Blok 4: Dynamika ruchu postępowego. Równia, wielokrążki, układy ciał

Wielkość: px
Rozpocząć pokaz od strony:

Download "Blok 4: Dynamika ruchu postępowego. Równia, wielokrążki, układy ciał"

Transkrypt

1 Blok 4: Dynaika ruchu potępowego Równia, wielokrążki, układy ciał I Dynaiczne równania ruchu potępowego Chcąc rozwiązać zagadnienie ruchu jakiegoś ciała lub układu ciał bardzo częto zaczynay od dynaicznych równań ruchu Najczęściej iane ty określay równanie II zaady dynaiki Newtona dla tego ciała lub układu ciał, zapiane w potaci różniczkowej Jednakże na potrzeby tego kuru wyrównawczego, za dynaiczne równanie ruchu będziey uważać równanie: a wyp wyp, w który podana jet jawnie jako ua ił działających na ciało lub układ ciał, czyli: 1 3 a Siła wypadkowa to zawze wektorowa ua ił Żadna z tych ił nie wytępuje w ty równaniu z inue Każde zagadnienie dynaiczne zaczynay od wypiania powyżzego równania w forie wektorowej Równanie to z poinięcie wektorów jet w zdecydowanej więkzości zadań równanie nieprawidłowy W konkretny zadaniu iły 1,, 3 ą konkretnyi iłai (takii jak tarcie, iła reakcji podłoża, naciąg nici, iła ciężkości itp), które należy uwzględnić, jako działające na rozpatrywane ciało lub układ ciał II zaada dynaiki Newtona dla jednego ciała ui uwzględniać wzytkie iły przyłożone do tego ciała Jeżeli ciało poruza ię ruche potępowy lub poczywa, ożey traktować wzytkie te iły jak przyłożone do środka ay tego ciała: 1 3 a II zaada dynaiki Newtona dla układu ciał, z których każde poruza ię ruche potępowy, z ty ay przypiezenie liniowy, ui uwzględniać wzytkie iły zewnętrzne przyłożone do wzytkich eleentów tego układu ciał i nie oże zawierać ił wewnętrznych w ty układzie: z1 z z3 a (1 ) gdzie ua po prawej tronie tego równania to ua a wzytkich eleentów układu Bezpośrednio z równania wektorowego nie ożey obliczyć żadnych wielkości algebraicznych Dlatego niezbędna jet zaiana równania wektorowego na równania algebraiczne Z jednego równania wektorowego otrzyujey tyle równań algebraicznych, ile wpółrzędnych przetrzennych zotało zaangażowane w zadaniu (czyli najwyżej trzy) Poniżej podane zotaną zczegółowe rozwiązania kilku przykładowych zadań dotyczących dynaiki ruchu układów ciał w raach prograu operacyjnego KAPITAŁ LUDZKI 3

2 II Klocki na płazczyźnie Przykład 41: Układ trzech tykających ię z obą klocków pchay iłą o wartości, jak pokazano na ryunku Zakładay, że klocki poruzają ię po pozioy podłożu bez tarcia May klocków: 1 1kg, 4 kg, 3 kg Oblicz wartości: A) przypiezenia układu klocków B) ił wypadkowych działających na każdy klocek C) iły, którą klocek 1 działa na klocek 10 N D) iły 1 3, którą klocek 3 działa na klocek A) Chcąc obliczyć przypiezenie całego układu (równe przypiezeniu każdego klocka), ożna korzytać z II zaady dynaiki Newtona dla układu ciał: a ( ) z 1 3 Siły zewnętrzne działające na ten układ ciał, to trzy iły ciężkości, R, R c1, c, c3 (każda działająca na inny klocek), trzy iły reakcji podłoża, (każda działająca na inny klocek) i iła przyłożona do klocka (1) Czyli II zaada dynaiki Newtona dla całego układu w pełnej potaci: c1 c c3 R1 R R 3 a (1 3 ) Ponieważ jednak klocki nie poruzają ię w kierunku pionowy, to z I zaady dynaiki Newtona wiey, że wektorowa ua pionowych kładowych wzytkich ił ui być równa zeru aktycznie, iły protopadłe do podłoża równoważą ię parai: c1 R 1 0, c R 0 i c3 R 3 0 Otatecznie a ( ) 1 3, 1 R 3 Wybieray oś OX równoległą do podłoża i zwróconą zgodnie ze zwrote iły Wówcza: OX: a (1 3) (gdzie uwzględniliśy, że zarówno wektor, jak i wektor a 10 ają zwroty zgodne ze zwrote oi OX), kąd a ( 1 3) 7 B) Obliczanie wartości wypadkowej iły działającej na ciało to jet jedyne zagadnienie w ty zadaniu, dla którego nie potrzebujey rozpiywać iły wypadkowej jako uy ił Wytarczy, że znay wartość przypiezenia każdego z ciał, a Siła wypadkowa działająca na dany klocek nadaje u przypiezenie a, zate: wyp1 a 1, a 10 tąd wyp1 a 1 kg 10 N 7 ; iła 7 wyp a 40, a tąd a 4 kg 10 N 7 ; 7 iła wypadkowa wyp3 a 0 3, a tąd 3 a 3 kg 10 N 7 7 C) Z III zaady dynaiki: Klocek 1 działa na iłą o takiej aej wartości, z jaką klocek działa na 1 Zate: wyp1 1 wyp1 1 1 wyp1 a 1 10 N N N 7 7 D) Z III zaady dynaiki: Klocek 3 działa na iłą o takiej aej wartości, z jaką klocek działa 0 na 3 Zate: wyp3 3 3 wyp3 a 3 N 7 w raach prograu operacyjnego KAPITAŁ LUDZKI 4

3 Przykład 4: W ytuacji przedtawionej na ryunku (tarcie poijay) ay ciał ą równe odpowiednio:, Oblicz wartość iły napinającej nitkę łączącą klocki 1 4 kg 1kg II zaada dynaiki Newtona dla całego układu: c 1 c R1 R a (1 ) Ponieważ ruch odbywa ię w pozioie, to intereuje na tylko równanie na ikową kładową iły wypadkowej działającej na ten układ klocków: a(1 ) a 1 Uwaga: iła reakcji podłoża przyłożona do każdego z klocków równoważona jet przez iłę ciężkości tego klocka, bo żaden z klocków nie poruza ię (a ty bardziej nie przypieza) w kierunku pionowy II zaada dynaiki Newtona dla klocka o aie N a 1 N a : N 4 5 III Bloczki 1 kg 3 kg, Przykład 43: Ciężarki o aach i połączono nicią Nić przerzucono przez bloczek Nić przerzucono przez bloczek o poijalnie ałej aie Oblicz: A) przypiezenie ciężarków B) iłę napięcia nici I poób: równania ruchu dla pojedynczych klocków II zaada dynaiki dla jednego klocka o aie : c N a, a dla klocka o aie 1 : c1 N1 1 a1 Oba klocki wizą na jednej nici, a ponieważ dodatkowo bloczek ię nie obraca (nić ślizga ię po bloczku), to wniokujey, że Nić jet nierozciągliwa, a kąd wiadoo, że: 1 a a Dla klocka z prawej trony obieray oś OX zwróconą pionowo w górę i przepiujey równanie wektorowe na algebraiczne: OX: g N a Dla klocka z lewej trony obieray oś OX na przykład także zwróconą pionowo w górę, wówcza: g a 1 N 1 Odejujey równania tronai i otrzyujey: N1 N N ( 1) g ( 1) a a g / 5 Wtawiay tę wartość do pierwzego równania algebraicznego i otrzyujey: 4 (g a) g 4 N N 5 w raach prograu operacyjnego KAPITAŁ LUDZKI 5

4 II poób: równanie ruchu dla całego układu Jeżeli chcey obliczyć tylko przypiezenia pozczególnych klocków, a nić jet nieważka i nierozciągliwa a1 a a ukl a, to ożey korzytać z II zaady dynaiki Newtona dla układu W taki wypadku nie uwzględniay ił naciągu nici, jako ił wewnętrznych w ty układzie z c1 c Napotykay jednak na kłopot, bo wektor (różnią ię zwrotai) a 1 a Itnieje jednak twierdzenie, które pozwala na rozwiązanie tego zagadnienia w nietandardowy układzie wpółrzędnych, którego oś OX jet cały cza równoległa do nici i wije ię wraz z tą nicią (np taki, jak na ryunku) W a 1 a taki układzie wpółrzędnych: (oba klocki jadą w tronę tej aej końcówki nici) i ożey zatoować z c1 c a (1 ) Trzeba tu jednak zwrócić zczególną uwagę na znaki wzytkich wektorów w ty nietandardowy układzie wpółrzędnych: c 1 c a (1 ), zate ( 1) g ( 1) a a g / 5 Jeżeli poób II rozwiązania tego zadania prawił Ci trudności koncepcyjne lub intuicyjne, to lepiej go nie touj Spoób I będzie dla Ciebie lepzy Przykład 44: Oblicz tounek a, dla którego układ przedtawiony na ryunku (ay bloczków i lin poijay) pozotaje w równowadze W zadaniu klocek (1) jet podwiezony do bloczka za poocą jednej liny, a klocek () za poocą innej Naciągi tych obu lin ą najprawdopodobniej różnej wartości Bloczek prawy jet podwiezony do ufitu za poocą trzeciej liny Ani klocki, ani bloczki nie poruzają ię Z I zaady dynaiki Newtona: Bloczek lewy: N1 N 0 Klocek : N 4 c1 0 Bloczek prawy: N 3 N to równanie nie będzie na potrzebne Klocek 1 : N 5 c1 0 Ponieważ N1, N 3, N 5 ą naciągai tej aej nici, ich wartości ą równe: N1 N3 N5 Ponieważ N, N 4 ą naciągai tej aej nici, ich wartości ą równe: N N 4 Na ryunku zilutrowano wektory Naciągi tej aej nici (wektory o jednakowych długościach) zaznaczono jednakowyi kolorai Przy lewy bloczku obieray oś OX układu wpółrzędnych zwróconą pionowo w górę i otrzyujey: N1 N 0 N4 c 1 0 N4 1g, a ponieważ N N 4, to także N 1g 1 Przy prawy bloczku obieray oś OX układu wpółrzędnych na przykład zwróconą pionowo w dół: 0 N5 c g, a ponieważ N1 N3 N5, to także N1 g i 3 g N5 c N w raach prograu operacyjnego KAPITAŁ LUDZKI 6

5 Po uwzględnieniu tych wzytkich zależności, otatecznie otrzyujey: N1 N 0, czyli g 1g 0 1 Przykład 45: Przypiezenie klocków przedtawionych na ryunku a wartość a Poijay aę nitki i bloczka Maa klocka zwiającego jet równa, a aa klocka znajdującego ię na tole: Oblicz wpółczynnik tarcia kinetycznego klocka o tół oraz wartość napięcia nici 1 II zaada dynaiki dla klocka (1): II zaada dynaiki dla klocka (): N1 a, czyli wzdłuż nici: c 1 N1 1 a R N T a c1 1 c N T Protopadle do nici: R c 0 Wzdłuż nici: a i T N R, a ponieważ z równania w kierunku protopadły wiey, że, to wniokujey, że Wiey także, że N1 N R c T c Zate przekztałcając, otrzyujey: T c 1 a(1 ) g 1g a(1 ) 1g a(1 ) g IV Równia o Przykład 46: U podtawy równi o kącie nachylenia 30 i wyokości równi H znajduje ię klocek o aie 1 kg, do którego przyłożono iłę 10 N pod kąte względe powierzchni zbocza równi Poijając tarcie, oblicz: A) przypiezenie klocka B) cza, po który klocek oiągnie zczyt równi C) zybkość końcową (przy wierzchołku równi) D) iłę naciku klocka na równię o 30 II zaada dynaiki Newtona dla klocka: c R a Korzytnie jet wybrać układ wpółrzędnych jak pokazano na ryunku (ale ożna także wybrać inny układ wpółrzędnych) Uwaga: poób rozwiązania przedtawiony w dalzej części zależy od wyboru układu wpółrzędnych, ale wyniki nie zależą od tego wyboru W układzie wpółrzędnych przedtawiony na ryunku dynaiczne równania ruchu przedtawiają ię natępująco: () Wzdłuż oi OX: x cx a () Wzdłuż oi OY: R 0 y cy w raach prograu operacyjnego KAPITAŁ LUDZKI 7

6 gdzie: x co, y in - ą wartościai kładowych iły w wybrany układzie wpółrzędnych, cx c in, cy c co - ą wartościai kładowych iły ciężkości układzie wpółrzędnych, a R jet wartością iły reakcji podłoża Zate z równania, ay: A) Wartość przypiezenia klocka: () 3 1 c w wybrany x cx co g in 10 N 1kg 10 a 3, 66 1kg B) Cza potrzebny do oiągnięcia zczytu równi ożna obliczyć z kineatycznego równania ruchu w ruchu jednotajnie przypiezony (klockowi nie nadano prędkości początkowej, czyli ): 1 at v 0 0 i H in H t 1,48 a in 3,66 1 C) Szybkość końcową należy obliczyć z drugiego kineatycznego równania ruchu: v k a t 3,66 1,48 5, 4 D) Siła naciku klocka na równię jet równa co do wartości ile reakcji podłoża na klocek, zate z równania otrzyujey: R () 3 1 cy y gco in 1kg N 3,66 N w raach prograu operacyjnego KAPITAŁ LUDZKI 8

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,

Bardziej szczegółowo

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH DZIAŁ III. SIŁA WPŁYWA NA RUCH Wielkość fizyczna nazwa ybol Przypiezenie (II zaada dynaiki) a Jednotka wielkości fizycznej Wzór nazwa ybol F N w a niuton na kilogra kg Ciężar Q Q g niuton N Przypiezenie

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

Układy inercjalne i nieinercjalne w zadaniach

Układy inercjalne i nieinercjalne w zadaniach FOTON 98 Jeień 007 53 Układy inercjalne i nieinercjalne w zadaniach Jadwia Salach Zadanie 1 Urzędnik pracujący w biurowcu wiadł do windy która ruzył dół i przez 1 ekundę jechała z przypiezenie o wartości

Bardziej szczegółowo

Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA.

Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA. Ćwiczenie 39 KLOCEK WALEC A ÓW POCHYŁEJ - SAYKA. 39... Wiadoości ogólne Zjawiko tarcia jet jedny z najbardziej rozpowzechnionych w nazej codziennej rzeczywitości. W świecie w jaki żyjey tarcie jet dołownie

Bardziej szczegółowo

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu Odpowiedzi i rozwiązania:. C. D (po włączeniu baterii w uzwojeniu pierwotny płynie prąd tały, nie zienia ię truień pola agnetycznego, nie płynie prąd indukcyjny) 3. A (w pozotałych przypadkach na trunie

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I 1. (3p) Jaki rodzaj oddziaływań zachodzi w podanych ytuacjach? a) Spadanie jabłka z drzewa -... b) Uderzenie łotkie w gwóźdź...

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO I ETAP SZKOLNY 19 października 2017 r. Uczennico/Uczniu: 1. Na rozwiązanie wzytkich zadań az 90 inut. 2. Piz długopie/pióre -

Bardziej szczegółowo

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły?

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły? Zaady dynaiki. 1. Jakie ogą być oddziaływania ciał? Świat jet pełen rozaitych ciał. Ciała te nie ą od iebie niezależne, nieutannie na iebie działają. Objawy tego działania, czy też, jak ówią fizycy, oddziaływania

Bardziej szczegółowo

motocykl poruszał się ruchem

motocykl poruszał się ruchem Tet powtórzeniowy nr 1 W zadaniach 1 19 wtaw krzyżyk w kwadracik obok wybranej odpowiedzi Inforacja do zadań 1 5 Wykre przedtawia zależność prędkości otocykla od czau Grupa B 1 Dokończ zdanie, określając,

Bardziej szczegółowo

SPRAWDZIAN z działu: Dynamika. TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć.

SPRAWDZIAN z działu: Dynamika. TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć. SPRAWDZIAN z działu: Dynamika TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć....... imię i nazwiko... klaa 1. Które z poniżzych zdań tanowi

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcyjna wielkości fizycznych ZESTAW ZADAŃ NA ZAJĘCIA 1. Na podtawie wykreu oblicz średnią zybkość ciała w opianym ruchu.. Na ryunku przedtawiono wykre v(t) pewnego pojazdu jadącego po

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2010/2011 Cza trwania: 90 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

i odwrotnie: ; D) 20 km h

i odwrotnie: ; D) 20 km h 3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki

Bardziej szczegółowo

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1

Bardziej szczegółowo

Doświadczenie Atwood a

Doświadczenie Atwood a Doświadczenie Atwood a Dwa kocki o maach m 1 i m 2 = m 1 wiza na inie przewiezonej przez boczek. Oś boczka podwiezona jet do ufitu. Trzeci kocek o maie m 3 zota po ożony na pierwzym kocku tak że oba poruzaja

Bardziej szczegółowo

Bryła sztywna - zadanka

Bryła sztywna - zadanka Bryła ztywna - zadanka 1. Hantla kłada ię z dwóch kul o maach m 1 = 1kg i m = kg połączonych prętem o długości l = 0.5m maie dużo mniejzej niż may tych kul. Wyznacz środek ciężkości tej haltli. Trzy kule

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s.

1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s. Iię i nazwiko Daa Klaa Werja A Sprawdzian 1 opi ruchu poępowego 1. Saochód jadący z zybkością 1 / na prooliniowy odcinku ray zwolnił i oiągnął zybkość 5 /. 1 a. Przyro prędkości a warość 5 / i zwro zgodny

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 2009/2010 Czas trwania: 120 minut

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 2009/2010 Czas trwania: 120 minut KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 009/010 Cza trwania: 10 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych, za które

Bardziej szczegółowo

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap szkolny

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap szkolny UWAGA: W zadaniac o nuerac od 1 do 6 pośród podanyc propozycji odpowiedzi wybierz i zaznacz tą, która tanowi prawidłowe zakończenie otatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Lokootywa o aie 0 ton

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego -  - zadania fizyka, wzory fizyka, matura fizyka 2. Dynamika zadania z arkuza I 2.8 2.1 2.9 2.2 2.10 2.3 2.4 2.11 2.12 2.5 2.13 2.14 2.6 2.7 2.15 2. Dynamika - 1 - 2.16 2.25 2.26 2.17 2.27 2.18 2.28 2.19 2.29 2.20 2.30 2.21 2.40 2.22 2.41 2.23 2.42 2.24

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejce na identyfikację zkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 03 Cza pracy: 50 inut Intrukcja dla zdającego. Sprawdź, czy arkuz egzainacyjny zawiera tron

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM Konkury w województwie podkarpacki w roku zkolny 2005/2006... pieczątka nagłówkowa zkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, Witaj na I etapie konkuru

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

DYNAMIKA ZADANIA. Zadanie DYN1

DYNAMIKA ZADANIA. Zadanie DYN1 DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie

Bardziej szczegółowo

Pęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ]

Pęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ] Pęd ciała Definicja: p = v [kg s ] II zasada dynaiki Newtona w oryginalny sforułowaniu: F wyp = a = d v = d( v) = d p F wyp = d p Jeżeli ciało zienia swój pęd to na ciało działa niezerowa siła wypadkowa.

Bardziej szczegółowo

5. Równanie Bernoulliego dla przepływu płynów rzeczywistych

5. Równanie Bernoulliego dla przepływu płynów rzeczywistych 5. Równanie Bernoulliego dla przepływu płynów rzeczywitych Protota równania Bernoulliego prawia że toowane jet ono również dla przepływu płynu lepkiego, io że w ty przypadku wzytkie przeiany energii ą

Bardziej szczegółowo

O ciężarkach na bloczku z uwzględnieniem masy nici

O ciężarkach na bloczku z uwzględnieniem masy nici 46 FOTON 3, ato O ciężarkach na bloczku z uwzględnienie asy nici Mariusz Tarnopolski Student fizyki IF UJ Rozważy klasyczne zadanie szkolne z dwoa ciężarkai zawieszonyi na nici przerzuconej przez bloczek,

Bardziej szczegółowo

p t F F Siła. Zasady dynamiki Siły powodują ruch ciał materialnych i zmiany stanu ruchu.

p t F F Siła. Zasady dynamiki Siły powodują ruch ciał materialnych i zmiany stanu ruchu. Siła. Zasady dynaiki kg s Siła jest wielkością wektorową. Posiada określoną wartość, kierunek i zwrot. Jednostką siły jest niuton (N). 1N 1 A Siła przyłożona jest do ciała w punkcie A, jej kierunek oraz

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

1 W ruchu jednostajnym prostoliniowym droga:

1 W ruchu jednostajnym prostoliniowym droga: TEST z działu: Kineatyka iię i nazwiko W zadaniac 8 każde twierdzenie lub pytanie a tylko jedną prawidłową odpowiedź Należy ją zaznaczyć data W rucu jednotajny protoliniowy droga: 2 jet wprot proporcjonalna

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

FIZYKA Kolokwium nr 2 (e-test)

FIZYKA Kolokwium nr 2 (e-test) FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców

Bardziej szczegółowo

6 = λ Częstotliwość odbierana przez nieruchomą głowicę, gdy źródło o prędkości v s emituje falę o częstotliwości f k : + = g g

6 = λ Częstotliwość odbierana przez nieruchomą głowicę, gdy źródło o prędkości v s emituje falę o częstotliwości f k : + = g g Projet Fizya wobec wyzwań XXI w. wpółinanowany przez Unię Europeją ze środów Europejieo Funduzu Społeczneo w raach Prorau Operacyjneo Kapitał Ludzi Zadania z olowiu 16.11.2009 (Fizya Medyczna i Neuroinoratya)

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań 1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczaowych ginazjów 0 tycznia 019 r. etap rejonowy Scheat punktowania zadań Makyalna liczba punktów 40. 85% 4pkt. Uwaga! 1. Za poprawne rozwiązanie zadania

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcjna wielkości fizcznch I. Odcztwanie informacji z wkreu co tak naprawdę na nim ię znajduje. Chcąc odcztać informacje z wkreu funkcji, muim dokładnie wiedzieć, jaka wielkość fizczna

Bardziej szczegółowo

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia Blok 7 Zaada zachowana energ echancznej. Zderzena I. Sły zachowawcze nezachowawcze Słą zachowawczą nazyway łę która wzdłuż dowolnego zaknętego toru wykonuje pracę równą zeru. Słą zachowawczą nazyway łę

Bardziej szczegółowo

Konkurs fizyczny - gimnazjum. 2018/2019. Etap szkolny

Konkurs fizyczny - gimnazjum. 2018/2019. Etap szkolny UWAGA: W zadaniac o nuerac od 1 do 6 pośród podanyc propozycji odpowiedzi wybierz i zaznacz tą, która tanowi prawidłowe zakończenie otatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Stojący na zynac wagon

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań 1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 10 marca 2017 r. zawody III topnia (finałowe) Schemat punktowania zadań Makymalna liczba punktów 60. 90% 5pkt. Uwaga! 1. Za poprawne rozwiązanie zadania

Bardziej szczegółowo

Zagadnienia na badanie wyników nauczani z fizyki kl II. [min]

Zagadnienia na badanie wyników nauczani z fizyki kl II. [min] Zagadnienia na badanie wyników nauczani z fizyki kl II Badanie wyników obejmuje natępujące działy: 1.Ruchy.Dynamika 3.Praca, moc, energia mechaniczna Przykładowe zadania Zad.1 (0-3pkt.) Jacek przez dwie

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania

Bardziej szczegółowo

LIGA ZADANIOWA z FIZYKI MAJ 2014

LIGA ZADANIOWA z FIZYKI MAJ 2014 Terin oddania prac: 4. VI. 2014 r. GIMNAZJUM NR 1 w KOŃSKICH Rok zkolny 2013 / 2014 LIGA ZADANIOWA z FIZYKI MAJ 2014 ZADANIA DLA UCZNIÓW KLAS PIERWSZYCH ZADANIE 1 Oblicz wartość iły nośnej balonu wypełnionego

Bardziej szczegółowo

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Zadania do rozdziału 2.

Zadania do rozdziału 2. Zadania do rozdziału. Zad..1. Saochód na auoradzie poruza ię ruche jednoajny prooliniowy z prędkością υ100 k/odz. W jaki czaie przebędzie on droę 50 k? Rozwiązanie: Zad... υ 50 k / odz 0.5 odz. υ 100 k

Bardziej szczegółowo

2. Załadowany pistolet spręŝynowy ustawiono pionowo w górę i oddano strzał. SpręŜyna

2. Załadowany pistolet spręŝynowy ustawiono pionowo w górę i oddano strzał. SpręŜyna Energia potencjalna pręŝytości 1. W kontrukcji pitoletu pręŝynowego uŝyto pręŝyny o wpółczynniku pręŝytości 100. Jaką aę a pocik pitoletu, jeśli odkztałcona o 6 c pręŝyna nadaje pocikowi w trakcie trzału

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Miejce na naklejkę z kodem zkoły dylekja MFA-PAP-06 EGZAMIN MAURALNY Z FIZYKI I ASRONOMII POZIOM PODSAWOWY Cza pracy 0 minut Intrukcja dla zdającego. Sprawdź, czy arkuz egzaminacyjny zawiera 3 tron (zadania

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie 3. RUCHY CIAŁ (KINEMATYKA) Zakre wiadomości Pojęcie ruchu, układ odnieienia, tor, droga, przemiezczenie Względność ruchu Klayfikacja ruchów Prędkość średnia i chwilowa Ruch jednotajny protoliniowy (równanie

Bardziej szczegółowo

Lista 2 + Rozwiązania BLiW - niestacjonarne

Lista 2 + Rozwiązania BLiW - niestacjonarne Dynaika 1. Oblicz wartość siły, z jaką siłacz usiałby działać na cięŝar o asie 100 kg, jeŝeli chciałby podnieść go na wysokość 0,5 w czasie 1 sekundy ruche jednostajnie przyspieszony. ( g Q + b g + a a

Bardziej szczegółowo

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie

Bardziej szczegółowo

Egzamin maturalny z fizyki poziom rozszerzony (11 maja 2015)

Egzamin maturalny z fizyki poziom rozszerzony (11 maja 2015) Egzain aturalny z fizyki pozio rozzerzony ( aja 05) rkuz zawiera 6 zadań, za których rozwiązanie ożna było uzykać akyalnie 60 punktów. Ogólną charakterytykę zadań przedtawia poniżza tabela. Nr zadania

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z FIZYKI I ASTRONOMII DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH. Etap I 25 listopada 2008 r.

Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z FIZYKI I ASTRONOMII DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH. Etap I 25 listopada 2008 r. Kuratoriu Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z FIZYKI I ASTRONOMII DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH Etap I 5 litopada 008 r. Drogi Uczetniku Konkuru Dziiaj przytępujez do pierwzego etapu Konkuru.

Bardziej szczegółowo

1 Przekształcenie Laplace a

1 Przekształcenie Laplace a Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy

Bardziej szczegółowo

Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron

Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Koiji Wojewódzkiego Konkuru Przediotowego z Fizyki Iię i nazwiko ucznia... Szkoła... Punkty

Bardziej szczegółowo

Dynamika ruchu obrotowego

Dynamika ruchu obrotowego Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTEMTYK Przed próbną maturą. Sprawdzian 3. (poziom podtawowy) Rozwiązania zadań Zadanie 1. (1 pkt) III.1.5. Uczeń oblicza wartości niekomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Zadania zamknięte. Zadania otwarte

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Zadania zamknięte. Zadania otwarte SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I Jeżeli zdający rozwiąże zadanie inną, merytorycznie poprawną metodą, to za rozwiązanie otrzymuje makymalną liczbę punktów. Zadania zamknięte

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejce na identyfikację zkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY LISTOPAD 2010 Intrukcja dla zdającego Cza pracy 120 inut 1. Sprawdź, czy arkuz egzainacyjny zawiera

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

Wprowadzenie: Dynamika

Wprowadzenie: Dynamika Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJÓW ETAP WOJEWÓDZKI

KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJÓW ETAP WOJEWÓDZKI B... pieczątka nałówkowa WKK KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJÓW ETAP WOJEWÓDZKI Droi Uczniu, Witaj na etapie wojewódzki konkuru przediotoweo fizyczneo! Przed Tobą do rozwiązania 2 zadania.

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 EUROELEKTRA Ogólnopolka Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok zkolny 015/016 Zadania z elektrotechniki na zawody III topnia Rozwiązania Intrukcja dla zdającego 1. Cza trwania zawodów: 10 minut..

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

Mechanika ogólna II Kinematyka i dynamika

Mechanika ogólna II Kinematyka i dynamika Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,

Bardziej szczegółowo

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ ZAGADNIENIA DO ĆWICZEŃ 1. Warunki równowagi ciał. 2. Praktyczne wykorzystanie warunków równowagi w tzw. maszynach prostych.

Bardziej szczegółowo

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2. Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY stopień wojewódzki

WOJEWÓDZKI KONKURS FIZYCZNY stopień wojewódzki KOD UCZNIA Białytok 07.03.2007r. WOJEWÓDZKI KONKURS FIZYCZNY topień wojewódzki Młody Fizyku! Przed Tobą topień wojewódzki Wojewódzkiego Konkuru Fizycznego. Maz do rozwiązania 10 zadań zamkniętych i 3 otwarte.

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 4: Dynaika dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Przyczyny ruchu - zasady dynaiki dla punktu aterialnego Jeśli ciało znajduje się we właściwy iejscu,

Bardziej szczegółowo

Wprowadzenie: Dynamika

Wprowadzenie: Dynamika Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

Zadania do sprawdzianu

Zadania do sprawdzianu Zadanie 1. (1 pkt) Na podtawie wykreu możemy twierdzić, że: Zadania do prawdzianu A) ciało I zaczęło poruzać ię o 4 później niż ciało II; B) ruch ciała II od momentu tartu do chwili potkania trwał 5 ;

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU ĆWICZENIE 76 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU Cel ćwiczenia: pomiar kąta łamiącego i kąta minimalnego odchylenia pryzmatu, wyznaczenie wpółczynnika załamania zkła w funkcji

Bardziej szczegółowo

Schematy blokowe. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTY SCHEMATU BLOKOWEGO

Schematy blokowe. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTY SCHEMATU BLOKOWEGO Akademia Morka w dyni Katedra Automatyki Okrętowej Teoria terowania Miroław Tomera. ELEMENTY SCEMATU BLOKOWEO Opi układu przy użyciu chematu blokowego jet zeroko i powzechnie toowany w analizowaniu działania

Bardziej szczegółowo

SZEREGOWY SYSTEM HYDRAULICZNY

SZEREGOWY SYSTEM HYDRAULICZNY LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 1 SZEREGOWY SYSTEM HYDRAULICZNY 1. Cel ćwiczenia Sporządzenie wykreu Ancony na podtawie obliczeń i porównanie zmierzonych wyokości ciśnień piezometrycznych z obliczonymi..

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 5: Dynaika dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Przyczyny ruchu - zasady dynaiki dla punktu aterialnego Jeśli ciało znajduje się we właściwy iejscu,

Bardziej szczegółowo

Egzamin z fizyki Informatyka Stosowana

Egzamin z fizyki Informatyka Stosowana Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0 Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: 55OF D KO OF Szczecin: www.of.zc.pl L OLMPADA FZYZNA (005/006). Stopień, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wymołek; Fizyka w Szkole nr 3, 006. Autor: Nazwa zadania:

Bardziej szczegółowo

km każdy. Prędkość jednego

km każdy. Prędkość jednego Ruch i iły Zadanie 1. (1 pkt) Na wykreie pokazano, jak zienia ię droga trzech rowerzytów. Na podtawie wykreu ożey twierdzić, że w ciągu 8 najdłużzą drogę przebył rowerzyta: A) I; B) II; C) III; D) Wzycy

Bardziej szczegółowo

Dynamika punktu materialnego 1

Dynamika punktu materialnego 1 Dynamika punktu materialnego 1 1. Znaleźć wartość stałej siły działającej na ciało o masie 2,5kg, jeżeli w ciągu 5s od chwili spoczynku przebyło ono drogę 40m. 2. Rakieta i jej ładunek mają masę 50000kg.

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Fizyka i astronomia Poziom podstawowy

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Fizyka i astronomia Poziom podstawowy Modele odpowiedzi do arkuza Próbnej Matury z OPERONEM Fizyka i atronoia Pozio podtawowy Litopad 00 W klu czu ą pre zen to wa ne przy kła do we pra wi dło we od po wie dzi. Na le ży rów nież uznać od po

Bardziej szczegółowo