będą przyjmowały wartości granicy plastyczności. Wynika z tego, że pojawienie się deformacji plastycznych jest uwarunkowane spełnieniem zależności: F =0 (9.1) Jeżeli ponadto przyjmiemy założenie, że ij = kl P P (9.2) kl ij które z całą pewnością spełnione będzie dla materiałów izotropowych, będziemy mogli wykazać, że prędkości odkształceń plastycznych zostaną wyrażone przez tzw. stowarzyszone prawo płynięcia, które można zapisać następująco ij P = kl ij P (9.3) gdzie jest pewnym mnożnikiem skalarnym

2 9. PODSTAWY TEORII PLASTYCZNOŚCI 2 Równość (9.3) pokazuje nam, że wektor prędkości odkształceń plastycznych jest prostopadły do powierzchni opisanej przez warunek plastyczności. Graficznie możemy to przedstawić następująco II pl I powierzchnia plastyczności Rys Graficzne przedstawienie stowarzyszenia Stowarzyszenie polega na tym, że funkcja F odgrywa rolę potencjału dla prędkości odkształceń plastycznych. Przestawione równanie (9.3) wiąże nam naprężenia z prędkościami odkształceń, ma więc sens równania fizycznego dla ciał plastycznych Jednym z ograniczeń na warunek plastyczności, jest wniosek z tzw. postulatu Druckera. Zgodnie z tym postulatem przyrost pracy wykonanej w cyklu naprężeniowym na nieskończenie małym przyroście odkształcenia jest nieujemny. Sens postulatu przedstawimy na przykładzie materiału sprężysto-plastycznego ze wzmocnieniem liniowym dla jednoosiowego przypadku obciążenia i odciążenia. Przyjmijmy, że naprężenie odpowiada punktowi należącemu do powierzchni plastyczności tzn. wymagane jest spełnienie warunku (9.1). Ponadto załóżmy naprężenie ', które będzie odpowiadać dowolnemu stanowi dopuszczalnemu, a więc takiemu który leży wewnątrz lub na powierzchni plastyczności, czyli spełniającego warunek F 0. Dodajmy jeszcze, że symbolem d oznaczono infinitezymalny przyrost naprężenia, d E - przyrost odkształceń sprężystych, d P - przyrost odkształceń plastycznych, które zostały wywołane przez d.

3 9. PODSTAWY TEORII PLASTYCZNOŚCI 3 D E C d A F B ' d P d E Rys Wykres dla jednoosiowego przypadku obciążenia i odciążenia materiału sprężysto-plastycznego ze wzmocnieniem liniowym Z rysunku (Rys. 9.2.) widać, pole prostokąta BCEF jest nie większe od pola prostokąta ABCD. Możemy to zapisać ' d d E d P ' d d E 0 (9.4) Jeśli zredukujemy wyrazy podobne otrzymamy ' d P d d P 0 (9.5) Jeśli weźmiemy pod uwagę fakt, że wyrażenie d d P przyjmiemy, że możemy je pominąć dostaniemy jest małą wartością wyższego rzędu i ' d P 0 (9.6) lub inaczej d P d P (9.7) Nierówność (9.7) jest prawdziwa zarówno dla materiałów idealnie plastycznych, jak i dla materiałów ze wzmocnieniem plastycznym.

4 9. PODSTAWY TEORII PLASTYCZNOŚCI 4 Jeśli przyjmiemy, że będziemy potrafili znaleźć plastyczną i sprężystą część odkształceń wówczas będziemy mogli określić całkowite odkształcenia ze wzoru: = pl (9.8) gdzie = E to część sprężysta odkształcenia, a pl stanowi część plastyczną odkształcenia Jak możemy wywnioskować z wcześniejszych rozważać dotyczących teorii plastyczności warunek plastyczności jest nieliniową funkcją składowych stanu naprężenia np. warunek H-M-H (przejście cząstki materiału w stan plastyczny następuje z chwilą osiągnięcia przez jednostkową energię odkształcenia postaciowego pewnej wartości krytycznej). Spełnienie warunku plastyczności świadczy o tym, że plastyczne płynięcie może wystąpić. Nie jest jednak ono bliżej określone - jak przebiega ruch plastyczny, czyli jak narastają składowe tensora odkształcenia. Te informacje zawiera prawo plastycznego płynięcia wiążące przyrosty odkształceń plastycznych z naprężeniami lub prędkości odkształcenia plastycznego pl z naprężeniami. Czyli do określonego stanu naprężenia, spełniającego warunki plastyczności, wektor prędkości odkształceń plastycznych ma kierunek normalnej do powierzchni mamy tu na myśli przedstawione wcześniej stowarzyszone prawo płynięcia. Dla przykładu podajmy, że beton należy do materiałów niestowarzyszonych plastycznie, natomiast materiały ciągliwe zaliczamy do stowarzyszonych plastycznie (zależą od drugiego niezmiennika) Algorytm analizy plastycznej MES wymaga: sformułowania standardowej macierzy sztywności stycznej układu sformułowania macierzy konsystentnej do procedur iteracyjnych np. Newtona-Raphsona całkowanie związków konstytutywnych celem zmodyfikowania tensora naprężeń dla odksztalceń nieliniowych Przeanalizujmy następujące zadanie Mamy belkę pokazaną na rysunku poniżej P A B Zauważmy, że jeśli belkę obciążymy siłą skupioną, inaczej będą wyglądały odkształcenia w punkcie A a inaczej w punkcie B. Na początku włókna w punkcie A będą ściskane, ale po osiągnięciu granicy plastyczności zaczną ulegać rozciąganiu. Natomiast włókna w punkcie B będą cały czas rozciągane. Przebieg odkształceń we

5 9. PODSTAWY TEORII PLASTYCZNOŚCI 5 włóknach w punktach A i B pokazano na wykresie poniżej A 0 0 B 0 Moment, w którym zarówno we włóknach górnych jak i dolnych będą takie same co do wartości i znaku wartość naprężeń nastąpi wówczas, gdy wielkość przemieszczeń osiągnie wartość równą 0 =d (9.9) gdzie d jest wysokością przekroju belki 9.2. Nieliniowości fizyczne Przyczyny nieliniowości leżące w istocie związku konstytutywnego Warunek plastyczności (warunek Hubera): I z k 0 2 =0 (9.10) gdzie k 0 oznacza wartość graniczną plastyczności. Warunek ten jest obrazem używanego przez nas zastępczego naprężenia: x 2 3 xy 2 k=0 (9.11)

6 9. PODSTAWY TEORII PLASTYCZNOŚCI 6 Omawianą tu plastyczność rozważać będziemy na poziomie: 1) punktu, 2) przekroju, 3) konstrukcji Plastyczność na poziomie punktu. Znany jest nam stan naprężeń punktu {σ}, jednak istotę stanowi znalezienie stanu naprężeń w każdym punkcie. Rozważmy najpierw zachowanie materiałów nieciągliwych, kruchych. warunek plastyczności dla betonu: σ 2 interpretacja graficzna warunku plastyczności dla betonu σ 1 W stanie plastycznym, po przekroczeniu pewnej granicy, mimo odciążania pozostaną trwałe odkształcenia (oznaczone na rysunku jako ε pl): σ ε pl ε

7 9. PODSTAWY TEORII PLASTYCZNOŚCI 7 w przypadku rozciągania omawianych materiałów pojawiają się geometryczne nieliniowości. Stan plastyczny możemy jednak sprowadzić do jednego punktu. Dla materiałów ciągliwych wyróżniamy dwa typy wzmocnienia: a) wzmocnienie izotropowe w wyniku kolejnej deformacji równowagę stanu naprężenia można uchwycić na rosnącym wzmocnieniu. Warunek plastyczności Hubera dla materiałów ciągliwych: σ 2 izotropowe wzmocnienie σ 1 wg teorii Hubera wg hipotezy Treski Prezentowane na rysunku wzmocnienie izotropowe jest obrazem rzutu przestrzennego walca, mającego przekątną nachyloną do wszystkich osi pod tym samym kątem. Wprowadza ono dla materiałów ciągliwych stan quasistatyczny: = s pl (9.12) gdzie ε s odkształcenie sprężyste, ε pl odkształcenie plastyczne. Wzmocnienie izotropowe pozwala nam na znajdowanie stanu plastycznego tylko w obrębie jego powierzchni.

8 9. PODSTAWY TEORII PLASTYCZNOŚCI 8 b) wzmocnienie kinematyczne w tym przypadku możemy zaobserwować efekt histerezy: σ obciążenie ε odciążenie σ 2 obciążenie dalej jest przenoszone, powierzchnia ewoluuje σ 1 tensor resztkowy Opiszmy ewolucję tensora resztkowego jako {α}. Wówczas dla wzmocnienia kinematycznego możemy zapisać teorię plastyczności I z { } { } (9.13) Zakładając {α}={0}, {k}={0} otrzymamy stan idealnie plastyczny. Obiektywną miarą dla porównania stanów naprężeń (na przykład w dwóch różnych punktach) będzie energia. Przyjmijmy, że znamy stan naprężeń w pierwszym punkcie σ 1. Możemy σ 1 rozłożyć na aksjator i dewiator: 1 = 1 A 1 D (9.14) Identycznie postąpimy z tensorem naprężeń dla drugiego punktu: 2 = 2 A 2 D (9.15)

9 9. PODSTAWY TEORII PLASTYCZNOŚCI 9 Teraz możemy zamienić powyższe tensory na energię: dla punktu 1 E dla punktu 2 E E A E D E A E D tylko ta część (energia postaciowa) odpowiada za stan plastyczny Plastyczność na poziomie przekroju Plastyczność na poziomie przekroju możemy omówić na przykładzie symetrycznej belki (przekroju płaskiego). Wstępne wykresy naprężeń i odkształceń przybierają postać: M σ x ε Jeśli zdecydujemy się na dalsze odkształcanie belki, to otrzymamy wykres σ 0 σ 0

10 9. PODSTAWY TEORII PLASTYCZNOŚCI 10 σ 0 oznacza tu naprężenie sprężyste graniczne. Odkształcenia na tym etapie również są sprężyste, podobnie jak moment w przekroju, który możemy wyznaczyć ze wzoru: M 0 = 0 bh 2 6 (9.16) Odkształcając dalej: σ 0 część sprężysta σ 0 odkształcenie ma tutaj charakter stały Ostatnim etapem jest sytuacja, gdy cały przekrój zostaje uplastyczniony: σ 0 cały przekrój uplastyczniony σ 0

11 9. PODSTAWY TEORII PLASTYCZNOŚCI 11 Moment w tym przekroju obliczymy ze wzoru M pl = 0 bh 2 4 (9.17) Plastyczność na poziomie konstrukcji. Plastyczność na poziomie konstrukcji wyrazimy w obciążeniach: V powstanie mechanizmu belkowego H V H l l l Konstrukcja rozpatrywana jako całość Analiza plastyczna MES wymaga: sformułowania standardowej macierzy sztywności stycznej układu, sformułowania macierzy konsystentnej do procedur iteracyjnych N-R, całkowania związków konstytutywnych, aby zmodyfikować stan naprężeń. Dla materiałów nieliniowych: K t = B T D t B dv K NL d (9.18) V

12 9. PODSTAWY TEORII PLASTYCZNOŚCI 12 gdzie D t = (9.19) Dokonamy teraz uaktualnienia naprężeń w punkcie Gaussa: odkształcenia iteracyjne 1) Obliczamy d : d = k t 1 r (9.20) 2) Na podstawie wzoru 9.20 wyznaczamy : = f d (9.21) 3) Obliczamy : =D t (9.22) σ K (d) Δd = Δp ε 4) Dokonujemy modyfikacji naprężeń: u = 0 1 (9.23) gdzie 0 jest naprężeniem przed aktualną iteracją.

13 9. PODSTAWY TEORII PLASTYCZNOŚCI 13 odkształcenia przyrostowe 1) Obliczamy d : d = k t 1 r (9.24) 2) Modyfikujemy przyrostowe przemieszczenia (od ostatniego stanu równowagi): d N = d 0 d 1 (9.25) gdzie d 0 jest przyrostem przemieszczenia od ostatniej iteracji. λ p d 3) Obliczamy przyrostowe odkształcenia: = f d (9.26) 4) Wyznaczamy przyrostowe naprężenia: =D t (9.27) 5) Modyfikujemy naprężenia: u = 0 1 (9.28) gdzie 0 jest naprężeniem na końcu ostatniego przyrostu.

WSTĘP DO TEORII PLASTYCZNOŚCI

WSTĘP DO TEORII PLASTYCZNOŚCI 13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

MES w zagadnieniach sprężysto-plastycznych

MES w zagadnieniach sprężysto-plastycznych MES w zagadnieniach sprężysto-plastycznych Jerzy Pamin e-mail: JPamin@L5.pk.edu.pl Podziękowania: P. Mika, A. Winnicki, A. Wosatko ADINA R&D, Inc.http://www.adina.com ANSYS, Inc. http://www.ansys.com TNO

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM

PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2013/2014 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Sprężystość

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności Informacje ogólne Założenia dotyczące stanu granicznego nośności przekroju obciążonego momentem zginającym i siłą podłużną, przyjęte w PN-EN 1992-1-1, pozwalają na ujednolicenie procedur obliczeniowych,

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności granicznej

Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności granicznej Wykład 6: Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności anicznej Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.co Literatura: [] Timoschenko S. Goodier A.J.N., Theory of

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

NOŚNOŚĆ GRANICZNA

NOŚNOŚĆ GRANICZNA 4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie

Bardziej szczegółowo

RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH

RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH Część 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5.. ZWIĄZKI MIĘDZY ODKSZTAŁCENIAMI I GŁÓWNYMI NAPRĘŻENIAMI W każdym materiale konstrukcyjnym

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów BILET No 1

Mechanika i wytrzymałość materiałów BILET No 1 Mechanika i wytrzymałość materiałów BILET No 1 1. Prawa ruchu Newtona. 2. Projektowanie prętów skręcanych ze względu na wytrzymałość oraz kąt skręcania. 3. Belka AB o cięŝarze G oparta jak pokazano na

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym

Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym Piotr Mika Kwiecień, 2012 2012-04-18 1. Przykład rozwiązanie tarczy programem ABAQUS Celem zadania jest przeprowadzenie analizy sprężysto-plastycznej

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP)

TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) Wstęp. Podstawy matematyczne. Tensor naprężenia. Różniczkowe równania równowagi Zakład Mechaniki Budowli PP Materiały pomocnicze do TSP (studia niestacjonarne,

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua

FLAC Fast Lagrangian Analysis of Continua FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę róŝnic skończonych. Metoda RóŜnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej kaŝda pochodna w

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

8. WIADOMOŚCI WSTĘPNE

8. WIADOMOŚCI WSTĘPNE Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny

Bardziej szczegółowo

7. RÓWNANIA TEORII SPRĘŻYSTOŚCI

7. RÓWNANIA TEORII SPRĘŻYSTOŚCI 7. RÓWNANIA TEORII SPRĘŻYSTOŚCI 1 7. 7. RÓWNANIA TEORII SPRĘŻYSTOŚCI 7.1. Wprowadzenie Równania Lamego wyrażają się wzorem: u i 1 u j, j i0 (7.1) gdzie: u i jest funkcją biharmoniczną u j,j υ - dylatacja

Bardziej szczegółowo

w stanie granicznym nośności

w stanie granicznym nośności Wytrzyałość ateriałów Hipotezy wytrzyałościowe 1 Podstawy wyiarowania w stanie graniczny nośności Wyiarowanie konstrukcji polega na doborze wyiarów i kształtu przekrojów eleentów. Podstawą doboru jest

Bardziej szczegółowo

UOGÓLNIONE PRAWO HOOKE A

UOGÓLNIONE PRAWO HOOKE A UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej

Bardziej szczegółowo

3. Równania konstytutywne

3. Równania konstytutywne 3. Równania konstytutywne 3.1. Strumienie w zjawiskach transportowych Podczas poprzednich zajęć wprowadziliśmy pojęcie strumienia masy J. W większości zjawisk transportowych występuje analogiczna wielkość

Bardziej szczegółowo

Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną

Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Analizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne dla zadanych wartości

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Fizyczne właściwości materiałów rolniczych

Fizyczne właściwości materiałów rolniczych Fizyczne właściwości materiałów rolniczych Właściwości mechaniczne TRiL 1 rok Stefan Cenkowski (UoM Canada) Marek Markowski Katedra Inżynierii Systemów WNT UWM Podstawowe koncepcje reologii Reologia nauka

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

J. Szantyr Wykład 10 Stan naprężenia w płynie

J. Szantyr Wykład 10 Stan naprężenia w płynie J. Szantyr Wykład 10 Stan naprężenia w płynie Można udowodnić, że tensor stanu naprężenia w płynie jest tensorem symetrycznym, czyli: itd. xy = yx Redukuje to liczbę niewiadomych naprężeń lepkościowych

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

σ ij x 3 x 2 x 1 NAPRĘŻENIA I ODKSZTAŁCENIA Wstęp: Pojęcia te występują w opisie procesu odkształcenia tzn. są to zmiany wymiarów

σ ij x 3 x 2 x 1 NAPRĘŻENIA I ODKSZTAŁCENIA Wstęp: Pojęcia te występują w opisie procesu odkształcenia tzn. są to zmiany wymiarów Krzysztof Wierzbanowski NAPRĘŻENIA I ODKSZTAŁCENIA Wstęp: Pojęcia te występują w opisie procesu odkształcenia tzn. są to zmiany wymiarów ciała pod wpływem przyłożonych sił. Siły powinny być znormalizowane

Bardziej szczegółowo

Nieliniowości fizyczne Część 1: Typy nieliniowości, hipotezy, plastyczność

Nieliniowości fizyczne Część 1: Typy nieliniowości, hipotezy, plastyczność Wykład 6: Nieliniowości fizyczne Część 1: Typy nieliniowości, hipotezy, plastyczność Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.co Literatura: [1] Timoschenko S. Goodier A.J.N., Theory of Elasticity

Bardziej szczegółowo

7. HIPOTEZY WYTRZYMAŁOŚCIOWE

7. HIPOTEZY WYTRZYMAŁOŚCIOWE Część 7. HIPOTEZY WYTRZYMAŁOŚCIOWE 7. HIPOTEZY WYTRZYMAŁOŚCIOWE 7.. UWAGI WSTĘPNE Powróćmy jeszcze raz do wyników próby rozciągania omówionych w rozdziale 4. Jeżeli przyjmiemy, że oś próbki pokrywa się

Bardziej szczegółowo

Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym

Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym Piotr Mika Maj, 2014 2012-05-07 1. Przykład rozwiązanie tarczy programem ABAQUS Celem zadania jest przeprowadzenie analizy sprężysto-plastycznej

Bardziej szczegółowo

PODSTAWY ENERGETYCZNE

PODSTAWY ENERGETYCZNE Część 6. PODSTAWY ENERGETYCZNE 6. PODSTAWY ENERGETYCZNE 6.. PRACA SIŁ ZEWNĘTRZNYCH Rozważmy ruch ciała po szorstkiej płaszczyźnie z uwzględnieniem siły tarcia. Ruch ten jest wywołany siłą P wzrastającą

Bardziej szczegółowo

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

Wykład 8: Lepko-sprężyste odkształcenia ciał

Wykład 8: Lepko-sprężyste odkształcenia ciał Wykład 8: Lepko-sprężyste odkształcenia ciał Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.pl Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków,

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Przedmiot: Mechanika stosowana Liczba godzin zajęć dydaktycznych: Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Studia magisterskie: wykład 30

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Wytrzymałość materiałów Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Mechanika Analityczna

Mechanika Analityczna Mechanika Analityczna Wykład 2 - Zasada prac przygotowanych i ogólne równanie dynamiki Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej 29 lutego 2016 Plan wykładu

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

PODSTAWOWE REZULTATY BADAŃ DOŚWIADCZANYCH

PODSTAWOWE REZULTATY BADAŃ DOŚWIADCZANYCH Część 1 4. PODSTAWOWE REZULTATY BADAŃ DOŚWIADCZLNYCH 1 4. PODSTAWOWE REZULTATY BADAŃ DOŚWIADCZANYCH 2.1. WPROWADZENIE W dotychczasowych rozważaniach dotyczących stanów naprężenia i odkształcenia nie precyzowaliśmy

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 1 10. 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10.1. Zastosowanie funkcji Airy'ego =0 (10.1) Zakładamy, że istnieje funkcja F(x,y) spełniająca następujące

Bardziej szczegółowo

Z-LOG-0133 Wytrzymałość materiałów Strength of materials

Z-LOG-0133 Wytrzymałość materiałów Strength of materials KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Łagodne wprowadzenie do Metody Elementów Skończonych

Łagodne wprowadzenie do Metody Elementów Skończonych Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -

Bardziej szczegółowo

MES w zagadnieniach nieliniowych

MES w zagadnieniach nieliniowych MES w zagadnieniach nieliniowych Jerzy Pamin e-mail: JPamin@L5.pk.edu.pl Podziękowania: A. Wosatko, A. Winnicki ADINA R&D, Inc.http://www.adina.com ANSYS, Inc. http://www.ansys.com TNO DIANA http://www.tnodiana.com

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo