Krzywa uniwersalna Sierpińskiego

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Krzywa uniwersalna Sierpińskiego"

Transkrypt

1 Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę otrzymania tego zbioru. Udowodnimy, że istotnie jest on krzywą (zarówno w sensie Cantora jak i Urysohna) oraz, że każda krzywa płaska jest homeomorficznie w nim zanurzalna. Na koniec wspomnimy o tzw. kostce Mengera i sformułujemy twierdzenie o jej uniwersalności dla krzywych w dowolnej przestrzeni metrycznej. Na początek chcemy uściślić,że za krzywą płaską będziemy uważali krzywą w sensie Cantora. Jest to zbiór punktów na płaszczyźnie będący continuum (zbiorem zwartym i spójnym) takim, że w dowolnie małym otoczeniu dowolnego punktu continuum istnieje punkt do niego nie należący. Ta definicja jest na płaszczyźnie równoważna z obecnie przyjmowaną ogólną definicją Urysohna w myśl której krzywa jest to continuum, którego wymiar w każdym punkcie wynosi 1, tj. każdy jej punkt posiada dowolnie małe otoczenia, których brzegi nie zawierają żadnego continuum złożonego z więcej niż jednego punktu. Implikacja w jedną stronę wynika z uniwersalności krzywej Sierpińskiego. Za ε-otoczenie sferyczne punku x, będziemy uważali kulę otwartą o promieniu ε i środku w x. Dywan Sierpińskiego został po raz pierwszy skonstruowany przez Stefana Mazurkiewicza, ale nie opublikował on swojego odkrycia. Pierwsza wzmianka o tej krzywej znalazła się w pracy Wacława Sierpińskiego z 1915r. Jest to zbiór powstały przez procedurę rekurencyjną, którą rozpoczynamy od ustalonego kwadratu S 0. Będziemy go nazywali dywanem stopnia zerowego. Dzielimy go na dziewięć (3x3) identycznych kwadratów i usuwamy wnętrze środkowego ( pozostałe osiem będziemy nazywali kwadratami stopnia pierwszego ). Oznaczmy je przeciwnie do ruchu wskazówek zegara, zaczynając od prawego górnego, Q 1, Q 2,..., Q 8 (patrz rys.1). Sumę ośmiu kwadratów stopnia pierwszego nazywamy dywanem stopnia pierwszego S 1. Następnie powtarzamy 1

2 procedurę dzielenia i usuwania części środkowej dla każdego kwadratu stopnia pierwszego, oznaczając nowo otrzymane kwadraty Q i1 i 2 i 1, i 2 {1, 2,..., 8}, gdzie pierwszy indeks jest numerem kwadratu stopnia pierwszego, który dzielimy, a drugi indeks jest analogicznie nadanym numerem zawartego w nim kwadratu stopnia drugiego. Otrzymamy w ten sposób 8 2 kwadratów stopnia drugiego, których sumą jest dywan stopnia 2. Podobnie dostajemy kolejne stopnie S n, n N, z których każdy składa się z 8 n kwadratów n-tego stopnia Q i1 i 2...i n, i j {1, 2,..., 8}, j {1, 2,..., n}. Dywanem Sierpińskiego nazywamy zbiór S := n N S n. Q 3 Q 2 Q 1 Q 4 Q 8 Q 5 Q 6 Q 7 Rysunek 1: Dywan stopnia pierwszego, drugiego i trzeciego. Można łatwo dowieść, że pole dywanu jest równe 0. Jednocześnie jest to zbiór niepusty, gdyż należą do niego conajmniej krawędzie wyjściowego kwadratu S 0. Widać również, że średnica kwadratu n-tego stopnia ma zawsze długość d, gdzie d to długość średnicy kwadratu S 3 n 0. W związku z tym średnice kwadratów kolejnych stopni dążą do zera. Przypomnimy teraz kilka faktów, z których będziemy korzystać podczas dowodów. Każda przestrzeń metryczna jest T 4, tzn. dla każdych dwóch rozłącznych zbiorów domkniętych A i B istnieją rozłączne zbiory otwarte U i V, które zawierają odpowiednio zbiory A i B. Jeśli {C i } i N jest zstępującym ciągiem zbiorów zwartych oraz mamy zbiór otwarty Z i N C i, to istnieje w tym ciągu zbiór C n zawarty w Z. Przecięcie zstępującego ciągu zbiorów niepustych domkniętych będących podzbiorami zbioru zwartego w przestrzeni metrycznej zupełnej jest niepuste. Jeśli dodatkowo ciąg średnic tych zbiorów zmierza do zera, to te przecięcie składa się z dokładnie jednego punktu. Jeśli dwa zbiory A i B są rozłączne i równocześnie otwarte lub równocześnie domknięte oraz M A B, gdzie M jest zbiorem niepustym i spójnym, to M A, albo M B. Jeśli continuum K jest podzbiorem krzywej C to jest również krzywą. Homeomorficzny obraz krzywej jest krzywą. Twierdzenie 1 Przecięcie zstępującego ciągu continuów jest continuum. 2

3 Dowód Mamy C 1 C 2... C n..., gdzie dla każdego i N, C i jest continuum. Zbiory C i, i N są zwarte i zawierają się w C 1, więc są domknięte w C 1. Zdefiniujmy zbiór C := i N C i. Jest to przecięcie rodziny zbiorów domkniętych, a więc zbiór ten jest domknięty. Jako domknięty podzbiór zbioru zwartego C 1 jest również zwarty. Co więcej na mocy faktu 2-go jest to zbiór niepusty. Przypuśćmy, że zbiór zwarty C nie jest spójny, można go zatem przedstawić jako sumę zbiorów A i B niepustych, domkniętych w C i rozłącznych. Istnieją więc zbiory U i V otwarte i rozłączne, zawierające odpowiednio zbiory A i B. Zdefiniujmy W := U V. Ponieważ A U, B V, C = A B, więc C W. Z faktu 2 wynika, że istnieje continuum C n zawarte w W. Ponieważ C U i C V oraz C C n to C n U i C n V. Na mocy faktu 4-go otrzymaliśmy więc sprzeczność, która dowodzi spójności zbioru C. Twierdzenie 2 Dywan Sierpińskiego jest krzywą płaską. Dowód Aby pokazać, że krzywa Sierpińskiego jest continuum, pokażemy indukcyjnie, że jest nim dla każdego n dywan n-tego stopnia S n. Dywan pierwszego stopnia składa się z ośmiu kwadratów, które kolejno mają punkty wspólne na krawędziach, więc jest spójny. Jako skończona suma zbiorów zwartych jest również zwarty. Załóżmy, że dywan n-tego stopnia jest continuum. Wynika z tąd, że dywan n + 1-stopnia też nim jest, bo składa się on z ośmiu dywanów n- tego stopnia, mających kolejno punkty wspólne na krawędziach. Ponieważ S n+1 S n, n N, więc na mocy twierdzenia 1, ich przecięcie n N S n, czyli dywan Sierpińskiego jest continuum. Ustalmy dowolny punkt x należący do dywanu i dowolny ε > 0. Wykazaliśmy już wcześniej, że średnice kwadratów kolejnych stopni dążą do zera. Znajdziemy więc takie k N, że istnieje kwadrat należący do dywanu k-tego stopnia zawierający punkt x i mający średnicę mniejszą od ε, a więc zawierający się w ε-otoczeniu sferycznym punktu x. W dywanie k + 1-stopnia z wnętrza każdego kwadratu z dywanu stopnia k-tego usuwane są punkty, więc w dowolnie małym otoczeniu dowolnego punktu krzywej Sierpińskiego istnieją punkty do niej nie należące. Twierdzenie 3 Jeśli C jest krzywą płaską, to istnieje podzbiór C dywanu Sierpińskiego homeomorficzny ze zbiorem C. 3

4 Dowód Zbiór C jest zwarty, więc jest ograniczony, zatem istnieje prostokąt P go zawierający. Podzielmy go na dziewięć równych prostokątów o bokach równoległych do boków P. Jako krzywa w sensie Cantora zbiór C nie zawiera żadnego zbioru otwartego, więc również wnętrza środkowego prostokąta. Ze zwartości zbioru C wynika jego domkniętość. Jego dopełnienie i wnętrze środkowego prostokąta są zbiorami otwartymi, dlatego istnieje prostokąt P 0, zawarty we wnętrzu środkowego prostokąta i rozłączny z C. Przedłużmy boki prostokąta P 0, do przecięcia z bokami P, uzyskując podział wyjściowego prostokąta na dziewięć prostokątów, z których środkowy nie ma punktów wspólnych z krzywą C, następnie usuńmy jego wnętrze. Zbiór, który został po tej operacji nazwijmy S 1, a osiem prostokątów, które go tworzą podobnie jak przy konstrukcji dywanu Sierpińskiego nazwijmy prostokątami pierwszego stopnia P 1, P 2,..., P 8. Podzielmy każdy z prostokątów pierwszego stopnia na dziewięć równych części. Konstrukcję zacznijmy od prostokąta P 1, podobnie jak poprzednio we wnętrzu środkowego prostokąta równego podziału istnieje prostokąt R 10, który nie zawiera żadnego punktu krzywej C. Przedłużamy jego boki do przecięcia z bokami wyjściowego prostokąta P. Rysunek 2: Sposób konstrukcji continuum S 4

5 Analogicznie istnieje prostokąt R 20 zawarty w środkowej części równego podziału prostokąta P 2 i ograniczony prostymi, które są przedłużeniami boków R 10. Przedłużmy boki prostokąta R 20 do przecięcia z bokami P. Tak samo istnieje prostokąt R 30 rozłączny z krzywą C, zawarty wewnątrz centralnego prostokąta równego podziału P 3, ponadto leżący w części wspólnej pasów zawartych między prostymi, które są przedłużeniami boków prostokątów R 10 i R 20. Podobnie otrzymujemy kolejne prostokąty R i0, i {4, 5, 6, 7, 8}. Przez P i0, i {1, 2,..., 8} oznaczmy prostokąty zawarte odpowiednio w R i0 i złożone z punktów części wspólnej wszystkich pasów poziomych i pionowych utworzonych przez przedłużenia boków prostokątów R k0, k {1, 2,..., 8, } i przechodzących przez P i. Każdy prostokąt pierwszego stopnia P i, i {1, 2,..., 8} dzielimy przez przedłużenie boków prostokąta P i0, po czym usuwamy jego wnętrze. Pozostałe osiem prostokątów oznaczamy przeciwnie do ruchu wskazówek zaczynając od prawego górnego P ij, j {1, 2,..., 8}. W ten sposób otrzymamy 64 prostokąty rzędu drugiego P i1 i 2 i 1, i 2 {1, 2,..., 8}, dające zbiór S 2. Robimy to rekurencyjnie dla wszystkich następnych stopni, za każdym razem uzyskując zbiór S n składający się z 8 n prostokątów n-tego stopnia P i1 i 2...i n, i j {1, 2,..., 8}, j {1, 2,..., n}. Z faktu, że prostokąt który usuwamy z wnętrza prostokąta n-tego stopnia jest zawarty we wnętrzu środkowego prostokąta jego równego podziału wynika, iż powstałe prostokąty n + 1-tego stopnia mają boki o długości nie większej niż 2/3 odpowiednich boków prostokąta n-tego stopnia w którym są zawarte, a więc gdy utworzymy zstępujący ciąg prostokątów kolejnych stopni to ciąg ich średnic będzie zmierzał do zera. Podobnie jak przy konstrukcji dywanu Sierpińskiego otrzymujemy zstępujący ciąg continuów, których przecięcie, oznaczmy je jako S, jest również continuum. Krzywa C jest całkowicie w nim zawarta. Pokażemy teraz, że continuum S jest homeomorficzne z dywanem Sierpińskiego. Ustalmy dowolny punkt x S. Należy on do pewnego prostokąta pierwszego stopnia P i1, do pewnego prostokąta stopnia drugiego P i1 i 2 zawartego w prostokącie P i1, itd. Otrzymujemy ciąg prostokątów P i1 P i1 i 2 P i1 i 2 i 3..., taki, że x n N P i1 i 2...i n. Co więcej z faktu 3 i tego, że ciąg średnic prostokątów zmierza do zera mamy n N P i1 i 2...i n = {x}. Dzięki zgodności oznaczeń otrzymanemu ciągowi prostokątów odpowiada zstępujący ciąg kwadratów z dywanu Sierpińskiego Q i1 Q i1 i 2 Q i1 i 2 i Z faktu 2 wynika, że n N Q i1 i 2...i n jest zbiorem dokładnie jednoelemen- 5

6 towym. Możemy zatem punktowi x continuum S przyporządkować punkt x należący do dywanu Sierpińskiego, będący przecięciem ciągu kwadratów odpowiadającego ciągowi prostokątów do którego należy x. Zauważmy, że różnym punktom S będą odpowiadać różne punkty dywanu S, ponieważ dla każdych dwóch różnych punktów należących do S istnieje takie k, że dwa prostokąty k-tego stopnia zawierające odpowiednio te punkty są rozłączne, rozłączne będą więc również odpowiednie kwadraty k-tego stopnia. Odwracając to rozumowanie można łatwo dowieść, że podobnie każdemu punktowi dywanu odpowiada w ten sam sposób dokładnie jeden punkt continuum S. Możemy więc stworzyć bijekcję f : S S, udowodnimy teraz, że jest ona odwracalnie ciągła. Ustalmy dowolny punkt x S i dowolny ε > 0. Możemy znaleźć takie n, że kwadraty n-tego rzędu zawierające obraz punktu x zawierają się w jego ε-otoczeniu. Dobierzmy teraz δ tak, że δ-otoczenie sferyczne punktu x w przecięciu ze zbiorem S n jest zawarte w prostokątach, które odpowiadają powyższym kwadratom n-tego stopnia. Widać, że jeśli odległość dowolnego punktu y S od punktu x jest mniejsza od δ, to jego obraz jest odległy od obrazu punktu x o nie więcej niż ε. W analogiczny sposób można udowodnić ciągłość odwzorowania odwrotnego. Dowiedliśmy tym samym, że funkcja f jest szukanym przekształceniem homeomorficznym, a obraz zbioru C przez f jest szukanym zbiorem C. Twierdzenie 4 Dywan Sierpińskiego jest krzywą w sensie Urysohna. Dowód Udowodniliśmy już, że dywan Sierpińskiego jest continuum, pozostaje wykazać, że dowolny jego punkt posiada dowolnie małe otoczenie, którego brzeg nie zawiera continuów złożonych. Ustalmy dowolny x S, i dowolny ε > 0. Znajdziemy takie n N, że kwadraty n-tego stopnia będą miały średnicę mniejszą niż 1 ε. Wybierzmy teraz kwadrat (lub jeden z kwadratów) 2 zawierający punkt x. Punkt ten nie może leżeć na przecięciu przekątnych tego kwadratu, ponieważ, w następnym kroku konstrukcji dywanu zostałby usunięty. Musi więc istnieć trójkąt prostokątny wyznaczony przez boki kwadratu i jedną z przekątnych taki, że punkt x leży w jego wnętrzu. Za szukane otoczenie przyjmijmy kwadrat, który powstanie ze znalezionego trójkąta i trzech trójkątów będących jego odbiciami symetrycznymi odpowiednio wzdłuż przyprostokątnych oraz przecięcia przyprostokątnych. Brzeg tego otoczenia, przecina się z S po przekątnych kwadratów n-tego stopnia, czyli po zbiorze Cantora. 6

7 Z tego twierdzenia, oraz z faktów 5 i 6 wynika, że każda krzywa płaska w sensie Cantora jest krzywą w sensie Urysohna. Jak łatwo zauważyć, konstrukcja dywanu Sierpińskiego przypomina konstrukcję zbioru Cantora na prostej. Co więcej jego konstrukcję można uważać za dwuwymiarowe uogólnienie konstrukcji tego zbioru. Trójwymiarowym uogólnieniem konstrukcji zbioru Cantora jest tzw. kostka Mengera. Powstaje ona przez procedurę rekurencyjną, którą rozpoczynamy od ustalonego sześcianu. Dzielimy go na 27 (3x3x3) identycznych sześcianów i usuwamy środkowy oraz do niego przyległe (pozostałe dwadzieścia będziemy nazywali sześcianami stopnia pierwszego). Następnie powtarzamy procedurę dzielenia i usuwania odpowiednich części dla każdego sześcianu stopnia pierwszego (otrzymamy w ten sposób sześciany stopnia drugiego). Podobnie dostajemy kolejne stopnie. Kostką Mengera nazywamy zbiór punktów pozostałych po nieskończonej ilości kroków. Każda ściana kostki jest dywanem Sierpińskiego, a przekątna kostki jest zbiorem Cantora. Rysunek 3: Kostka Mengera stopnia trzeciego. Zbiór ten jest krzywą w przestrzeni trójwymiarowej o bardzo ciekawej własności: Twierdzenie 5 Dowolna krzywa w dowolnej przestrzeni metrycznej jest homeomorficznie zanurzalna w kostce Mengera. Ze względu na stopień trudności nie dowiedziemy tego twierdzenia. 7

8 Literatura [1] R. Engelking, K. Sieklucki, Wstęp do Topologii Państwowe Wydawnictwo Naukowe, Warszawa [2] A. Lelek, Zbiory, Państwowe Zakłady Wydawnictw Szkolnych, Warszawa [3] A. S. Parchomienko, Co To Jest Linia, Państwowe Wydawnictwo Naukowe, Warszawa

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

Wybrane zagadnienia teorii continuów

Wybrane zagadnienia teorii continuów Wybrane zagadnienia teorii continuów Mirosława Reńska, Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW Prezentacja wykładu Warszawa, maj 2011, (prezentacja dostępna na stronie http://www.mimuw.edu.pl/

Bardziej szczegółowo

Czworościany ortocentryczne zadania

Czworościany ortocentryczne zadania Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria efinicja 1. Mówimy, że odcinki i są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli ramiona

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

w jednym kwadrat ziemia powietrze równoboczny pięciobok

w jednym kwadrat ziemia powietrze równoboczny pięciobok Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

Zbiór zadań z geometrii przestrzennej. Michał Kieza

Zbiór zadań z geometrii przestrzennej. Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

Geometrie Wszechświata. 5. Czwarty wymiar materiały do ćwiczeń

Geometrie Wszechświata. 5. Czwarty wymiar materiały do ćwiczeń Geometrie Wszechświata. 5. Czwarty wymiar materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 30 marzec 2017 Prezentacja multimedialna do wykładu. 1 Zadania łatwe 1. Narysuj

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 15 (20.02.2010) Zbiory wypukłe Definicja. Zbiór

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 16 (27.02.2010) Twierdzenia evy i Menelaosa 1.

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)

XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.) XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 2 (14-19.10.2009) nalogie i różnice miedzy trójkątem

Bardziej szczegółowo

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria Definicja 1. Mówimy, że odcinki i CD są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli CD = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania do arkusza I

Model odpowiedzi i schemat oceniania do arkusza I Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej

Bardziej szczegółowo

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część I Z trójkątem, jako figurą geometryczną, uczeń spotyka się już na etapie nauczania początkowego. W czasie dalszego procesu kształcenia

Bardziej szczegółowo

Zbiór Cantora. Diabelskie schody.

Zbiór Cantora. Diabelskie schody. Zbiór Cantora. Diabelskie schody. Autor: Norbert Miękina Zespół Szkół nr 3 im. ks. prof. Józefa Tischnera ul. Krakowska 20 32-700 Bochnia tel. 14 612-27-79 Opiekun: mgr Barbara Góra 1 W matematyce sztuka

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

Kolorowanie płaszczyzny, prostych i okręgów

Kolorowanie płaszczyzny, prostych i okręgów Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej

Bardziej szczegółowo

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów

Bardziej szczegółowo

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest

Bardziej szczegółowo

Teoria miary i całki

Teoria miary i całki Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane

Bardziej szczegółowo

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki ZNI N OWOZNI GOMTRI, cz. II Wojciech Guzicki W arkuszach maturalnych w ostatnich dwóch latach znalazły się zadania geometryczne na dowodzenie. Za poprawne rozwiązanie takiego zadania w arkuszu podstawowymzdającymógłotrzymać2pkt,warkuszurozszerzonym4pktlub3pkt.przy

Bardziej szczegółowo

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną

Bardziej szczegółowo

Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.

Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych. 1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.

Bardziej szczegółowo

Zadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 (G-PG). Prowadzący dr Andrzej Rychlewicz

Zadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 (G-PG). Prowadzący dr Andrzej Rychlewicz Zadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 G-PG). Prowadzący dr Andrzej Rychlewicz Przeanalizujmy następujące zadanie. Zadanie. próbna matura

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Zbiory wypukłe i stożki

Zbiory wypukłe i stożki Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi

Bardziej szczegółowo

MATEMATYKA DLA CIEKAWSKICH. Twierdzenie Pitagorasa inaczej cz. 2

MATEMATYKA DLA CIEKAWSKICH. Twierdzenie Pitagorasa inaczej cz. 2 Renata Nowak MATEMATYKA DLA CIEKAWSKICH Twierdzenie Pitagorasa inaczej cz. 2 Wróćmy do twierdzenia Pitagorasa, które dobrze znamy. Mówi ono o związkach między bokami w trójkącie prostokątnym. Może w jego

Bardziej szczegółowo

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM

Bardziej szczegółowo

Rozkład figury symetrycznej na dwie przystające

Rozkład figury symetrycznej na dwie przystające Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule

Bardziej szczegółowo

O prostych połowiących pola wypukłe

O prostych połowiących pola wypukłe -.. : ~. l K. ZARANKIEWICZ (Warszawa) O prostych połowiących pola wypukłe N i ech S oznacza ograniczony i wypukły ( 1 ) zbiór punktów płaszczyzny. Przez Fr (S) oznaczymy brzeg zbioru S; wiadomo, że S _

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.

Bardziej szczegółowo

Algebry skończonego typu i formy kwadratowe

Algebry skończonego typu i formy kwadratowe Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

XII Olimpiada Matematyczna Juniorów

XII Olimpiada Matematyczna Juniorów XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (29 września 2016 r.) Rozwiązania zadań testowych 1. odatnia liczba a powiększona o 50% jest równa dodatniej liczbie b pomniejszonej

Bardziej szczegółowo

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS)

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS) Fraktale Plan prezentacji Wprowadzenie Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D Klasyczne fraktale Iteracyjny system funkcji (IFS) L-system Zbiory Julii i Mandelbrota Ruchy

Bardziej szczegółowo

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim TOPOLOGIA Nazwa w języku angielskim TOPOLOGY Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli dotyczy): Matematyka

Bardziej szczegółowo

Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych

Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Michał Czapek michal@czapek.pl www.czapek.pl 8 IX AD MMXIII Streszczenie Celem pracy jest zaprezentowanie jednej z metod dowodzenia istnienia

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

MATURA PRÓBNA - odpowiedzi

MATURA PRÓBNA - odpowiedzi MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

TwierdzeniePoincaré 1 Bendixsona 2

TwierdzeniePoincaré 1 Bendixsona 2 Twierdzenie Poincaré Bendixsona 1 TwierdzeniePoincaré 1 Bendixsona 2 1 TwierdzeniePoincaré Bendixsona W bieżącym podrozdziale zakładamy, że U jest otwartym podzbiorem płaszczyzny R 2 if:u R 2 jestpolemwektorowymklasyc

Bardziej szczegółowo

XIII Olimpiada Matematyczna Juniorów

XIII Olimpiada Matematyczna Juniorów XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa

Bardziej szczegółowo

Własności walca, stożka i kuli.

Własności walca, stożka i kuli. Własności walca, stożka i kuli. 1. Cele lekcji a) Wiadomości Uczeń: - zna pojęcie bryły obrotowej, - zna definicje: walca, stożka, kuli, - zna budowę brył obrotowych, - zna pojęcia związane z symetrią

Bardziej szczegółowo

Liczby geometryczne. Radosław Żak Katolickie Gimnazjum im. Świętej Rodziny z Nazaretu. Kraków Opieka: dr Jacek Dymel

Liczby geometryczne. Radosław Żak Katolickie Gimnazjum im. Świętej Rodziny z Nazaretu. Kraków Opieka: dr Jacek Dymel Liczby geometryczne Radosław Żak Katolickie Gimnazjum im. Świętej Rodziny z Nazaretu Kraków 2016 Opieka: dr Jacek Dymel 1 Spis treści: 1.Wstęp... 3 2.Liczby wielokątne... 4 3.Trzeci wymiar...8 4.Czwarty

Bardziej szczegółowo

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo