Wielomiany jednej zmiennej rzeczywistej algorytmy

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wielomiany jednej zmiennej rzeczywistej algorytmy"

Transkrypt

1 Rozdział 15 Wielomiany jednej zmiennej rzeczywistej algorytmy 15.1 Algorytm dzielenia Definicja 15.1 Niech dany będzie niezerowy wielomian f K[x] (K jest ciałem) f = a 0 x m + a 1 x m a m, gdzie a i K i a 0 0. Wówczas a 0 x m nazywamy wyrazem wiodącym wielomianu f. Oznaczamy LT (f) = a 0 x m. Przykład 15.2 Niech f(x) = 5x 5 3x Wtedy LT (f) = 5x 5 Fakt 15.3 Jeśli f, g K[x] są niezerowymi wielomianami, to deg(f) deg(g) LT (f) LT (g). Teraz możemy już przejść do opisania algorytmu dzielenia wielomianów. Twierdzenie 15.4 [1, Proposition 2, The Divison Algorithm] Niech K będzie ciałem, zaś g niezerowym wielomianem w K[x]. Wtedy każdy f K[x] może być zapisany jako f = qg + r, gdzie q, r K[x] i r = 0 lub deg(r) < deg(g). Dowód Algorytm pozwalający wyznaczyć q, r (w pseudokodzie): Input : g, f Output : q, r q := 0, r := f W HILE r 0 AND LT (g) divides LT (r) DO q := q + LT (r)/lt (g) 1

2 r := r (LT (r)/lt (g))g Komenda W HILE... DO oznacza, że polecenia umieszczone we wcięciu należy wykonywać dopóki wyrażenie znajdujące się pomiędzy WHILE i DO nie okaże się fałszywe. Komenda q :=... r :=... wskazuje, że wartości q i r zostały zdefiniowane lub przedefiniowane. Zarówno q jak i r są tu zmiennymi i zmieniają swoje wartości w każdym kroku algorytmu. Dla dowodu twierdzenia musimy pokazać, że rozważany algorytm kończy się i otrzymane w rezultacie wartości q i r mają żądane własności. Zauważmy, że: Dla początkowych wartości q = 0 i r = f mamy f = qg + r Po przedefiniowaniu q i r równość f = qg + r pozostaje prawdziwa, ponieważ f = (q + LT (r)/lt (g))g + (r (LT (r)/lt (g))g) Pętla W HILE... DO kończy się, gdy zdanie r 0 i LT (g) dzieli LT (r) jest fałszywe, czyli gdy r = 0 lub LT (g) nie dzieli LT (r) Z faktu 15.3 mamy, że LT (g) LT (r) deg(r) < deg(g). Zatem gdy algorytm kończy się (czego jeszcze nie wiemy), otrzymujemy q i r o żądanych własnościach. Musimy więc teraz pokazać, że algorytm rzeczywiście się kończy, czyli że zdanie pomiędzy WHILE i DO będzie w którymś kroku fałszywe (w przeciwnym wypadku otrzymalibyśmy pętlę, która nigdy się nie kończy). Niech r = a 0 x m + a 1 x m a m g = b 0 x k + b 1 x k b k i niech m k. Pokażemy, że h = r (LT (r)/lt (g))g jest równe 0 lub deg(h) < deg(r). Zauważmy, że h = r (LT (r)/lt (g))g = = a 0 x m + a 1 x m a m (LT (r)/lt (g))(b 0 x k + b 1 x k b k ) = = (a 0 a 0 )x m + (a 0 (a 0 /b 0 )b 1 )x m = = (a 0 (a 0 /b 0 )b 1 )x m A stąd deg(h) < m = deg(r) lub h = 0. Zatem w kolejnych krokach algorytmu r staje się wielomianem coraz niższego rzędu. Jeśli stopień r jest skończony 2

3 (tylko taki przypadek rozważamy, bo gdy deg(r) =, to g f), to będziemy go obniżać skończenie wiele razy, co dowodzi, że algorytm kończy się. W ostatnim kroku dowodu pokażemy, że q i r są wyznaczone jednoznacznie. Załóżmy, że f = qg + r = qg + r, gdzie deg(r) < deg(g) i deg( r) < deg(g) (chyba, że jeden lub oba wielomiany r i r są równe 0) Jeśli r r, to deg( r r) < deg(g). Z drugiej strony (q q)g = r r, q q 0 Czyli deg( r r) = deg((q q)g) = deg(q q) + deg(g) deg(g). Otrzymana sprzeczność kończy dowód jednoznaczności w przypadku q q, r r. Trzeba jeszcze rozpatrzeć dwa przypadki: Gdy q = q, r r. Wtedy f = qg + r = qg + r r r = 0 r = r Gdy q q, r = r. Wtedy f = qg+r = qg+r (q q)g = 0 q q = 0, bo g 0 i w K[x] nie ma dzielników zera. Co kończy dowód. Przykład 15.5 Rozważmy f(x) = 2x 3 + 3x + 5 g(x) = x 2 + 2x + 1. Oczywiście LT (f) = 2x 3, LT (g) = x 2. Wykorzystując algorytm podany w dowodzie twierdzenia 15.4 znajdziemy wielomiany q i r. Postępując zgodnie z algorytmem mamy: I krok algorytmu: Na wejściu: q := 0 i r := f, LT (g) = x 2 i LT (r) = 2x 3 Ponieważ r 0 i x 2 2x 3, to: q := 0 + 2x 3 /x 2 = 2x r := 2x 3 + 3x + 5 (2x 3 /x 2 )(x 2 + 2x + 1) = 4x 2 + x + 5 II krok algorytmu: Na wejściu: q := 2x i r := 4x 2 + x + 5, LT (g) = x 2 i LT (r) = 4x 2 Ponieważ r 0 i x 2 ( 4x 2 ), to: q := 2x + ( 4x 2 /x 2 ) = 2x 4 r := 4x 2 + x + 5 ( 4x 2 /x 2 )(x 2 + 2x + 1) = 9x + 9 III krok algorytmu: Na wejściu: q := 2x 4 i r := 9x + 9, LT (g) = x 2 i LT (r) = 9x Ponieważ r 0 ale x 2 nie dzieli 9x to KONIEC. Zatem ostatecznie: 2x 3 + 3x + 5 = (2x 4)(x 2 + 2x + 1) + 9x + 9 3

4 15.2 Znajdowanie liczby pierwiastków Wniosek 15.6 [1, Corollary 3] Jeśli K jest ciałem i f K[x] jest niezerowym wielomianem, to liczba pierwiastków f w K jest równa co najwyżej deg(f). Dowód Niech m = deg(f). Przeprowadzimy indukcję względem m. 1. m=0 Wtedy f jest niezerową stałą, zatem f nie ma pierwiastków, więc w sposób oczywisty teza jest prawdziwa. 2. Załóżmy, że teza wniosku zachodzi dla wielomianów stopnia m Niech deg(f) = m Jeśli f nie ma pierwiastków w K, to teza jest prawdziwa. Załóżmy, że a jest pierwiastkiem f w K. Z twierdzenie 15.4 mamy: f = q(x a) oraz deg(g) = m 1 (bo deg(f) = m, deg(x a) = 1). Zauważmy, że każdy pierwiastek f, różny od a jest też pierwiastkiem q: Niech b a będzie pierwiastkiem f. 0 = f(b) = q(b)(b a) A stąd q(b) = 0, bo K jest ciałem. Z założenia indukcyjnego q ma co najwyżej m 1 pierwiastków, a stąd f ma co najwyżej m pierwiastków (bo każdy pierwiastek f jest pierwiastkiem q) Algorytm Euklidesa Definicja 15.7 Wielomian h K[x] nazywamy największym wspólnym dzielnikiem wielomianów f, g K[x], gdy i) h dzieli f i g, ii) jeśli p jest innym wielomianem, który dzieli wielomiany f i g, to p dzieli h. Oznaczamy h = GCD(f, g). Twierdzenie 15.8 [1, Proposition 6] Niech f, g K[x]. Wtedy: 4

5 a) GCD(f, g) istnieje i jest wyznaczony jednoznacznie (z dokładnością do mnożenia przez niezerową stałą). b) GCD(f, g) jest generatorem ideału (f, g). c) Istnieje algorytm służący do wyznaczania GCD(f, g). Jest to algorytm Euklidesa. Dowód a) ISTNIENIE Rozważmy ideał (f, g). Każdy ideał w K[x] jest główny, zatem istnieje h K[x] taki, że (f, g) = (h). Pokażemy, że h jest GCD(f, g). Zauważmy, że h dzieli f i g (bo f, g (h)). Niech p K[x] będzie taki, że p f i p g. Wtedy f = cp, g = dp dla pewnych c, d K[x]. Ponieważ h (f, g), to a,b K[x] af + bg = h. Zatem h = acp + bdp = (ac + bd)p, a stąd p h. A więc h rzeczywiście jest GCD(f, g). JEDNOZNACZNOŚĆ Załóżmy,że h = GCD(f, g) i h = GCD(f, g). Z definicji 15.7: h h h = a h, dla pewnego a K[x], h h h = bh, dla pewnego b K[x]. deg(h) = deg(a) + deg( h) deg( h), deg( h) = deg(b) + deg(h) deg(h). A zatem deg(h) = deg( h), czyli a, b K. b) Wynika z dowodu poprzedniego punktu. c) Niech f, g K[x], g 0. Z twierdzenia 15.4: f = qg+r, gdzie q, r K[x] i r = 0 lub deg(r) < deg(g). Oznaczmy r = remainder(f, g) ALGORYTM EUKLIDESA (w pseudokodzie): Input : f, g Output : h h := f, s := g W HILE s 0 DO 5

6 rem := remainder(h, s) h := s s := rem Uzasadnienie (że algorytm rzeczywiście zwraca GCD(f, g)): Rozważmy ideały (f, g) i (f qg, g). Dowolny element ideału (f, g) jest postaci af + bg, gdzie a, b K[x]. Zaś dowolny element ideału (f qg, g) ma postać: cf cqg + dg = cf + (d cq)g, gdzie c, d K[x]. A stąd (f, g) = (f qg, g), co daje: GCD(f, g) = GCD(f qg, g) = GCD(r, g). Ponadto deg(g) > deg(r) lub r = 0 (bo tak było określone r). Jeśli r 0. to powtarzamy powyższe rozumowanie dla q i r takich, że: g = qr + r i GCD(g, r) = GCD(r, r), gdzie deg(r) > deg( r) lub r = 0. Postępując analogicznie otrzymujemy: (*) GCD(f, g) = GCD(g, r) = GCD(r, r) = GCD( r, r) =... (**) deg(g) > deg(r) > deg( r) > deg( r) >... lub r = r = r =... = 0 Wracając do algorytmu, rozważmy teraz zmienne h i s. Zauważmy, że h przyjmuje wartości f, g, r, r,... występujące w (*), zaś s: g, r, r, r,... z (*). Zatem elementy z (*) są kolejnymi wynikami otrzymanymi przy działaniu pętli W HILE... DO, co daje: GCD(h, s) = GCD(f, g). Z (**) mamy natomiast, że stopień s maleje w każdym kroku algorytmu, więc w którymś momencie otrzymamy s = 0. Wówczas mamy: GCD(h, 0) = GCD(f, g) Ponieważ (h, 0) = (h), więc GCD(h, 0) = h dla s = 0. Euklidesa zwraca h o wartości równej GCD(f, g). Zatem algorytm Przykład 15.9 Niech f(x) = x 4 x 2 2x 1 g(x) = x 3 1 Wykorzystując algorytm podany w dowodzie twierdzenia 15.8 znajdziemy wielomian h = GCD(f, g). Postępując zgodnie z algorytmem mamy: I krok algorytmu: Na wejściu: h := x 4 x 2 2x 1 i s := x 3 1, h = x(x 3 1)+( x 2 x 1) Ponieważ s 0, to: rem := x 2 x 1 h := x 3 1 s := x 2 x 1 6

7 II krok algorytmu: Na wejściu: h := x 3 1 i s := x 2 x 1, h = ( x + 1)( x 2 x 1) Ponieważ s 0, to: rem := 0 h := x 2 x 1 s := 0 to KONIEC Zatem ostatecznie: h = GCD(f, g) = x 2 x 1 lub GCD(f, g) = x 2 + x + 1 Definicja Wielomian h K[x] nazywamy największym wspólnym dzielnikiem wielomianów f 1,..., f s K[x], gdy: i) h dzieli f 1,..., f s ii) jeśli p jest innym wielomianem dzielącym f 1,..., f s, to p dzieli h. Oznaczamy: h = GCD(f 1,..., f s ). Twierdzenie [1, Proposition 8] Niech f 1,..., f s K[x], s 2. Wtedy: a) GCD(f 1,..., f s ) istnieje i jest wyznaczony jednoznacznie (z dokładnością do mnożenia przez niezerową stałą). b) GCD(f 1,..., f s ) jest generatorem ideału (f 1,..., f s ). c) Jeśli s 3, to GCD(f 1,..., f s ) = GCD(f 1, GCD(f 2,..., f s )). d) Istnieje algorytm służący do wyznaczania GCD(f 1,..., f s ). Przykład Niech f 1 (x) = x 3 3x + 2 f 2 (x) = x 4 1 f 3 (x) = x 6 1 GCD(f 1, f 2, f 3 ) generator (f 1, f 2, f 3 ). Z twierdzenia : GCD(f 1, f 2, f 3 ) = GCD(f 1, GCD(f 2, f 3 )) = GCD(x 3 3x + 2, x 2 1) GCD(x 3 3x + 2, x2 1) znajdziemy wykorzystując algorytm Euklidesa. Postępując zgodnie z algorytmem mamy: I krok algorytmu: Na wejściu: h := x 3 3x + 2 i s := x 2 1, h = x(x 2 1) + ( 2x + 2) Ponieważ s 0, to: rem := 2x + 2 h := x 2 1 s := 2x + 2 7

8 II krok algorytmu: Na wejściu: h := x 2 1 i s := 2x + 2, h = ( 1x 1 )( 2x + 2) 2 2 Ponieważ s 0, to: rem := 0 h := 2x + 2 s := 0 to KONIEC Zatem ostatecznie: h = GCD(f, g) = 2x + 2 lub GCD(f, g) = x 1 8

9 Bibliografia [1] D. Cox, J. Little, D. O Shea, Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, Springer-Verlag, New York,

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Skończone rozszerzenia ciał

Skończone rozszerzenia ciał Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

Łatwy dowód poniższej własności pozostawiamy czytelnikowi. Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1.

Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1. Algebra II Wykład 1 0. Przypomnienie Zbiór R z działaniami +, : R R R, wyróżnionymi elementami 0, 1 R i operacją : R R nazywamy pierścieniem, jeśli spełnione są następujące warunki: (1) a, b, c R : a +

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 7: Kody korygujące błędy Gniewomir Sarbicki Błędy transmisji i kodowanie nadmiarowe Zakładamy, że przy pewnym małym prawdopodobieństwie ɛ przy transmisji bit zmienia wartość.

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych

Bardziej szczegółowo

Algebra liniowa z geometrią. wykład I

Algebra liniowa z geometrią. wykład I Algebra liniowa z geometrią wykład I 1 Oznaczenia N zbiór liczb naturalnych, tutaj zaczynających się od 1 Z zbiór liczb całkowitych Q zbiór liczb wymiernych R zbiór liczb rzeczywistych C zbiór liczb zespolonych

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

ciałem F i oznaczamy [L : F ].

ciałem F i oznaczamy [L : F ]. 11. Wykład 11: Baza i stopień rozszerzenia. Elementy algebraiczne i przestępne. Rozszerzenia algebraiczne i skończone. 11.1. Baza i stopień rozszerzenia. Uwaga 11.1. Niech F będzie ciałem, L rozszerzeniem

Bardziej szczegółowo

Aproksymacja diofantyczna

Aproksymacja diofantyczna Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

0.1 Pierścienie wielomianów

0.1 Pierścienie wielomianów 0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

Algebra I. Grzegorz Bobiński. wykład z ćwiczeniami dla studentów II roku matematyki. Wydział Matematyki i Informatyki UMK w Toruniu

Algebra I. Grzegorz Bobiński. wykład z ćwiczeniami dla studentów II roku matematyki. Wydział Matematyki i Informatyki UMK w Toruniu Algebra I wykład z ćwiczeniami dla studentów II roku matematyki Grzegorz Bobiński Wydział Matematyki i Informatyki UMK w Toruniu Toruń 2005 Spis treści Rozdział I. Pierścienie 3 1.1. Działania w zbiorach

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

1 Pierścienie, algebry

1 Pierścienie, algebry Podstawowe Własności Pierścieni Literatura Pomocnicza: 1. S.Balcerzyk,T.Józefiak, Pierścienie przemienne, PWN 2. A.Białynicki-Birula, Algebra, PWN 3. J.Browkin, Teoria ciał, PWN 4. D.Cox, J.Little, D.O

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ PIERŚCIEŃ WIELOMIANÓW

ALGEBRA Z GEOMETRIĄ PIERŚCIEŃ WIELOMIANÓW ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIEŃ WIELOMIANÓW Piotr M. Hajac Uniwersytet Warszawski Wykład 6, 6.11.2013 Typeset by Jakub Szczepanik. Plan 2/10 1 Co to są wielomiany i jak się je mnoży? 2 Co to jest stopień

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające

Bardziej szczegółowo

LIX Olimpiada Matematyczna

LIX Olimpiada Matematyczna LIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (10 września 2007 r. 10 grudnia 2007 r.) Zadanie 1. Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 5 = 5y

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

Kongruencje pierwsze kroki

Kongruencje pierwsze kroki Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Rozwiązaniem jest zbiór (, ] (5, )

Rozwiązaniem jest zbiór (, ] (5, ) FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s) = s n + 1 s n 1 ++a 1 s+a 0, 1) gdzie n N, a i R i = 0,,n), 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i i = 0,,n)

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

LXI Olimpiada Matematyczna

LXI Olimpiada Matematyczna 1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

Grzegorz Bobiński. Matematyka Dyskretna

Grzegorz Bobiński. Matematyka Dyskretna Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2016 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu E-learning - matematyka - poziom rozszerzony Funkcja wykładnicza Materiały merytoryczne do kursu Definicję i własności funkcji wykładniczej poprzedzimy definicją potęgi o wykładniku rzeczywistym. Poprawna

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Dwa równania kwadratowe z częścią całkowitą

Dwa równania kwadratowe z częścią całkowitą Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych

Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych Teoria liczb Zajmuje się własnościami liczb, przede wszystkim całkowitych Niepraktyczna? - kryptografia Dzielenie liczb całkowitych z resztą Niech b>0, wtedy dla każdej liczby całkowitej a istnieją jednoznacznie

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Wzory skróconego mnożenia w zadaniach olimpijskich

Wzory skróconego mnożenia w zadaniach olimpijskich Wzory skróconego mnożenia w zadaniach olimpijskich Jacek Dymel 17.10.008 Bardzo często uczniowie wyrażają taką opinię, że do rozwiązywania zadań olimpijskich niezbędna jest znajomość wielu skomplikowanych

Bardziej szczegółowo

1 Funkcje uniwersalne

1 Funkcje uniwersalne 1 1 Funkcje uniwersalne 1.1 Konstrukcja funkcji uniweralnej Niech P będzie najmniejszym zbiorem liczb spełniającym warunki 1) 0, 2, 0, 0, 2, 1, 0, 2, 2 P, 2) 0, n, 3, k P dla wszystkich n > 0 oraz k takich,

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Grzegorz Bobiński. Matematyka Dyskretna

Grzegorz Bobiński. Matematyka Dyskretna Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2013 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo