Twierdzenie o n-kanapce
|
|
- Antonina Karczewska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Twierdzenie o n-kanapce Jacek J. Łakis Naukowe Koło Matematyki PG 24 marca 204. Wprowadzenie Twierdzenie o n-kanapce jest jednym z tych twierdzeń, które pokazują niezwykłe własności i zastosowania funkcji ciągłej. Jest uogólnieniem twierdzeń którym ze względu na swoją prostotę zrozumienia nadano kulinarny charakter. Zanim jednak sformułuję te szczególne przypadki chciałbym przytoczyć najważniejsze twierdzenie w tym artykule: Twierdzenie Borsuka-Ulama. Dla każdego ciągłego odwzorowania f : S n R n istnieje taki punkt x S n dla którego: f(x) = f( x) Skrótowo mówi się również, że każde ciągłe odwzorowanie f skleja punkty antypodyczne. W pozycji [] można znaleźć bardzo długi dowód tego twierdzenia jak również twierdzenia jemu równoważne, twierdzenia które implikuje i mnóstwo przykładów jego użycia. Przejdźmy w takim razie do, wcześniej wspomnianych, szczegółnych przypadków tytułowego twierdzenia. Jako, że zbiory zawarte w R 2 można utożsamiać z naleśnikami, a zbiory z R 3 z chlebem, masłem i szynką, twierdzenia te otrzymały nazwy: Twierdzenie o naleśnikach (n = 2). Niech A i A 2 będą zwartymi podzbiorami płaszczyzny R 2. Wówczas istnieje jedna prosta dzielące jednocześnie oba te zbiory na dwa podzbiory o tych samych miarach. Dowód tego twierdzenia stanowi świetny, a zarazem prosty przykład wykorzystania fundamentalnych twierdzeń topologii - Twierdzenia Darboux i twierdzenia Borsuka-Ulama o antypodach, w jednym i dwóch wymiarach. Twierdzenie o kanapce z szynką i serem (n = 3). Niech A, A 2, A 3 będą zwartymi podzbiorami przestrzeni R 3. Wówczas istnieje jedna płaszczyzna dzieląca jednocześnie wszystkie trzy zbiory na dwa podzbiory o tych samych miarach. Dowód przypadku n-wymiarowego zrealizujemy w kilku krokach. Najpierw skonstruujemy jednoznaczny podział dowolnej przestrzeni R n który będzie wyznaczony przez punkt u S n - czemu poświęcimy osobny paragraf. Następnie pokażemy, że specjalnie zdefiniowane miary - odpowiadające miarom dwóch części dzielonych zbiorów tworzą funkcję ciągłą co pozwoli nam skorzystać z twierdzenia Borsuka-Ulama.
2 2. Konstrukcja półprzestrzeni Kolejną konstrukcją pomocną w dowodzie będzie określenie pewnego szczególnego podziału przestrzeni R n na dwie półprzestrzenie. Chcielibyśmy pokazać, że istnieje pewne przyporządkowanie każdemu punktowi u ze sfery S n półprzestrzeni w R n. S n u R n u R n W czasie konstrukcji wskażemy kilka ciekawych własności tego przyporządkowania. Wybierzmy zatem punkt u = (u 0, u,..., u n ) S n. Zauważmy, że tworząc zbiór tych wszystkich x = (x 0, x,..., x n ) R n+ dla których zachodzi: u x = 0 () definiujemy jednoznacznie hiperpłaszczyznę n-wymiarową zanurzoną w R n. Hiperpłaszczyzna () jest ortogonalna do wektora zaczepionego w początku układu, kończącego się w punkcie u. W celu zrozumienia tego przyporządkowania proponuję przyjrzeć się Rysunkowi który przedstawia sferę S, dwa różne przypadki wyboru punktu u i hiperpłaszczyznę odpowiadającą tym punktom (prosta zaznaczona na niebiesko) Rysunek : Określenie hiperpłaszczyzny (R) u x = 0 dla przypadku R 2 Widzimy również, że ta hiperpłaszczyzna dzieli naszą przestrzeń R n+ na dwie części (na część zawierającą punkt u i niezawierającą punktu u), a mianowicie na przypadek u x < 0 i u x > 0. Zatem, mając dany punkt u S n możemy określić jednoznacznie podział przestrzeni R n+ na dwie połprzestrzenie. Interesuje nas jednak podział przestrzeni R n. Uprośćmy zatem rozważania jedynie do takich x R n+, że x 0 =. Reasumując, przypiszmy każdemu punktowi u = (u 0, u,..., u n ) S n półpłaszczyznę R n spełaniającą warunki: u x 0 u 0 x 0 + u x u n x n < 0 x 0 = 2
3 Połączenie dwóch powyższych warunków prowadzi wprost do definicji: Definicja. Półprzestrzenią dla u S n nazywamy zbiór: h+ (u) = {(x, x2,..., xn ) Rn xu + x2u xnun < u0} (2) Podczas gdy same przekształcenia algebraiczne wydają się oczywiste to graficzne wyobrażenie tej definicji, nawet w małych wymiarach, może okazać się dość kłopotliwe. Dlatego Spójrzmy na Rysunek 2 który przedstawia przykłady takich rozumowań dla S i S Rysunek 2: Przykłady półprzestrzeni dla S i S 2 Z lewej strony widzimy konstrukcję z rysunku pierwszego, i dodajemy prostą x =. Po tym ograniczeniu widzimy podział -wymiarowej przestrzeni (tej właśnie prostej) na dwie półprzestrzenie (pomarańczową na dole i niebieską u góry). Nasza konstrukcja nadaje punktowi zaznaczonemu na sferze pomarańczową półprzestrzeń. Z prawej strony widzimy wektor poprowadzony od środka sfery S 2 do punktu u S 2 (zielony). Następnie kolorem błękitnym oznaczamy płaszczyznę normalną. Analogicznie, ta płaszczyzna dzieli 3 na dwie części. Ograniczając się jedynie do przypadku x = otrzymujemy podział 2-wymiarowej przestrzeni na dwie półprzestrzenie (pomarańczową i niebieską). Nasza konstrukcja nadaje punktowi zaznaczonemu na sferze pomarańczową półprzestrzeń. R Najciekawszą, a zarazem najważniejszą cechą tego specjalnego podporządkowania jest jego zachowanie dla punktów antypodycznych. Spoglądając na Rysunek 2 widzimy, że punkt antypodyczny u do wybranego u zada tę samą płaszczyznę normalną, jednakże ze względu na to, że znajduje się po drugiej stronie, półprzestrzenią dla u będzie ta oznaczona kolorem niebieskim. Znajdując definicję (2) dla punktu u dostajemy: x ( u ) + x2 ( u2 ) xn ( un ) < u0 (x u + x2 u xn un ) < u0 x u + x2 u xn un > u0 3
4 co natychmiast dowodzi naszą obserwację. Zamykając nasze wyprowadzenia, warto jeszcze spojrzeć na przypadki skrajne. Wyobraźmy sobie przypadek -wymiarowy i punkt u = (, 0). Zauważmy, że płaszczyzną normalną dla tego wektora będzie x = 0. Będzie ona zatem równoległa do płaszczyzny x = do której się ograniczamy.. Stąd wynika, że punktowi u = (, 0) będzie przypisana półpłaszczyzna pusta. Punktowi u = (, 0) będzie natomiast (jako punktowi antypodycznemu) przypisana cała przestrzeń. To ostatnie można również bez problemu sprawdzić analitycznie i spostrzec geometrycznie. 3. Dowód Twierdzenie o n-kanapce. Niech K, K 2,..., K n R n będą zbiorami zwartymi. Wówczas istnieje hiperpłaszczyzna która dzieli każdy z tych zbiórw na dwa pozbiory o równych miarach. Dowód. Zdefiniujmy dla i n miary odpowiadające naszym zbiorom: µ i (A) = µ(a K i ) Miary µ i pozostają miarami Radona, czyli w szczególności są lokalnie skończone. Wiemy więc, że nie istnieje zbiór C dla którego µ i (C) =. Dodatkowo zauważmy, że µ i (R) = µ(k i ) <. Niech f : S n R n będzie funkcją zadaną po współrzędnych: f i (u) = µ i (h + (u)) Jako, że dla każdego i, µ i (R) jest skończona, to miara półprzestrzeni również jest skończona i możemy mówić o dobrze zdefiniowanym odwzorowaniu. Zauważmy, że z twierdzenia Borsuka-Ulama wynika, że istnieje takie u S n dla którego zachodzi: f(u) = f( u) µ i (h + (u)) = µ i (h + ( u)) Ale skoro punkty antypodyczne zadają dwie przeciwne półprzestrzenie, a miara µ i całej przestrzeni jest miarą zbioru K i, to musi istnieć punkt u S n który rozdziela każdy zbiór K i na dwie równe części. Twierdzenie Borsuka-Ulama zakłada jednak ciągłość funkcji f co należy zbadać. Weźmy zatem dowolne u S n oraz ciąg x (k) S n taki, że lim x (k) = u. Chcemy pokazać, że lim f(x (k) ) = f(u). Czyli dla dowolnego i n: lim µ i(h + (x (k) )) = µ i (h + (u)) (3) Jeżeli zdefiniujemy g k jako funkcję charakterystyczną zbioru h + (x (k) ), a g u zbioru h + (u) to otrzymamy równoważne pytanie: g k (y)dµ i = g u (y)dµ i (4) lim Miara Radona to miara wewnętrznie regularna tj. dla dowolnego borelowskiego B, µ(b) = sup(µ(k)) gdzie K B są zwarte, oraz lokalnie skończona tj. każdy punkt przestrzeni ma skończone otoczenie. 4
5 Najlepszym sposobem by wykazać tą równość jest: Twierdzenie Lebesgue a o zbieżności ograniczonej. Niech {f n } n= : X R będzie ciągiem funkcji mierzalnych takich. Jeżeli: istnieje funkcja całkowalna g : X R taka, że dla prawie każdego x X i dowolnego n N zachodzi f n (x) g(x) dla prawie każdego x X istnieje granica f ciągu {f n } n= : lim f n(x) = f(x) n to zachodzi równość: fdµ = lim n f n dµ. Wracając do naszych rozważań, wystarczy więc pokazać, że funkcje g k są ograniczone oraz że lim g k (y) = g u (y) µ-prawie wszędzie. Jako, że funkcja charakterystycza przyjmuje wartości jedynie 0 i to jest ograniczona przez h która jest całkowalna według miar µ i. Pozostaje nam tylko sprawdzenie drugiego faktu. Zrobimy to w dwóch częściach - dla y h + (u) i y / h + (u). Skoro y = (y,..., y n ) h + (u) to z definicji półpłaszczyzny mamy: y u + y 2 u y n u n < u 0 Niech δ := u 0 (y u +y 2 u y n u n ) > 0. Skoro wiemy, że x (k) = (x (k) 0, x (k),..., x (k) n ) u to z definicji Cauchy ego możemy znaleźć takie N i, że dla każdego k > N i dostaniemy, i x (k) i > u i δ (współczynnik przy δ może być dowolny). Jeżeli że x (k) i < u i + δ zdefiniujemy N := max N i to dostaniemy, że dla każdego k > N: n y i x (k) i < y ( u + δ ) ( + y 2 u 2 + δ ) ( y n u n + δ ) = 2ny 2ny 2 2ny n ( n ) y i u i + δ ( n ) 2 = y i u i + δ δ 2 = u 0 δ 2 < u 0 δ 2ny 0 < x k 0 Co dowodzi, że dla k > N dowolny y h + (u) zawiera się również w h + (x (k) ). Stąd dla k > N mamy g k (y) = czyli g k (y) g u (y) dla y h + (u). Rozpatrzmy przypadek y / h + (u). Skoro wiemy, że y u + y 2 u y n u n > u 0 to analogicznie zdefiniujmy δ = y u + y 2 u y n u n u 0 > 0. Istnieje wówczas takie k > N, że u i δ < x (k) i < u + δ. Czyli mamy: x (k) 0 < δ + u 0 < δ ( n ) 2ny u 0 < y i u i δ n ( 2 = y i u i δ ) n < y i x (k) i Co pokazuje, że również dla dowolnego y / h + (u), g k (y) g u (y). Zatem funkcje g k spełniają Twierdzenie Lebesgue a o zbieżności ograniczonej, co dowodzi (4) oraz (3). Można więc skorzystać z twierdzenia Borsuka-Ulama co kończy dowód. 5
6 Literatura [] Jiri Matousek: Using the Borsuk-Ulam Theorem, Lectures of Topological Methods in Combinatorics and Geometry, Springer [2] Brian Libgober: The Borsuk-Ulam and Ham Sandwitch Theorems, VIGRE [3] J. Górnicki, E.Pietrzak Niezwykłe konsekwencje twierdzenia Bolzano. 6
Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi
Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY
ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy
4. Granica i ciągłość funkcji
4. Granica i ciągłość funkcji W niniejszym rozdziale wprowadzamy pojęcie granicy funkcji, definiujemy funkcje ciągłe i omawiamy ich podstawowe własności. Niech f będzie funkcją określoną na przedziale
4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że
4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio
Twierdzenie spektralne
Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Funkcje addytywne gorszego sortu
Rafał Filipów Wydział Matematyki, Fizyki i Informatyki Definicja funkcji addytywnych Definicja Funkcja f jest funkcją addytywną, gdy spełnia równanie funkcyjne Cauchy ego tzn. gdy dla wszystkich x, y R.
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
Wykład 21 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej
Wykład 2 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej czȩść II (opracował: Piotr Nayar) Definicja 2.. Niech (E, E) bȩdzie przestrzenia mierzalna i niech λ : E
8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
Analiza matematyczna. 1. Ciągi
Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
1 Nierówność Minkowskiego i Hoeldera
1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2
Zmiana baz Jacek Jędrzejewski 2014 Spis treści 1 Macierz przejścia od bazy do bazy 2 2 Wektory a zmiana baz 2 21 Współrzędne wektora względem różnych baz 2 22 Wektory o tych samych współrzędnych względem
n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :
4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013
Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013
Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej
Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk
MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów
Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego
Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................
Kolorowanie płaszczyzny, prostych i okręgów
Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej
Topologia kombinatoryczna zadania kwalifikacyjne
Topologia kombinatoryczna zadania kwalifikacyjne Piotr Suwara 9 czerwca 2013 Nie ma wyznaczonego progu na kwalifikację na zajęcia. Gorąco zachęcam do wysyłania rozwiązań dużo przed terminem wtedy będzie
Rozkład figury symetrycznej na dwie przystające
Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Teoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I
Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Czas na rozwiązanie zadań cz. I: 2 godz. Do zdobycia: 60 pkt. Nie wolno korzystać z notatek, kalkulatorów, telefonów, pomocy sąsiadów,
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004
ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
1 Pochodne wyższych rzędów
1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Pochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
6. Granica funkcji. Funkcje ciągłe.
6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy
Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.
Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu
Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:
Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
2. Definicja pochodnej w R n
2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
Inwersja na płaszczyźnie, własności, konstrukcje, zastosowania
Inwersja na płaszczyźnie, własności, konstrukcje, zastosowania Autor: Rafał Kłoda Opiekun pracy: Bożena Witecka XI Liceum Ogólnokształcące im. Marii Dąbrowskiej os. Teatralne 33 31-948 Kraków tel./fax:
Geometria. Rozwiązania niektórych zadań z listy 2
Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.
Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp
EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka
Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest
Ultrafiltry. Dominik KWIETNIAK, Kraków. 1. Ultrafiltry
W niniejszym artykule zero nie jest liczbą naturalną! Ultrafiltry Dominik KWIETNIAK, Kraków Artykuł ten stanowi zapis referatu jaki został wygłoszony na XLVII Szkole Matematyki Poglądowej Ekstrema. Przedstawiono
Wielomiany jednej zmiennej rzeczywistej algorytmy
Rozdział 15 Wielomiany jednej zmiennej rzeczywistej algorytmy 15.1 Algorytm dzielenia Definicja 15.1 Niech dany będzie niezerowy wielomian f K[x] (K jest ciałem) f = a 0 x m + a 1 x m 1 +... + a m, gdzie
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10
System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii
Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Agnieszka Bojanowska Stefan Jackowski 24 listopada 2010 1 Podstawowe pojęcia Bedziemy uzywać następujących pojęć i przykładów dotyczących
dr inż. Ryszard Rębowski 1 WPROWADZENIE
dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Prawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I
MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część I Z trójkątem, jako figurą geometryczną, uczeń spotyka się już na etapie nauczania początkowego. W czasie dalszego procesu kształcenia
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Definicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1
LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać
Krzywa uniwersalna Sierpińskiego
Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę
Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski
Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową
Zliczanie Podziałów Liczb
Zliczanie Podziałów Liczb Przygotował: M. Dziemiańczuk 7 lutego 20 Streszczenie Wprowadzenie Przez podział λ nieujemnej liczby całkowitej n rozumiemy nierosnący ciąg (λ, λ 2,..., λ r ) dodatnich liczb
7. Miara, zbiory mierzalne oraz funkcje mierzalne.
7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących
21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać
Całki powierzchniowe w R n
Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy
zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy
5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue