Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
|
|
- Edward Krupa
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej można znaleźć pokrycie przeliczalne V {V 1, V 2, } takie, że dla każdego i istnieje U U spełniające V i U Dowód Niech U będzie zbiorem otwartym Dla każdego x U istnieje punkt q x z ośrodka i liczba wymierna r x taka, że x K(q x, r x ) U Istotnie, jeśli d(x, U c ) δ, to wystarczy wybrać q x tak, by d(x, q x ) < δ/2, a następnie r x < δ/2 Mamy więc U x U K(q x, r x ) Ale kul o środku w punkcie z ośrodka i promieniu wymiernym jest przeliczalnie wiele one utworzą szukane pokrycie V Wystarczy więc pokazać, że z każdego pokrycia przeliczalnego można wybrać pokrycie skończone (mając dowolne pokrycie zastąpimy je przez przeliczalne {V 1, V 2, }, z niego wybierzemy skończone {V k1,, V kn }, a następnie jako ostateczne pokrycie weźmiemy {U k1,, U kn } U takie, że V ki U ki ) Załóżmy, że przeliczalne pokrycie {V 1, V 2, } nie zawiera pokrycia skończonego Wybieramy ciąg (x n ) tak, że x 1 V 1, x 2 V 1 V 2,, x n V n itd Ten ciąg nie zawierałby podciągu zbieżnego, bo dla każdego x istniałby indeks N taki, że x V N i byłoby to otoczenie zawierające tylko skończenie elementów ciągu (x n ) Więc x nie mógłby być punktem skupienia ciągu To przeczy zwartości X Warunek Borela: Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone można zapisać w równoważnej formie Rodzina zbiorów F jest scentrowana, gdy każda skończona rodzina F 1,, F n wybrana z F ma niepusty przekrój Stwierdzenie 1 X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój Dowód Jeśli F jest scentrowaną rodzina zbiorów domkniętych, to U {F c : F F } jest rodziną zbiorów otwartych, której żaden skończony podzbiór nie jest pokryciem X Zatem U nie może być pokryciem, tzn U X, czyli F φ Analogicznie w odwrotną stronę Okazuje się, że: Twierdzenie 2 W przestrzeniach metrycznych NWSR: 1 X jest (ciągowo) zwarta 2 z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone każda scentrowana rodzina zbiorów domkniętych w X ma niepusty przekrój Dowód Pozostaje tylko pokazać, że ostatni warunek implikuje (ciągową) zwartość Istotnie, jeśli (x n ) jest dowolnym ciągiem w X, to F n {x n, x n+1, } tworzą scentrowaną rodzinę zbiorów domkniętych Jej przekrój jest niepusty, ale łatwo pokazać, że każdy element z przekroju jest punktem skupienia ciągu (x n ) 1
2 Własności funkcji ciągłych na przestrzeni zwartej Twierdzenie Funkcja ciągła f : X R na przestrzeni zwartej jest ograniczona i osiąga swoje kresy Dowód Gdyby nie była ograniczona, to wybralibyśmy ciąg (x n ) taki, że f(x n ) > n Ten ciąg zawierałby podciąg (x nk ) zbieżny, do x, ale mielibyśmy f(x) lim k f(x nk ) Twierdzenie 4 Funkcja ciągła f : X Y na przestrzeni zwartej jest jednostajnie ciągła Wskazówka do dowodu Wykorzystać warunek Borela Twierdzenie 5 Jeśli X jest zwarta, a f : X Y ciągła, to f(x) jest zbiorem zwartym w Y Ogólniej, obraz dowolnego zbioru zwartego w (dowolnej) przestrzeni metrycznej X jest zwarty Wniosek 1 Zwartość jest niezmiennikiem homeomorfizmu Twierdzenie 6 Jeżeli X jest zwarta, a f : X Y ciągła i odwracalna, to f jest homeomorfizmem Ważne przestrzenie zwarte (zatem i zupełne) 1 Kostka Hilberta Definicja 1 Kostka Hilberta H to produkt przeliczalnie wielu odcinków [0, 1] z metryką określoną wzorem d ( (x n ), (y n ) ) 1 2 n x n y n n1 Stwierdzenie 2 Niech x (x n ) n N, x (k) (x k n) n N będą elementami H Ciąg (x (k) ) k N jest zbieżny do x wtedy i tylko wtedy, gdy dla każdego n N zachodzi lim k x (k) n x n Stwierdzenie Kostka Hilberta H jest homeomorficzna z produktem kartezjańskim n1 [0, 1 n ], w którym metrykę określono wzorem ρ ( (x n ), (y n ) ) (x n y n ) 2 Dowód Odpowiedni homeomorfizm produktu n1 [0, 1 n ] na H zapewnia przekształcenie (x 1, x 2, x, ) (x 1, 2x 2, x, ) Stwierdzenie 4 Własności kostki Hilberta: 1 H jest ośrodkowa ośrodkiem jest zbiór n1 {(y n ) Q N : n 0 n > n 0 y n 0} 2 H jest zupełna (wynika z jenego z zadań z ćwiczeń) H jest zwarta (produkt, tu przeliczalny, przestrzeni zwartych jest zwarty, a odcinki [0, 1] są zwarte) 2
3 Twierdzenie 7 (Urysohn) Każda metryczna przestrzeń ośrodkowa jest homeomorficzna z pewnym podzbiorem kostki Hilberta Mówiąc mniej formalnie, kostka Hilberta zawiera wszystkie możliwe ośrodkowe przestrzenie metryczne Idea dowodu: Niech X będzie ośrodkową przestrzenią metryczną Zastępujemy obowiązującą w X metrykę d przez metrykę d równoważną z d, ograniczoną przez 1 Przypisujemy każdemu x X ciąg odległości x od kolejnych elementów z ośrodka, tzn tworzymy przekształcenie x ( d(x, q 1 ), d(x, q 2 ), ) H, gdzie {q 1, q 2, } jest ośrodkiem w X To jest szukany homeomorfizm 2 Zbiór Cantora a Definicja Niech F 0 [0, 1] Dzielimy F 0 na trzy równe części i wyrzucamy środkową (bez brzegów) otrzymując F 1 [0, 1 ] [ 2, 1] Następnie każdy z dwóch pozostawionych odcinków domkniętych dzielimy na trzy równe części i wyrzucamy środkową część otrzymując F 2 [0, 1 9 ] [ 2 9, 1 ] [ 2, 7 9 ] [ 8 9, 1] Postępujemy indukcyjnie według reguły F n F n 1 \ ( k + 1 n, k + 2 ) n k N Zbiór F n jest sumą 2 n odcinków domknietych długości 1 n W szczególności jest więc domknięty Definiujemy zbiór Cantora jako zstępujący przekrój C F n n1 Zbiór Cantora C dziedziczy metrykę z odcinka [0, 1], tzn d(x, y) x y, możemy więc mówić o przestrzeni metrycznej (C, d) b Reprezentacja w postaci ciągów {0, 1} Rozważmy zbiór C { n1 } c n n : c n 0 c n 2 [0, 1] (Jest to zbiór tych wszystkich liczb z odcinka [0, 1], których rozwinięcie trójkowe nie wymaga użycia cyfry 1) Łatwo zauważyć, że jeżeli c 1 0, to liczba c n n1 n należy do odcinka [0, 1 ], a jeżeli c 1 2, to c n n1 n należy do [ 2, 1] Ogólniej, jeśli c N 0, to c n n1 n należy do [ N 1 n1 cn, N 1 n n1 cn + 1 ], a jeśli c n N n 2, to do [ N 1 n1 cn + 2, N 1 n N n1 cn + 1 ] n N 1 Albo prościej, jeśli liczba c n k n1 n należy do przedziału [, k+1 ] i ma na N-tym N 1 N 1 miejscu 0, to wiemy, że jeśli podzielimy ten przedział na trzy równe części, to liczba ta będzie należeć do pierwszej (lewej) części tego przedziału, a jeśli c N 2, to do części ostatniej Stąd C C Z drugiej strony, każdy element x zbioru C pozwala skonstruować ciąg (c n ) złożony z zer i dwójek tak, by x c n n1 n Mamy więc
4 C C, czyli otrzymujemy jeszcze inną charakteryzację zbioru Cantora Przy tym, jeśli oznaczymy { } c n I a1 a 2 a n n : i 1,, n c i a i (c i {0, 1, 2}) n1 to I a1 a 2 a n jest pewnym przedziałem [ k n, k+1 n ] i F n (c 1,,c n) {0,2} n I c1 c n Dla poprawy estetyki zwykle zastępuje się dwójkę przez jedynkę i otrzymuje reprezentację zbioru Cantora jako zbiór ciągów {0, 1} N Metrykę wprowadza się standardowo ρ ( (x n ), (y n ) ) n1 x n y n 2 n Wtedy przekształcenie π : {0, 1} N C dane wzorem jest homeomorfizmem c Własności zbioru Cantora π ( (x n ) ) n1 2x n n Stwierdzenie 5 Zbiór Cantora jest nieprzeliczalny Dowód Wiemy, że {0, 1} N jest nieprzeliczalny, a jest równoliczny ze zbiorem Cantora Stwierdzenie 6 (C, d) jest przestrzenią zupełną Dowód C jest zbiorem domkniętym w R (przekrój domkniętych), a (R, d) jest zupełna Stwierdzenie 7 Zbiór Cantora jest zbiorem brzegowym w [0, 1] (i w R) Dowód Wynika z konstrukcji odcinek o długości δ nie moąze zawierać się w F n dla dostatecznie dużych n Stwierdzenie 8 Zbiór Cantora jest przestrzenią ośrodkową Dowód Można skorzystać z reprezentacji zbioru Cantora jako {0, 1} N Ośrodkiem jest zbiór tych ciągów (x n ), których elementy przyjmują wartość 1 skończenie wiele razy Stwierdzenie 9 Zbiór Cantora nie ma punktów izolowanych (tzn każdy punkt zbioru Cantora jest jego punktem skupienia) 4
5 d Ciekawe twierdzenia podkreślające ważność zbioru Cantora Twierdzenie 8 Odcinek [0, 1] jest ciągłym obrazem zbioru Cantora Idea dowodu: Potraktujmy C jako {0, 1} N Odpowiednią ciągłą surjekcją jest funkcja: ϕ(x 1, x 2, ) x x x 8 + zwana schodami Cantora Ta funkcja zamienia ciągi zero-jedynkowe na rozwinięcia dwójkowe liczb z odcinka Nie jest różnowartościowa, bo np ciąg 1000 i kodują tę sama liczbę Ale można pokazać, że jest ciągła i na Lemat 2 (a) Produkt kartezjański zbioru Cantora ze sobą C C jest homeomorficzny ze zbiorem Cantora (b) Produkt kartezjański przeliczalnie wielu kopii zbioru Cantora C C C jest homeomorficzny ze zbiorem Cantora Idea dowodu: Utożsamiamy C z {0, 1} N (a) Definiujemy homeomorfizm π : C C C wzorem π ( (x 1, x 2, x, ) ) ( (x 1, x, x 5, ), (x 2, x 4, x 6, ) ) Dość łatwo zrozumieć, że π jest różnowartościowe i na Aby dowodzić ciągłości (zarówno π, jak i π 1 ) trzeba wybrać metrykę w C C, np d 1 ((a 1, a 2 ), (b 1, b 2 )) d(a 1, b 1 ) + d(a 2, b 2 ), gdzie d jest metryką w C (b) Obrazem (x 1, x 2, x, ) jest ciąg (y 1, y 2, y, ), gdzie y n jest n-tym wierszem poniższej macierzy nieskończonej y 1 (x 1, x 2, x 4, ) y 2 (x, x 5, ) y (x 6, ) Twierdzenie 9 Kostka Hilberta jest ciągłym obrazem zbioru Cantora Idea dowodu: Niech ϕ oznacza ciągłe przekształcenie {0, 1} N na [0, 1] (jak w Tw 8), a pi oznacza homeomorfizm C na C C C (jak w Tw 2) Wtedy definiujemy ciągłą surjekcję ψ : {0, 1} N H kładąc dla x {0, 1} N : (x 1, x 2, x, ) π(x) ψ(x) (ϕ(x 1 ), ϕ(x 2 ), ϕ(x ), ) 5
Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013
Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty
TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych
A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty
A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii
n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :
4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.
T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla
Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α
FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
Wstęp do topologii Ćwiczenia
Wstęp do topologii Ćwiczenia Spis treści Przestrzeń metryczna, metryka 2 Kule w przestrzeni metrycznej 2 3 Zbieżność w przestrzeniach metrycznych 4 4 Domknięcie, wnętrze i brzeg 6 5 Zbiory gęste, brzegowe
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy
5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue
7. Miara, zbiory mierzalne oraz funkcje mierzalne.
7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących
Krzywa uniwersalna Sierpińskiego
Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę
Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania
Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale MIM Uniwersytetu
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).
Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów
Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski
Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową
Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.
Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii
Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii
Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Mirosław Sobolewski 25 maja 2010 Definicja. Przestrzenią metryczną nazywamy zbiór X z funkcją ρ : X X R przyporządkowującą
Notatki do wykładu Analiza 4
Instytut Matematyczny Uniwersytetu Wrocławskiego Grzegorz Plebanek Notatki do wykładu Analiza 4 Rozdział I: Funkcje na przestrzeniach metrycznych Wrocław 2004 O skrypcie Skrypt ten, traktowany łącznie
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Teoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych
Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Michał Czapek michal@czapek.pl www.czapek.pl 8 IX AD MMXIII Streszczenie Celem pracy jest zaprezentowanie jednej z metod dowodzenia istnienia
Dekompozycje prostej rzeczywistej
Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii
Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013
Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania luty 2013 WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.
Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp
1 Ciągłe operatory liniowe
1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,
Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
1 Przestrzenie metryczne
1 Przestrzenie metryczne Definicja 1.1 (metryka) Niech będzie niepustym zbiorem. Funkcję d: R + nazywamy metryką, jeśli spełnia warunki: 1 o d(x, y) = d(y, x) (symetria) 2 o d(x, y) + d(y, z) d(x, z) (nierówność
Egzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk
MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów
Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach.
Topologia I*, jesień 2013 (prowadzący H. Toruńczyk). Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu
Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
Teoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Ciągłość funkcji i podstawowe własności funkcji ciągłych.
Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)
ROZDZIA l 13. Zbiór Cantora
ROZDZIA l 3 Zbiór Cantora Jednym z najciekawszych i najcze ściej spotykanych w matematyce zbiorów jest zbiór Cantora W tym rozdziale opiszemy jego podstawowe w lasności topologiczne Najprościej można go
Analiza Funkcjonalna - Zadania
Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
Topologia I Wykład 4.
Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
EGZAMIN PISEMNY Z ANALIZY I R. R n
EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy
Elementy Teorii Miary i Całki
Elementy Teorii Miary i Całki c Lech Drewnowski Wydział Matematyki i Informatyki Uniwersytet im. dama Mickiewicza w Poznaniu Poznań 2008 http://main2.amu.edu.pl/ drewlech/dydaktyka.html http://main2.amu.edu.pl/
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
1 Przestrzenie Hilberta
M. Beśka, Wykład monograficzny, Dodatek 1 1 Przestrzenie Hilberta 1.1 Podstawowe fakty o przestrzeniach Hilberta Niech H będzie przestrzenią liniową nad ciałem liczb rzeczywistych. Określmy odwzorowanie,
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Uniwersytet Mikołaja Kopernika w Toruniu
Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Krzysztof Frączek Analiza Matematyczna II Wykład dla studentów II roku kierunku informatyka Toruń 2009 Spis treści 1 Przestrzenie
Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Definicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
1 Elementy analizy funkcjonalnej
M. Beśka, Dodatek 1 1 Elementy analizy funkcjonalnej 1.1 Twierdzenia o reprezentacji Zaczniemy od znanego twierdzenia Riesza Twierdzenie 1.1 (Riesz) Niech będzie zwartą przestrzenią metryczną i załóżmy,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Topologia Topology Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Matematyka Poziom kwalifikacji: I stopnia Semestr: IV Rodzaj zajęć: wykład, ćwiczenia Liczba godzin/tydzień:
Zastosowania twierdzeń o punktach stałych
16 kwietnia 2016 Abstrakt Niech X będzie przestrzenią topologiczną. Ustalmy odwzorowanie ciągłe f : X X. Twierdzeniem o punkcie stałym nazywamy prawdę matematyczną postulującą pod pewnymi warunkami istnienie
26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 26 marzec, 212 Łańcuchy z czasem ciągłym S = {, 1,..., }, B S = 2 S, ale T = [, ) lub T = (, ). Gdy S skończone,
8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA.
ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA. PIOTR ZAKRZEWSKI 1. Wykłady 1/2 Definicja 1.1. Przestrzeń polska to przestrzeń topologiczna ośrodkowa, metryzowalna w sposób zupełny. Przykład 1.2.
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Zadania z forcingu. Marcin Kysiak. Semestr zimowy r. ak. 2002/2003
Zadania z forcingu Marcin Kysiak Semestr zimowy r. ak. 2002/2003 Dokument ten zawiera zadania omówione przeze mnie na ćwiczeniach do wykładu monograficznego dr. A. Krawczyka "Zdania nierozstrzygalne w
3 Abstrakcyjne kompleksy symplicjalne.
3 Abstrakcyjne kompleksy symplicjalne. Uwaga 3.1. Niech J będzie dowolnym zbiorem indeksów, niech R J = {(x α ) α J J α x α R} będzie produktem kartezjańskim J kopii R, niech E J = {(x α ) α J R J x α
Zadania z Analizy Funkcjonalnej I* - 1
Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Zadanie 1. Algorytmika ćwiczenia
Zadanie 1 Algorytmika ćwiczenia Zadanie 2 Zadanie 3 Zadanie 4 Zadanie 5 Zadanie 6 Zadanie 7 Wiązka zadań Ułamki dwójkowe W systemach pozycyjnych o podstawie innej niż 10 można zapisywać nie tylko liczby
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
O zastosowaniach twierdzeń o punktach stałych
O zastosowaniach twierdzeń o punktach stałych Marcin Borkowski Streszczenie Wszyscy znamy twierdzenie Banacha o kontrakcji czy twierdzenie Brouwera o punkcie stałym. Stosunkowo rzadko jednak mamy okazję
Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.
Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych