4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że"

Transkrypt

1 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio pomniejszonych δ, η istnieje dokładnie jedna funkcja taka że ϕ : K(x 0, δ) (y 0 η, y 0 + η), f(x, ϕ(x)) = 0, Co więcej, funkcja ϕ jest klasy C 1 i xk ϕ(x) = x k f(x, ϕ(x)) y f(x, ϕ(x)), x K(x 0, δ). x K(x 0, δ). Dowód. Bez straty ogólności możemy przyjąć, że y f(x 0, y 0 ) > 0. Dla nieco mniejszych δ > 0 i η > 0 istnieją stałe c i C, takie że 0 < c y f(x, y) C, D x f(x, y) C dla x x 0 δ, y y 0 η. Rozpatrzmy funkcję y f(x 0, y) na odcinku [y 0 η, y 0 +η]. Jest ona ściśle rosnąca i w punkcie y 0 przyjmuje wartość 0, więc f(x 0, y 0 + η) > 0 > f(x 0, y 0 η). Zmniejszając odpowiednio δ > 0, możemy więc założyć, że f(x, y 0 + η) > 0 > f(x, y 0 η), x x 0 δ. Z własności Darboux wynika teraz, że dla każdego x x 0 δ istnieje dokładnie jedno y = ϕ(x) (y 0 η, y 0 + η), takie że f(x, y) = f(x, ϕ(x)) = 0, co kończy pierwszą część dowodu. Pokażemy teraz, że funkcja ϕ jest ciągła. Niech x K(x 0, δ) i niech y = ϕ(x). Z twierdzenia o wartości średniej mamy 0 = f(x + h, y + k) f(x, y) = D x f(x, y )h + y f(x, y )k, gdzie k = ϕ(x + h) ϕ(x), oraz ( ) x = x + θh, y = y + θ ϕ(x + h) ϕ(x), 0 < θ < 1. Wobec tego (4.2) ϕ(x + h) ϕ(x) = D xf(x, y ) y f(x, y ) h, a stąd co dowodzi ciągłości ϕ. D x f(x, y ) ϕ(x + h) ϕ(x) y f(x, y ) C h h, c

2 2 Aby się przekonać, że nasza funkcja ϕ jest klasy C 1, wystarczy zauważyć, że ϕ(x + h) ϕ(x) + D xf(x, y) y f(x, y) h D x f(x, y) y f(x, y ) D xf(x, y) y f(x, y ) h. Ze względu na ciągłość ϕ D x f(x, y) lim h 0 y f(x, y ) D xf(x, y) y f(x, y ) = 0, bo y y = y (h) y = k(h) = ϕ(x + h) ϕ(x), a więc ϕ jest różniczkowalna i jej pochodna wyraża się odpowiednim wzorem Przykład. Rozważmy równanie x y = y x2, x, y > 0. Równanie to ma rozwiązanie (x 0, y 0 ) = (1, 1). Zdefiniujmy funkcję f(x, y) = x y y x2. mamy f(1, 1) = 0 oraz y f(x, y) = x y log x x 2 y x2 1 (x,y)=(1,1) = 1. (x,y)=(1,1) Zatem na mocy twierdzenia o funkcji uwikłanej istnieją r > 0 i η > 0, takie że dla każdego x 1 < r istnieje dokładnie jedno y leżace w (1 η, 1+η), takie że (x, y) jest rozwiązaniem równania. Zależność y od x wyraża się funkcją ϕ klasy C 1 (1 r, 1 + r). Mamy więc oraz x ϕ(x) = ϕ(x) x2, x 1 < r, ϕ (x) = 2xϕ(x)x2 1 (1 + x 2 log ϕ(x)) + x ϕ(x) 1 (1 ϕ(x) log x) x ϕ(x) log x x 2, x 1 < r. ϕ(x) x2 1 Zauważmy, że z ostatniego wzoru wynika, że ϕ C (1 r, 1 + r) Twierdzenie. Niech będzie dane odwzorowanie F klasy C 1 na otwartym podzbiorze U 1 U 2 R n R m przyjmujące wartości w R m i punkt (x 0, y 0 ) U 1 U 2, taki że F (x 0, y 0 ) = 0, det D y F (x 0, y 0 ) 0. Wówczas, po odpowiednim zmiejszeniu U 1 i U 2, istnieje dokładnie jedno odwzorowanie takie że Co więcej, odwzorowanie Φ jest klasy C 1 i Φ : U 1 U 2, F (x, Φ(x)) = 0. Dϕ(x) = D y F (x, y) 1 D x F (x 0, y 0 ).

3 Dowód. Przeprowadzimy dowód indukcyjny ze względu na m. Twierdzenie o funkcji uwikłanej to przypadek m = 1. Przyjmijmy więc, że twierdzenie zostało udowodnione w przypadku pewnego m N i rozważmy odwzorowanie F : U 1 U 2 R m+1 spełniające założenia twierdzenia. Dla danego x U 1 szukamy y w U 2 spełniającego równanie F (x, y) = 0. Niech A = D y F (x 0.y 0 ) = I. Niech F 1 (x, y) = A 1 F (x, y), (x, y) U 1 U 2. Chwila zastanowienia wystarczy, aby stwierdzić, że nowe zagadnienie ma te same rozwiązania, co poprzednie, a ponadto D y F 1 (x 0, y 0 ) = I. Możemy zatem od razu przyjąć, że D y F (x 0, y 0 ) = I. Mamy układ równań F k (x, y 1, y 2,..., y m, y m+1 ) = 0, 1 k m + 1. Z naszych założeń wynika że m+1 F m+1 (x 0, y 0 ) = 1. Oznaczając z = (y 1, y 2,..., y m ) oraz G = (F 1, F 2,..., F m ), możemy nasz układ zapisać w skrócie jako G(x, z, y m+1 ) = 0, F m+1 (x, z, y m+1 ) = 0. Zacznijmy od funkcji F : R n+m R R, która w punkcie (x 0, z 0, (y 0 ) m+1 ) spełnia założenia twierdzenia o funkcji uwikłanej. (Tutaj (x, z) gra rolę argumentu funkcji uwikłanej.) Zmniejszamy otoczenie U 1 punktu x 0 i znajdujemy otoczenia V 1 punktu z 0 i V 2 punktu (y m+1 ) 0, gdzie V 1 V 2 jest naszym nowym pomniejszonym U 2, oraz funkcję ϕ : U 1 V 1 V 2 klasy C 1 spełniającą F m+1 (x, z, ϕ(x, z)) = 0, a jest to jedyna funkcja o tej własności. Co więcej, j ϕ(x) = y j F m+1 (x, ϕ(x)) ym+1 F m+1 (x, ϕ(x)). Zatem nasze zagadnienie jest równoważne układowi równań H(x, z) = G(x, z, ϕ(x, z) = 0, F m+1 (x, z, ϕ(x, z) = 0. Zajmijmy się teraz zagadnieniem H(x, z) = 0 wokół punktu (x 0, z 0 ), gdzie H : R n R m R m. Aby zastosować tu nasze założenie indukcyjne musimy się upewnić, że pochodna D z H(x 0, z 0 ) jest odwzorowaniem nieosobliwym. Ale zj H i (x 0, z 0 ) = j G i (x 0 ) + ym+1 G i (x 0, y 0 ) zj ϕ(x 0 ) = δ ij, więc D z H(x 0, z 0 ) = I. Skoro tak, to zmniejszając odpowiednio U 1 i V 1 znajdujemy jedyne odwzorowanie ψ : U 1 V 1, takie że G(x, ψ(x), ϕ(x, ψ(x)) = 0, F m+1 (x, ψ(x), ϕ(x, ψ(x)) = 0. Oczywiście ψ jest klasy C 1, a więc odwzorowanie Φ(x) = (ψ(x), ϕ(x, ψ(x))) : U 1 (V 1 V 2 ) 3

4 4 też jest klasy C 1 i spełnia F (x, Φ(x)) = 0. Jednoznaczność Φ wynika z jednoznaczności ϕ i ψ. Różniczkując tożsamość F (x, Φ(x)) = 0, otrzymujemy wzór na pochodną Φ. Trochę geometrii Zaczynamy od dwóch spojrzeń na gradient funkcji. Drugie z nich wymaga wprowadzenia pojęcia styczności do krzywej, co równocześnie przygotuje nas do ogólniejszych rozważań o powierzchniach w R n Niech będzie dana funkcja f różniczkowalna w punkcie a U, gdzie U R n jest otwarty. Wówczas dla każdego wektora jednostkowego v R n v f(a) v0 f(a), gdzie v 0 = f(a) 1 f(a). Innymi słowy, gradient wskazuje kierunek (i zwrot) najszybszego wzrostu f. Mówimy, że odwzorowanie ϕ klasy C 1 otwartego zbioru w R k w przestrzeń R m jest regularne, jeśli rząd odwzorowania liniowego ϕ (x) jest równy max(k, m) dla x U. Odwzorowanie regularne γ odcinka (a, b) R w przestrzeń R n nazywamy krzywą regularną. Wektor γ (t 0 ) nazywamy wektorem stycznym krzywej w punkcie γ(t 0 ), a prostą o równaniu parametrycznym prostą styczną. x(s) = γ(t 0 ) + sγ (t 0 ), s R, 4.6. Ustalmy t 0 (a, b). Dla małych h niech x(s(h)) = γ(t 0 )) + s(h)γ (t 0 ) będzie rzutem prostopadłym γ(t 0 + h) na prostą styczną. Wtedy γ(t 0 + h) x(s(h)) γ(t 0 + h) γ(t 0 ) 0, h 0, 4.7. Uwaga. Granicy tej nadajemy następujący sens: Gdy punkt krzywej zbliża się do punktu styczności, jego odległość od prostej stycznej maleje szybciej od odległości od punktu styczności, co utwierdza nas w przekonaniu, że prawidłowo zdefiniowaliśmy pojęcie styczności do krzywej. Dowód. Wartość s(h) wyznaczamy z warunku prostopadłości czyli skąd gdzie α(h) 1, gdy h 0. γ(t 0 + h) x(s(h), γ (t 0 ) = 0. γ(t 0 + h) γ(t 0 ) s(h)γ (t 0 ) = 0, s(h) = γ(t 0 + h) γ(t 0 ), γ (t 0 ) γ (t 0 ) 2 = α(h) h,

5 Wobec tego interesująca nas wyrażenie jest równe γ(t 0 + h) γ(t 0 ) α(h)hγ γ(t 0 + h) γ(t 0 ) (t 0 ) α(h)γ (t 0 ) h = γ(t 0 + h) γ(t 0 ) γ(t 0 + h) γ(t 0 ) h i, jak widać, dąży do zera, gdy h Jeśli krzywa regularna γ : (a, b) R n klasy C 2 ma jednostkową prędkość, tzn. γ (s) = 1 dla s (a, b), to γ (s) γ (s). Wtedy też κ(γ)(s) = γ (s) nazywamy krzywizną krzywej γ w punkcie γ(s) Niech będzie dana różniczkowalna funkcja F na otwartym podzbiorze U R n. Jeśli krzywa różniczkowalna γ : (a, b) R n biegnie po poziomicy funkcji F, to γ (t) F (γ(t)), t (a, b) Definicja. Zbiór M R n nazywamy regularną powierzchnią k-wymiarową, jeśli dla każdego x M istnieje otoczenie otwarte U R n oraz regularne odwzorowanie F : U R n k klasy C 1 (U), takie że M U = {x U : F (x) = 0}. Z twierdzenia o odwzorowaniu uwikłanym wynika, że Jeśli M jest regularną powierzchnią k-wymiarową w R n, to dla każdego x M istnieje otoczenie otwarte U oraz injektywne odwzorowanie regularne ϕ otwartego zbioru V R k w U, takie że M U = ϕ(v ) Twierdzenie. Niech x 0 będzie ustalonym punktem regularnej powierzchni k-wymiarowej M R n. Niech U będzie takim otoczeniem x 0, że M U = {x U : F (x) = 0} = ϕ(v ), gdzie F : U R n k i ϕ : V U, V R k, są regularne, a poadto ϕ jest injektywne. Wtedy zachodzi równość podprzestrzeni liniowych gdzie z 0 = ϕ 1 (x 0 ) V. ker F (x 0 ) = ϕ (z 0 )(R k ), Dowód. Zauważmy najpierw, że rząd F (x 0 ) wynosi n k, a rząd ϕ (z 0 ) to k. Zatem dim ker F (x 0 ) = dim ϕ (z 0 )(R k ) = k. Wystarczy zatem pokazać, że jedna z tych przestrzeni zawiera się w drugiej. Rzeczywiście, jeśli w R k, to F (x 0 )ϕ (z 0 )w = (F ϕ) (z 0 )w = 0, bo F ϕ = 0, a więc ϕ (z 0 )(R k ) ker F (x 0 ). 5

6 Uwaga. Z udowodnionego twierdzenia wynika, że przestrzeń nie zależy od wyboru ani F, ani ϕ. T x0 = ker F (x 0 ) = Im ϕ (z 0 ) Definicja. Jeśli M jest regularną powierzchnią wymiaru k, o jakiej mowa w Twierdzeniu, to podprzestrzeń liniową T x0 (M) nazywamy liniową podprzestrzenią styczną do M w punkcie x 0. Natomiast jej translację x 0 + T x0 (M) nazywamy afiniczną przestrzenią styczną do M w x Uwaga. Jeśli e 1, e 2,..., e k tworzą bazę R k, to tworzą bazę T x0 (M). ϕ (z 0 )e 1, ϕ (z 0 )e 2,..., ϕ (z 0 )e k Uwaga. Wektory F j (x 0 ), gdzie 1 j n k są prostopadłe do T x0 (M) Uwaga. Jeśli k = n 1, jest tylko jeden gradient prostopadly do powierzchni, bo F ma tylko jedną składową. Co więcej, F (x 0 ) N ϕ (z 0 ), gdzie j-ta współrzędna N ϕ jest równa minorowi macierzy ϕ (z 0 ) powstałemu przez skreślenie j-tego wiersza i pomnożonemu przez ( 1) j Uwaga. Dla każdego wektora u T x0 (M) istnieje krzywa regularna γ : ( ε, ε) M, taka że u = γ (0). Rzeczywiście, niech u = ϕ (z 0 )w, gdzie w R k. Niiech γ(t) = ϕ(z 0 + tw). Wtedy γ (0) = ϕ (z 0 )w = u. Interpretacja geometryczna drugiej pochodnej. Niech będzie dana funkcja f : U R klacy C 2 na otwartym podzbiorze R n. Jak wiadomo, f (x)(u, v) = v f(x), u, u, v R n. Zatem kierunki własne formy kwadratowej f (x) to kierunki własne operatora liniowego v v f(x), czyli wektory v R n spełniajace warunek v f(x) = λv dla pewnej liczby λ. Mozna zatem powiedzieć, że Kierunki własne formy kwadratowej f (x), to takie kierunki wyjścia z x, przy których gradient pochyla się w kierunku wyjścia. Mozna też podać trochę inną interpretację. Jako że widzimy, że v f(x) = v f(x), Niezerowy wektor v jest wektorem własnym formy kwadratowej f (x), wtedy i tylko wtedy gdy kierunkiem najszybszego wzrostu v f(x) jest v.

7 Operator kształtu powierzchni. Niech powierzchnia M R n będzie poziomicą funkcji M = {x Ω : f(x) = 0}, Ω R n otwarty, gdzie f (x) 0 dla x Ω. Niech T x (M) = {v R n : f (x)v = 0} będzie przestrzenią styczną do M w punkcie x M i niech U(x) = f(x) 1 f(x) będzie polem wektora normalnego. Operator liniowy zadany wzorem S(x) : R n R n S(x)v = v U(x) nazywamy operatorem kształtu M w punkcie x Przestrzeń liniowa T x (M) jest podprzestrzenią niezmienniczą operatora S(x). Dowód. Rzeczywiście, U(x) 2 = 1, więc po zróżniczkowaniu v U(x), U(x) = 0, jeśli v T x (M), co pokazuje, że S(x)v T x (M) Mamy a więc Jeśli u, v T x (M), to Co więcej, bo S(x)v = f (x)(u(x), v) U(x) + v f(x), f(x) S(x)v, u = f (U(x), v) U(x), u) + v f(x), u f(x) = f (U(x), v) U(x), u) + f (x)(u, v). f(x) S(x)v, u = f(x) 1 f (x)(u, v). S(x) : R n T x (M), S(x)v, U(x) = 0, v R n. Krzywizną normalną M w punkcie x M w kierunku wektora jednostkowego v nazywamy liczbę k(v) = S(x)v, v = f(x) 1 f (x)(v, v) Krzywizna normalna w kierunku wektora stycznego v T x0 (M), to krzywizna krzywej wyciętej na powierzchni płaszczyzną wyznaczoną przez wektory U(x 0 ) i v w punkcie x 0. 7

8 8 Dowód. Jeśli krzywa γ(s) biegnie po M, to f(γ(s)) = 0, więc f (γ(s))γ (s) = f(x), γ (s) = 0, a więc f (γ(s))(γ (s), γ (s)) = f (γ(s))γ (s), czyli k(γ (s)) = U(γ(s)), γ (s), a więc k(γ (0)) = γ (0), bo γ (0) U((x 0 ), jeśli przyjąć, że γ(0) = x Uwaga. Niech x 0 M i niech v T x0 (M). Niech γ będzie krzywą na powierzchni wychodzącą z punktu x 0 = γ(0) w kerunku wektora v = γ (0). Jeśli S x0 v = v U(x 0 ) = u, to krzywa zakreślona przez wektor normalny U(γ(t)) przechodzi przez U(x 0 ) stycznie do u. Rzeczywiście, niech γ : ( ε, ε) M, γ(0) = x 0 i γ (0) = u. Wtedy Mówiąc obrazowo: d dt U(γ(t)) t=0 = U (γ(0))γ (0) = v U(x 0 )v = u Kierunki własne operatora kształtu, to takie kierunki wyjścia z x 0, przy których wektor normalny pochyla się w kierunku wyjścia.

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu.

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. Równania różniczkowe cząstkowe pierwszego rzędu 11 1 11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. 11.1 Równania różniczkowe cząstkowe. Definicje i oznaczenia. Równaniem

Bardziej szczegółowo

1 Podobieństwo macierzy

1 Podobieństwo macierzy GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

R n jako przestrzeń afiniczna

R n jako przestrzeń afiniczna R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Geometria Różniczkowa II wykład piąty

Geometria Różniczkowa II wykład piąty Geometria Różniczkowa II wykład piąty Wykład piąty poświęcony będzie pojęciu całkowalności dystrybucji oraz fundamentalnemu dal tego zagadnienia twierdzeniu Frobeniusa. Przy okazji postanowiłam sprawdzić

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

1 Ciągłe operatory liniowe

1 Ciągłe operatory liniowe 1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego

Bardziej szczegółowo

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia

Bardziej szczegółowo

Algebry skończonego typu i formy kwadratowe

Algebry skończonego typu i formy kwadratowe Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

1 Nierówność Minkowskiego i Hoeldera

1 Nierówność Minkowskiego i Hoeldera 1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

Endomorfizmy liniowe

Endomorfizmy liniowe Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013 Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Całki powierzchniowe w R n

Całki powierzchniowe w R n Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 15

RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 Niech r ( t ) [ x( t), y( t), z( t)], t I ( r ( t ) x( t) i y( t) j z( t) k, t I ) będzie równaniem wektorowym krzywej w R 3. Definicja Krzywą o równaniu r ( t ) [ a cost,

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Ciągłość funkcji i podstawowe własności funkcji ciągłych.

Ciągłość funkcji i podstawowe własności funkcji ciągłych. Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ). B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez

Bardziej szczegółowo

Zestaw zadań 14: Wektory i wartości własne. ) =

Zestaw zadań 14: Wektory i wartości własne. ) = Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I 7 października 23 Powierzchnie zanurzone Tegoroczna wersja wykładu z geometrii różniczkowej będzie różniła się od poprzedniej kolejnością materiału. Zgodnie z

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo