Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład"

Transkrypt

1 Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem losowym). Definicja 2 Wartość x = (x 1,..., x n ) wektora losowego X = (X 1,..., X n ) dla ustalonego ω, tzn. x i = X i (ω), dla każdego i {1,..., n}, nazywamy realizacją wektora losowego X. Przykład 1 Rozpatrzmy n-krotny rzut kostką. Niech X i, i = 1,..., n, będzie zmienną losową przyjmującą wartość x i równą liczbie oczek w i-tym rzucie. Wówczas X = (X 1,..., X n ) jest wektorem losowym oraz x = (x 1,..., x n ) taki, że x i = 6 dla każdego i {1,..., n}, jest jego przykładową realizacją. Rozkład wektora losowego (in. rozkład łączny wektora losowego), podobnie jak rozkład zmiennej losowej, może być określony przez jego dystrybuantę. Definicja 3 Funkcję F : R n [0, 1] określoną wzorem F (x 1,..., x n ) = P ({ω : X 1 (ω) x 1,..., X n (ω) x n }) nazywamy dystrybuantą rozkładu łącznego wektora losowego X = (X 1,..., X n ) lub krótko dystrybuantą wektora losowego X. Definicja 4 Jeżeli wektor losowy X = (X 1,..., X n ) przyjmuje wartości x = (x 1,..., x n ) z przeliczalnego zbioru W X = {x 1, x 2,...}, to mówimy, że jest on typu dyskretnego oraz funkcję p : R n [0, 1], określoną wzorem p(x 1,..., x n ) = P ({ω : X 1 (ω) = x 1,..., X n (ω) = x n }), (1.1) 1

2 Tablica 1.1: Ilustracja funkcji prawdopodobieństwa dwuwymiarowego wektora losowego x x x 2l x 11 p p 1l x 1k p k1... p kl Tablica 1.2: Funkcja prawdopodobieństwa dwuwymiarowego wektora losowego z przykładu 2 (x, y) /36 1/36 1/36 1/36 1/36 1/36 2 1/36 1/36 1/36 1/36 1/36 1/36 3 1/36 1/36 1/36 1/36 1/36 1/36 4 1/36 1/36 1/36 1/36 1/36 1/36 5 1/36 1/36 1/36 1/36 1/36 1/36 6 1/36 1/36 1/36 1/36 1/36 1/36 dla każdego x = (x 1,..., x n ) W X, nazywamy funkcją prawdopodobieństwa wektora losowego X = (X 1,..., X n ). Uwaga 1 W dalszej części wykładu P ({ω : X 1 (ω) x 1,..., X n (ω) x n }) i P ({ω : X 1 (ω) = x 1,..., X n (ω) = x n }) będziemy w skrócie zapisywać odpowiednio P (X 1 x 1,..., X n x n ) i P (X 1 = x 1,..., X n = x n ). W przypadku, gdy wektor losowy X = (X 1, X 2 ) jest dwuwymiarowym wektorem losowym typu dyskretnego i zbiór W X = {x = (x 1, x 2 ) : x 1 W X1 = {x 11,..., x 1k }, x 2 W X2 = {x 21,..., x 2l }} jest skończony, to funkcję prawdopodobieństwa rozkładu takiego wektora najcześciej przedstawia się w postaci tabeli (zobacz tablica 1.1), gdzie p ij = P (X 1 = x 1i, X 2 = x 2j ), x 1i W X1, x 2j W X2, i = 1,..., k, j = 1,..., l. Przykład 2 Jeżeli w przykładzie 1 założymy, że wykonujemy dwa niezależne rzuty słuszną kostką, to funkcja prawdopodobieństwa wektora losowego X = (X 1, X 2 ) =: (X, Y ) określona jest w tablicy

3 Definicja 5 Jeżeli istnieje funkcja f : R n [0, 1], taka, że dla każdego x = (x 1,..., x n ), dystrybuantę F wektora losowego X możemy wyrazić następująco F (x) = x1... xn f(t 1,..., t n )dt 1... dt n, (1.2) to mówimy, że wektor losowy X jest typu ciągłego oraz funkcję f nazywamy gęstością rozkładu tego wektora. Fakt 1 Funkcja f jest gęstością rozkładu pewnego wektora losowego X = (X 1,..., X n ) wtedy i tylko wtedy, gdy (i) f(x) 0, dla każdego x R n, (ii) Przykład 3 Niech f będzie funkcją postaci f(x, y) =... f(x 1,..., x n )dx 1... x n = 1. { exp( x y), gdy x > 0 i y > 0, 0, w przeciwnym wypadku. Mamy, że f(x, y) 0, dla każdego x R i y R oraz f(x, y)dxdy = 0 0 exp( x y)dxdy = 1. Zatem funkcja f spełnia warunek (i) oraz warunek (ii) faktu 1, czyli jest gęstością rozkładu pewnego dwuwymiarowego wektora losowego (X, Y ). 1.2 Rozkłady brzegowe wektora losowego Z rozkładem wektora losowego związane jest pojęcie rozkładu brzegowego. Pojęcie to zdefiniujemy w szczególnym przypadku dwuwymiarowego wektora losowego. Dwuwymiarowy wektor losowy będziemy oznaczać, dla wygody, (X, Y ) zamiast jak poprzednio (X 1, X 2 ). Definicja 6 Rozkładami brzegowymi wektora losowego (X, Y ) nazywamy rozkłady jego współrzędnych, tzn. zmiennych losowych X i Y. 3

4 Fakt 2 Niech F będzie dystrybuantą wektora losowego (X, Y ). Oznaczmy oraz Funkcje F X i F Y F X (x) = P (X x) = P (X x, Y < ) = lim y F (x, y) =: F (x, ) (1.3) F Y (y) = P (Y y) = P (X <, Y y) = lim x F (x, y) =: F (, y). (1.4) określone wzorami odpowiednio (1.3) i (1.4) są dystrybuantami zmiennych losowych odpowiednio X i Y oraz nazywamy je dystrybuantami rozkładów brzegowych wektora losowego (X, Y ). Fakt 3 Jeżeli wektor losowy (X, Y ) przyjmuje wartości (x, y) z przeliczalnego zbioru W (X,Y ) = {(x, y) : x W X = {x 1, x 2,...}; y W Y = {y 1, y 2,...}}, z prawdopodobieństwem p(x, y), czyli jest typu dyskretnego, to rozkłady współrzędnych X, Y tego wektora są dyskretne i są określone przez funkcje prawdopodobieństwa p X, p Y p X (x i ) = y j W Y p(x i, y j ) = odpowiednio postaci p ij =: p i+, (1.5) j=1 p Y (y j ) = x i W X p(x i, y j ) = p ij =: p +j. (1.6) i=1 Zatem funkcje prawdopodobieństwa p X i p Y (X, Y ). określają rozkłady brzegowe wektora losowego Przykład 4 Jeżeli rozkład łączny wektora losowego (X, Y ) określony jest przez funkcję prawdopodobieństwa daną w tablicy 1.2, to rozkłady brzegowe tego wektora możemy podać w dodatkowym (ostatnim) wierszu i dodatkowej (ostatniej) kolumnie jak w tablicy 1.3. Fakt 4 Jeżeli wektor losowy (X, Y ) jest typu ciągłego i f oznacza gęstość rozkładu wektora (X, Y ), to zmienne losowe X i Y też są typu ciągłego i gęstość f X rozkładu zmiennej losowej X jest postaci f X (x) = oraz gęstość rozkładu zmiennej losowej Y jest postaci f Y (y) = f(x, y)dy (1.7) f(x, y)dx. (1.8) 4

5 Tablica 1.3: Funkcja prawdopodobieństwa dwuwymiarowego wektora losowego z przykładu 4 wraz z rozkładami brzegowymi (x, y) p X 1 1/36 1/36 1/36 1/36 1/36 1/36 1/6 2 1/36 1/36 1/36 1/36 1/36 1/36 1/6 3 1/36 1/36 1/36 1/36 1/36 1/36 1/6 4 1/36 1/36 1/36 1/36 1/36 1/36 1/6 5 1/36 1/36 1/36 1/36 1/36 1/36 1/6 6 1/36 1/36 1/36 1/36 1/36 1/36 1/6 p Y 1/6 1/6 1/6 1/6 1/6 1/6 1 Uwaga 2 Jeżeli zmienne losowe X i Y są typu ciągłego, to nie pociąga za sobą, że wektor losowy (X, Y ) jest typu ciągłego. Fakt 5 Jeżeli wektor losowy (X, Y ) jest typu ciągłego i f oznacza gęstość rozkładu wektora (X, Y ), to dystrybuanta F X zmiennej losowej X jest postaci oraz dystrybuanta F Y F X (x) = F (x, ) = x f(u, y)dydu = zmiennej losowej Y jest postaci F Y (y) = F (, y) = y f(x, v)dxdv = x y f X (u)du f Y (v)dv. Przykład 5 W przykładzie 3 pokazaliśmy, że funkcja { exp( x y), gdy x > 0 i y > 0, f(x, y) = 0, w przeciwnym wypadku, jest gęstością rozkładu pewnego dwuwymiarowego wektora losowego (X, Y ). Korzystając ze wzoru (1.7), gęstość f X rozkładu zmiennej losowej X jest postaci { exp( x y)dy = exp( x), gdy x > 0, 0 f X (x) = 0, gdy x 0. Korzystając ze wzoru (1.8), gęstość f Y rozkładu zmiennej losowej Y jest postaci { exp( x y)dx = exp( y), gdy y > 0, 0 f Y (y) = 0, gdy y 0. Z postaci gęstości rozkładów zmiennych losowych X i Y, wnioskujemy, że rozkłady brzegowe wektora losowego (X, Y ) są wykładnicze E(1). 5

6 1.3 Rozkłady warunkowe Pojęcie rozkładu warunkowego, podobnie jak pojęcie rozkładu brzegowego, wprowadzimy na przykładzie dwuwymiarowego wektora losowego. Niech (X, Y ) będzie dwuwymiarowym wektorem losowym. Np. niech X = 1, jeżeli losowo wybrana osoba posiada samochód i X = 0, jeżeli nie posiada samochodu oraz Y = 1, jeżeli jest kobietą i Y = 0, jeżeli jest mężczyzną. Może interesować nas prawdopodobieństwo, że osoba posiada samochód, jeżeli wiemy, że jest kobietą. Symbolicznie możemy to prawdopodobieństwo zapisać w postaci P (X = 1 Y = 1). Zauważmy, że jeżeli wiemy, że losowo wybrana osoba jest kobietą, to może ona posiadać samochód lub nie, zatem P (X = 1 Y = 1) + P (X = 0 Y = 1) = 1. Powyższe dwa prawdopodobieństwa warunkowe P (X = 1 Y = 1), P (X = 0 Y = 1) określają nam tzw. rozkład warunkowy zmiennej losowej X, pod warunkiem, że zmienna losowa Y przyjęła wartość 1. Ogólnie rozkład warunkowy w przypadku, gdy wektor losowy (X, Y ) jest typu dyskretnego, definiujemy następująco. Definicja 7 Niech dwuwymiarowy wektor losowy (X, Y ) będzie typu dyskretnego o rozkładzie określonym przez funkcję prawdopodobieństwa p. Wówczas rozkład warunkowy zmiennej losowej X pod warunkiem, że zmienna losowa Y przyjęła wartość y, określony jest przez następującą funkcję prawdopodobieństwa warunkowego p X Y =y (x) = p(x, y) p Y (y), (1.9) gdzie p Y oznacza funkcję prawdopodobieństwa zmiennej losowej Y. Analogicznie, rozkład warunkowy zmiennej losowej Y pod warunkiem, że zmienna losowa X przyjęła wartość x, określony jest przez następującą funkcję prawdopodobieństwa warunkowego p Y X=x (y) = p(x, y) p X (x), (1.10) gdzie p X oznacza funkcję prawdopodobieństwa zmiennej losowej X. 6

7 Tablica 1.4: Funkcja prawdopodobieństwa dwuwymiarowego wektora losowego z przykładu 6 (x, y) , 1 0 0, , , 1 0 0, 1 Przykład 6 Niech rozkład wektora losowego (X, Y ) będzie dany w tablicy 1.4. Wówczas, korzystając ze wzoru (1.9), rozkład warunkowy zmiennej losowej X, pod warunkiem, że Y = 1, określony jest przez następującą funkcję prawdopodobieństwa warunkowego: p X Y =1 (1) = 0.5, p X Y =1 (2) = 0, p X Y =1 (3) = 0.5. W przypadku, gdy wektor losowy (X, Y ) jest typu ciągłego, pojęcie rozkładu warunkowego nie jest już takie intuicyjne jak w powyższym przypadku wektora losowego typu dyskretnego. Rozkłady warunkowe są wówczas określone przez tzw. gęstości warunkowe, które definiujemy następująco. Definicja 8 Niech dwuwymiarowy wektor losowy (X, Y ) będzie typu ciągłego o gęstości f. Wówczas warunkowa gęstość zmiennej losowej X, pod warunkiem, że Y = y jest postaci f X Y =y (x) = f(x, y) f Y (y), (1.11) gdzie f Y oznacza gęstość zmiennej losowej Y. Analogicznie, warunkowa gęstość zmiennej losowej Y, pod warunkiem, że X = x jest postaci f Y X=x (y) = f(x, y) f X (x), (1.12) gdzie f X oznacza gęstość zmiennej losowej X. Przykład 7 Niech rozkład wektora losowego (X, Y ) będzie określony przez następującą gęstość f(x, y) = 1 π exp[ (x2 2xy + 2y 2 )] dla każdego x, y R. Korzystając ze wzoru (1.8), gęstość f Y postaci zmiennej losowej Y jest f Y (y) = exp( y2 ) π, 7

8 a następnie, korzystając ze wzoru (1.11), rozkład warunkowy zmiennej losowej X, pod warunkiem, że Y = y, określony jest przez następującą gęstość warunkową f X Y =y = exp[ (x y)2 ] π, z czego wynika, że rozkład warunkowy zmiennej X, pod warunkiem, że Y = y jest rozkładem normalnym N (y, 1/2). Na przykład, gdy y = 0 mamy f X Y =0 = exp( x2 ) π, i rozkład warunkowy zmiennej X, pod warunkiem, że Y = 0 jest rozkładem normalnym N (0, 1/2). Definicja 9 Niech dwuwymiarowy wektor losowy (X, Y ) będzie typu dyskretnego o rozkładzie określonym przez funkcję prawdopodobieństwa p. Warunkową wartością oczekiwaną zmiennej losowej X, pod warunkiem, że Y = y nazywamy wartość E(X Y = y) = x i p X Y =y (x i ), (1.13) gdzie sumowanie przebiega po wszystkich x i ze zbioru wartości W X zmiennej losowej X. Analogicznie, warunkową wartością oczekiwaną zmiennej losowej Y, pod warunkiem, że X = x nazywamy wartość E(Y X = x) = y j p Y X=x (y j ), (1.14) gdzie sumowanie przebiega po wszystkich y j ze zbioru wartości W Y zmiennej losowej Y. Przykład 8 W przypadku wektora losowego (X, Y ) z przykładu 6, warunkowa wartość oczekiwana E(X Y = 1) zmiennej losowej X, pod warunkiem, że Y = 1 wynosi E(X Y = 1) = = 2. Definicja 10 Niech dwuwymiarowy wektor losowy (X, Y ) będzie typu ciągłego o gęstości f. Warunkową wartością oczekiwaną zmiennej losowej X, pod warunkiem, że Y = y nazywamy wartość E(X Y = y) = xf X Y =y (x)dx. (1.15) Analogicznie, warunkową wartością oczekiwaną zmiennej losowej Y, pod warunkiem, że X = x nazywamy wartość E(Y X = x) = 8 yf Y X=x (y)dy. (1.16)

9 Przykład 9 W przypadku wektora losowego (X, Y ) z przykładu 7, warunkowa wartość oczekiwana E(X Y = 0) zmiennej losowej X, pod warunkiem, że Y = 0 wynosi E(X Y = 1) = x exp( x2 ) π dx = Niezależność zmiennych losowych Definicja 11 Współrzędne X 1,..., X n wektora losowego X = (X 1,..., X n ) są niezależnymi zmiennymi losowymi, jeżeli dla każdego wektora (x 1,..., x n ) R n, zdarzenia {ω : X 1 (ω) x 1 },..., {ω : X n (ω) x n } są wzajemnie niezależne. Fakt 6 Jeżeli F jest dystrybuantą wektora losowego X = (X 1,..., X n ), którego współrzędne X 1,..., X n są niezależne, to F (x 1,..., x n ) = F 1 (x 1 )... F n (x n ), gdzie F i jest dystrybuantą zmiennej losowej X i, i = 1,..., n. Fakt 7 Niech p X będzie funkcją prawdopodobieństwa wektora losowego X = (X 1,..., X n ) oraz p Xi oznacza funkcję prawdopodobieństwa zmiennej losowej X i, i = 1,..., n. Wówczas zmienne losowe X 1,..., X n są niezależne wtedy i tylko wtedy, gdy p X (x) = n p Xi (x i ), i=1 dla każdego x = (x 1..., x n ) R n. Wniosek 1 W przypadku dwywymiarowego wektora losowego (X, Y ) typu dyskretnego o funkcji prawdopodobieństwa określonej przez p ij, i = 1, 2..., j = 1, 2,..., zmienne losowe X i Y są niezależne wtedy i tylko wtedy, gdy dla każdego i = 1, 2... oraz j = 1, 2,..., p ij = p i+ p +j, (1.17) gdzie p i+ i p +j określone są odpowiednio wzorami (1.5) i (1.6). Przykład 10 Niech funkcja prawdopodobieństwa dwuwymiarowego wektora losowego (X, Y ) będzie dana w tablicy 1.5. Dla i = 1, j = 1 mamy, że p 11 = 0, 1, p 1+ = 0, 3, p +1 = 0, 2, p 11 = 0, 1 p 1+ p +1 = 0, 06. Zatem istnieje takie i oraz j, dla których nie jest spełniony warunek (1.17), czyli zmienne losowe X i Y nie są niezależne. 9

10 Tablica 1.5: Funkcja prawdopodobieństwa dwuwymiarowego wektora losowego z przykładu 10 (x, y) , 1 0, 1 0, , , 1 0, 1 0, 1 Przykład 11 Łatwo można pokazać, że zmienne losowe X i Y z przykładu 2 są niezależne. Fakt 8 Niech f X będzie gęstością rozkładu wektora losowego X = (X 1,..., X n ) oraz f Xi oznacza gęstość rozkładu zmiennej losowej X i, i = 1,..., n. Wówczas zmienne losowe X 1,..., X n są niezależne wtedy i tylko wtedy, gdy f X (x) = n f Xi (x i ), i=1 dla każdego x = (x 1..., x n ) R n. Wniosek 2 W przypadku dwywymiarowego wektora losowego (X, Y ) typu ciągłego o funkcji gęstości rozkładu f, zmienne losowe X i Y są niezależne wtedy i tylko wtedy, gdy dla każdego x R oraz y R, f(x, y) = f X (x)f Y (y), (1.18) gdzie f X i f Y określone są odpowiednio wzorami (1.7) i (1.8). Przykład 12 W przykładzie 3 mamy, że dla każdego x R oraz y R, f(x, y) = f X (x)f Y (y). Zatem spełniony jest warunek (1.18) i zmienne losowe X i Y z tego przykładu są niezależne. Definicja 12 Próbą losową lub krótko próbą, nazywamy wektor losowy X = (X 1,..., X n ), którego współrzędne są niezależnymi zmiennymi losowymi o tym samym rozkładzie. Jeżeli p jest funkcją prawdopodobieństwa lub f jest gęstością rozkładu zmiennych losowych X 1,..., X n, to mówimy, że X jest próbą z rozkładu odpowiednio p lub f. 10

11 Przykład 13 Niech X = (X 1,..., X n ) będzie próbą z rozkładu wykładniczego E(λ), λ > 0, czyli zmienne losowe X 1,..., X n są niezależne i rozkład zmiennej X i, i = 1,..., n, ma gęstość postaci f(x) = { 1 x λ λ), gdy x > 0, 0, gdy x 0. Wówczas, korzystając z faktu 8, mamy, że rozkład wektora losowego X ma gęstość postaci n 1 i=1 f X (x 1,..., x n ) = exp ( ) ( x n ) i λ λ = 1 exp λ n i=1 x i, gdy x λ i > 0, i {1,..., n}, 0, w przeciwnym przypadku. 1.5 Charakterystyki liczbowe dwuwymiarowego wektora losowego Niech (X, Y ) będzie dwuwymiarowym wektorem losowym o funkcji prawdopodobieństwa p lub gęstości rozkładu f. Wówczas wartość oczekiwaną zmiennej losowej Z = g(x, Y ), gdzie g : R 2 R jest dowolną (mierzalną) funkcją, możemy obliczyć z następującego wzoru E(Z) = (x i,y j ) g(x i, y j )p(x i, y j ), (1.19) w przypadku, gdy wektor losowy (X, Y ) jest typu dyskretnego lub E(Z) = w przypadku, gdy wektor losowy (X, Y ) jest typu ciągłego. g(x, y)f(x, y)dxdy, (1.20) Kowariancja zmiennych losowych Definicja 13 Kowariancją zmiennych losowych X i Y nazywamy Cov(X, Y ) = E[(X E(X))(Y E(Y ))] = E(XY ) E(X)E(Y ). Definicja 14 Jeżeli Cov(X, Y ) = 0, to zmienne losowe X i Y nazywamy nieskorelowanymi. Fakt 9 Jeżeli zmienne losowe X i Y są niezależne, to są nieskorelowane. 11

12 Uwaga 3 Implikacja odwrotna w fakcie 9 nie jest prawdziwa, tzn. z faktu, że Cov(X, Y ) = 0 nie wynika, że zmienne losowe X i Y są niezależne. Przykład 14 Niech funkcja prawdopodobieństwa wektora losowego (X, Y ) będzie dana w talicy 1.4. Wówczas E(X) = 2, E(Y ) = 2, E(XY ) = 4, czyli Cov(X, Y ) = 0, ale zmienne losowe X i Y nie są niezależne, bo np. P (X = 1, Y = 1) = 0, 1 P (X = 1)P (Y = 1) = Fakt 10 Dla dowolnych zmiennych losowych X i Y zachodzi następująca nierówność [Cov(X, Y )] 2 Var(X)Var(Y ). (1.21) Współczynnik korelacji zmiennych losowych Definicja 15 Współczynniikem korelacji zmiennych losowych X i Y, takich, że Var(X) > 0 i Var(Y ) > 0, nazywamy ρ(x, Y ) = Cov(X, Y ) Var(X)Var(Y ). (1.22) Z nierówności (1.21) wynika, że dla dowolnych zmiennych losowych X i Y, takich, że Var(X) > 0 i Var(Y ) > 0, [ρ(x, Y )] 2 1, a więc ρ(x, Y ) 1. Można pokazać, że współczynnik korelacji ρ(x, Y ) = 1 wtedy i tylko wtedy, gdy z prawdopodobieństwem 1, zmienne losowe X i Y związane są zależnością liniową, tzn. P (Y = ax + b) = 1. Współczynnik korelacji można zatem traktować jako miarę liniowej współzależności zmiennych losowych. 12

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Rachunek Prawdopodobieństwa istatystyka W4 Rozkład normalny Parametry rozkładu zmienne losowe Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny - standaryzaca

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 2 i 3 Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne autor: Maciej Zięba Politechnika Wrocławska Pojęcie prawdopodobieństwa Prawdopodobieństwo

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Rachunek prawdopodobieństwa II

Rachunek prawdopodobieństwa II Leszek Słomiński achunek prawdopodobieństwa II Materiały dydaktyczne dla studentów matematyki przygotowane w ramach projektu IKS - Inwestycja w Kierunki Strategiczne na Wydziale Matematyki i Informatyki

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Rachunek prawdopodobieństwa. Stanisław Jaworski

Rachunek prawdopodobieństwa. Stanisław Jaworski Rachunek prawdopodobieństwa Stanisław Jaworski Rachunek prawdopodobieństwa: dział matematyki zajmujący się badaniem modeli zjawisk losowych (przypadkowych) i praw nimi rządzących (Encyklopedia Popularna

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa

Wstęp do rachunku prawdopodobieństwa Wstęp do rachunku prawdopodobieństwa Rozdział 06: Zmienne losowe. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Wprowadzenie Przykład 6.1 Adam, Bolek i Czesiu wstąpili do kasyna. Postanowili

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3 LISTA 4 1.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ = 7. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

Elektrotechnika II [ Ćwiczenia ] 2016/2017 Zimowy

Elektrotechnika II [ Ćwiczenia ] 2016/2017 Zimowy Elektrotechnika II [ Ćwiczenia ] 206/207 Zimowy Lp Nazwisko i imię Pkt Kol Suma Popr Ocena Data Egzamin Basaj Mateusz 2 Ciechowski Dawid Dst Dst 3 Cieślik Piotr 4 Glica Mateusz 5 Głuszkowski Michał 6 Kikulski

Bardziej szczegółowo

Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej

Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej Wykład 4, 5 i 6 Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności

Bardziej szczegółowo

MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Rachunek prawdopodobieństwa MAP34, WPPT/FT, wykład dr hab. A. Jurlewicz Przykłady - Lista nr : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.. Hasło potrzebne

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Całki powierzchniowe w R n

Całki powierzchniowe w R n Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne Wprowadzenie Prostym podejściem do klasyfikacji jest estymacja funkcji regresji r(x) =E(Y X =x)zpominięciemestymacjigęstościf k. Zacznijmyodprzypadkudwóchgrup,tj.gdy Y = {1,0}. Wówczasr(x) =P(Y =1 X =x)ipouzyskaniuestymatora

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Granica funkcji. 8 listopada Wykład 4

Granica funkcji. 8 listopada Wykład 4 Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

1 Własności miary probabilistycznej, prawdopodobieństwo

1 Własności miary probabilistycznej, prawdopodobieństwo 1 Własności miary probabilistycznej, prawdopodobieństwo kombinatoryczne I Zadania z wykładu. Zadania obowiązkowe. Przypomnienie. k-elementową kombinacją zbioru n-elementowego nazywamy każdy podzbiór k-elementowy

Bardziej szczegółowo