Urzdzenia Techniki Komputerowej. Skrypt szkolny dla uczniów TZN

Wielkość: px
Rozpocząć pokaz od strony:

Download "Urzdzenia Techniki Komputerowej. Skrypt szkolny dla uczniów TZN"

Transkrypt

1 Urzdzenia Techniki Komputerowej klasa I Skrypt szkolny dla uczniów TZN Technik Informatyk Numer zawodu Czstochowa 2012/2013

2 Skrypt przygotowany tylko na wewntrzne potrzeby uczniów Technicznych Zakładów Naukowych w Czstochowie Nie jest to publikacja dlatego nie wolno umieszcza tych materiałów na stronach internetowych! Mog je posiada tylko uczniowie TZN oraz nauczyciele uczcy przedmiotu UTK. Zebranie materiału oraz skład - mgr in. Witold Iwaczak Przygotowanie wybranych materiałów: mgr in. Witold Iwaczak mgr in. Przemysław Błaszczyk mgr in. Barbara Dubiska mgr in. Tomasz Dobosz strona 2

3 L 01 Lekcja informacyjno organizacyjna. Przedmiotowy system oceniania. 1. Ogólna charakterystyka przedmiotu 2. Omówienie ramowego programu nauczania 3. Bibliografia. Ad.1 Ogólna charakterystyka przedmiotu. Przedmiot Urzdzenia techniki komputerowej prowadzony jest w wymiarze 2 godzin tygodniowo w I i II klasie. Jest to przedmiot z grupy przedmiotów zawodowych. W wyniku procesu kształcenia ucze powinien umie wyjani modułow budow komputera, okreli parametry podstawowych elementów jego budowy, okreli zasady wzajemnej współpracy podzespołów i urzdze peryferyjnych oraz wykorzystywa informacje zawarte w dokumentacji technicznej (angielska terminologia zawodowa). Ucze powinien pozna take zasady bezpiecznej pracy z urzdzeniami techniki komputerowej oraz ergonomii pracy na stanowisku komputerowym. Zagadnienia zawarte w treci programowej przedmiotu maj duy udział w pytaniach na egzaminie z przygotowania zawodowego w czci teoretycznej a nabyte umiejtnoci praktyczne bd niewtpliwie pomocne przy realizacji projektu z czci praktycznej egzaminu. Ad.2 Omówienie ramowego programu nauczania. W ramach zaj w klasie I zrealizowane zostan nastpujce bloki tematyczne: 1. Arytmetyka komputera systemy zapisu liczb i działania na liczbach binarnych. 2. Układy cyfrowe podstawy 3. BHP i ochrona przeciwpoarowa oraz ergonomia pracy z komputerem. 4. Modułowa budowa i zasada działania komputera. 5. Podstawowe podzespoły zestawu komputerowego. 6. Pamici masowe dyski elastyczne, dyski twarde, napdy optyczne, pamici typu flash. W klasie II omówione zostan urzdzenia peryferyjne oraz sieci komputerowe. strona 3

4 Ad.3 Bibliografia. 1. Z. Kolan Urzdzenia techniki komputerowej, CWK Screen, Wrocław 2003, 2. T. Kowalski - Urzdzenia techniki komputerowej, Helion, Gliwice 2010, 3. T. Marciniuk - Urzdzenia Techniki Komputerowej, WSiP Wydawnictwa Szkolne i Pedagogiczne, Warszawa, 2009, 4. S. Mueller Rozbudowa i naprawa komputerów PC, Helion, Gliwice 2003, 5. R. Krzyanowski Urzdzenia zewntrzne komputerów, Mikom, Warszawa C. Scott W sercu PC, Helion, Gliwice 2003, 7. G. Weadock Samodzielna rozbudowa komputera, Help, Michałowice 2002, 8. H. Madej Pentium od rodka, WCKP, Wrocław 2001, 9. P. Metzger, A. Jałowiecki Anatomia PC, Helion, Gliwice 10. K. Wojtuszkiewicz - Urzadzenia Techniki Komputerowej cz 1 - Jak działa komputer?, Mikom, Grupa PWN, Warszawa 2007, 11. K. Wojtuszkiewicz - Urzadzenia Techniki Komputerowej cz 2 - Urzdzenia peryferyjne i intrefejsy, Mikom, Grupa PWN, Warszawa 2007, 12. Dokumentacja techniczna podzespołów komputerowych 13. Czasopisma informatyczne 14. Witryny internetowe. strona 4

5 I Dział programowy: Systemy liczbowe w technice komputerowej L 02 Podstawowe pojcia techniki cyfrowej. 1. Rodzaje sygnałów 2. Jednostki stosowane w technice komputerowej 3. Praca domowa Ad.1 Rodzaje sygnałów. Sygnałem nazywamy model dowolnej mierzalnej wielkoci zmieniajcej si w czasie, wytworzonej przez zjawiska fizyczne lub systemy. Jest on nonikiem informacji o naturze wytwarzajcej go wielkoci. Przykładem sygnału moe by graficzne odwzorowanie np.: fali akustycznej, przepływu prdu, czy zapalania i gaszenia lampy przy przekazywaniu informacji alfabetem Morse`a. Sygnał opisany jest cechami: - jakociowymi (s. akustyczny, optyczny, elektryczny itp.) - ilociowymi (warto w jednostkach danej wielkoci) - morfologicznymi (kształt, czyli przebieg w czasie). W technice komputerowej bdziemy posługiwa si głównie sygnałami elektrycznymi. a) Sygnał analogowy. Sygnałem analogowym nazywamy sygnał, którego amplituda moe przyjmowa dowoln warto z cigłego przedziału czasowego(nieskoczonego lub ograniczonego). Ze wzgldu na przebieg sygnału analogowego w czasie moemy wyróni sygnały analogowe cigłe i niecigłe (impulsowe, dyskretne). U U Sygnał analogowy cigły t Sygnał analogowy niecigły t strona 5

6 b) Sygnał cyfrowy. Sygnałem cyfrowym nazywamy sygnał, którego amplituda moe przyjmowa cile okrelone wartoci. W technice komputerowej wystpuje najczciej sygnał cyfrowy dwuwartociowy, zwany sygnałem binarnym. Wartoci te opisane s dwoma stanami: - stan niski L (Low) reprezentuje binarne zero 0, - stan wysoki H (High) reprezentuje binarn jedynk 1 U U H Warto binarna stan wysoki H - 1 U L stan niski L - 0 t Ad.2 Jednostki stosowane w technice komputerowej. Podstawow jednostk informacji w komputerowej technice cyfrowej jest bit (ang. binary digit). Bit moe przyjmowa warto 0 (zero) lub 1 (jeden). Oznaczenia i wartoci: b bit, B bajt (ang. byte) 1B = 8b 1 kb = 2 10 B = 1024 B = 8192 b (jeden kilobajt) 1 MB = 2 20 B = 1024 * 1024 B = B = b (jeden megabajt) Ad.3 Praca domowa. Okreli warto 36GB i 8 TB w B i b.. strona 6

7 L 03 Binarny system zapisu liczb. 1. System dziesitny. 2. Schemat systemu pozycyjnego. 3. System binarny. Ad.1 System dziesitny. Naturalnym systemem liczbowym dla człowieka jest system dziesitny zwany take decymalnym. Do zapisu dowolnej liczby w systemie dziesitnym (z pominiciem znaku) wykorzystujemy dziesi symboli graficznych, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Przy ich uyciu moemy w tym systemie przedstawi dowoln liczb. Przykład D = 4 * * * 1 setki dziesitki jednoci oznaczenie systemu w jakim liczba została napisana Do zapisu liczby w okrelonym systemie bdziemy stosowa nastpujcy schemat : (x y z) S gdzie : - x, y, z symbole ze zbioru wykorzystywanego w danym systemie np. w systemie dziesitnym 0,1,, 8, 9 w systemie binarnym 0, 1 - S oznaczenie systemu liczbowego: D system dziesitny (decymalny), b system dwójkowy (binarny), 8 ósemkowy (oktagonalny) H szesnastkowy (heksadecymalny). Ad.2 Schemat systemu pozycyjnego. System dziesitny jest systemem pozycyjnym. Oznacza to, e warto cyfry uytej w zapisie liczby jest zalena od zajmowanego miejsca, czyli pozycji. strona 7

8 Przykład 2. ( 4 2 5) D pozycja jedynek (pozycja 0) pozycja dziesitek (pozycja 1) pozycja setek (pozycja 2) Podstaw systemy dziesitnego jest liczba 10 (p = 10). Korzystajc z numeru pozycji danej cyfry oraz podstawy systemy nasz liczb moemy zapisa w postaci: Przykład 3. ( 4 2 5) D = 4 * * *10 0 pozycja cyfry podstawa systemu Dowoln liczb w systemie pozycyjnym moemy zapisa nastpujcym schematem: (a n..a 0)S = a n * p n + a n-1 * p n a 0 * p 0 gdzie : p podstawa systemu zapisu liczbowego n pozycja cyfry w liczbie (liczc od prawej pozycja 0 do lewej) a dowolna cyfra ze zbioru dopuszczonego w danym systemie. p n - waga pozycji Ad.3 System binarny. Przykład 4. System binarny (dwójkowy) jest systemem pozycyjnym, w którym: - podstawa p = 2, - zbiór dopuszczonych cyfr a 0 { 0, 1 } ( ) b = 1* * * * * * *2 0 = = 1*64 + 1*32 + 0*16 + 1*8 + 0*4 + 0*2 + 1*1 = = = 105 ( ) b = (105) D (Prosz zapisa w kolumnie na marginesie zeszytu wagi pozycji od 0 do10 przy podstawie 2) strona 8

9 L 04 Konwersja dwójkowo-dziesitna i dziesitno-dwójkowa. 1. Pojcie konwersji. 2. Konwersja dwójowo-dziesitna. 3. Konwersja dziesitno-dwójkowa. 4. Praca domowa Ad.1 System dziesitny. Konwersj nazywamy przekształcenie postaci zapisu liczby z jednego systemu na inny przy zachowaniu wartoci tej liczby. Konwersja jest działaniem równowanym i odwracalnym tzn, e zapisujc dan liczb w innym systemie a nastpnie konwertujc j do zapisu pierwotnego otrzymamy t sam liczb. Ad.2 Konwersja dwójkowo-dziesitna. Przykład 1. Zmie zapis liczby z systemu dwójkowego na dziesitny pozycja ( , ) b = waga = (1* * * * * * * * * *2-4) D = (1*32 + 1*4 + 1*1 +1*0,5 + 1*0,25 + 1*0,0625) D = (37,8125) D Przykład 2. Zmie zapis liczby z systemu dwójkowego na dziesitny pozycja ( , 0 0 1) b = waga = (1* * * * * * * * *2-3 ) D = = (1*32 + 1*8 + 1*0,125) D = (40,125) D strona 9

10 Ad.3 Konwersja dziesitno-dwójkowa. Przykład 4. Zamie zapis liczby (37,8125) D na binarny. Cz całkowita (37) D Cz ułamkowa (0,8125) D 37 : 2 = 18 r 1 LSB 0,8125 * 2 = 1, 6250 MSB 18 : 2 = 9 r 0 0,625 * 2 = 1, 25 9 : 2 = 4 r 1 0,25 * 2 = 0, 5 4 : 2 = 2 r 0 0,5 * 2 = 1, 0 LSB 2 : 2 = 1 r 0 1 : 2 = 0 r 1 MSB MSB najbardziej znaczcy bit (ang. Most Significant Bit) LSB najmniej znaczcy bit (ang. Loest Significant Bit) kierunek odczytu wartoci (37) D = (100101) b (0,8125) D = (1101) b (37,8125) D = (100101,1101) b Ad.4 Praca domowa a. Dokona konwersji dwójkowo-dziesitnej nastpujcych liczb: (1101,0101) b ; ( ) b ; (100,010101) b b. Dokona konwersji dziesitno-dwójkowej nastpujcych liczb: (568,36) D ; (12524) D ; (2,358) D strona 10

11 L 05 Konwersja dwójkowo-dziesitna i dziesitno-dwójkowa - wiczenia. 1. Konwersja dwójowo-dziesitna. 2. Konwersja dwójowo-dziesitna metoda dodatkowa 3. Konwersja dziesitno-dwójkowa. 4. Konwersja dziesitno-dwójkowa metoda dodatkowa. 5. Praca domowa Ad.1 Konwersja dwójkowo-dziesitna. wiczenie 1. Dokona konwersji dwójkowo-dziesitnej liczby (101011,01) B wiczenie 2. Dokona konwersji dwójkowo-dziesitnej liczby ( ,101) B (43, 25) D (65, 625) D Ad.2 Konwersja dwójkowo-dziesitna metoda dodatkowa. wiczenie 3. Dokona konwersji dwójkowo-dziesitnej liczby (1011) B (1011) B = ((1*2 + 0) * 2 + 1) *2 + 1 = (11) D Schemat działania : (a n a n-1 a n-2 a 1 a 0 ) B =[(( ((a n * 2 + a n-1 ) * 2 + a n-2 ) * 2 +..) *2 + a 1 ) * 2 + a 0 ] D Ad.3 Konwersja dziesitno-dwójkowa. wiczenie 4. Dokona konwersji dziesitno-dwójkowej liczby (263, 625) D Ad.4 Konwersja dziesitno-dwójkowa metoda dodatkowa. ( , 101) B wiczenie 5. Dokona konwersji dziesitno-dwójkowej liczby (656) D pozycja waga Warto D Zapis B > >= = 144 >= = 16 >= = 0 Ad.5 Praca domowa Prosz wykona po jednym przykładzie konwersji dwójkowo-dziesitnej i dziesitnodwójkowej metodami dodatkowymi. strona 11

12 L 06 Działania na liczbach w systemie binarnym dodawanie i mnoenie. 1. Tabliczka dodawania. 2. Dodawanie - przykłady 3. Tabliczka mnoenia. 4. Mnoenie - przykłady. 5. Praca domowa Ad.1 Tabliczka dodawania = = = = 1 0 Przeniesienie na wysz pozycj Ad.2 Dodawanie - przykłady. Przykład 1. Dodaj dwie liczby binarne: (101011) B + (10110) B przeniesienie Składnik Składnik Suma Przykład 2. Dodaj trzy liczby binarne: (101001) B + (11010) B + (10011) B przeniesienie Składnik Składnik Składnik Suma Przykład 3. Dodaj trzy liczby binarne: (111011) B + (110011) B + (10111) B strona 12

13 przeniesienie Składnik Składnik Składnik Suma Ad.3 Tabliczka mnoenia. 0 0 = = = = 1 Ad.4 Tabliczka mnoenia - przykłady. Przykład 4. Wykonaj mnoenie liczb binarnych: (101011) B * (101) B Mnona Mnonik Iloczyn strona 13

14 Przykład 5. Wykonaj mnoenie liczb binarnych: (101011) B * (1101) B Mnona Mnonik Iloczyn Ad.5 Praca domowa Dodaj liczby binarne: - ( ) B + ( ) B ( ) B - (111011) B + ( ) B + (110111) B ( ) B Pomnó liczby binarne: - ( ) B * (11001) B ( ) B - (110100) B * ( ) B ( ) B strona 14

15 L 07 Działania na liczbach w systemie binarnym odejmowanie i dzielenie. 1. Zasada odejmowania. 2. Odejmowanie - przykłady 3. Dzielenie - przykłady. 4. Praca domowa Ad.1 Zasada odejmowania 0-0 = = 1 i poyczka od nastpnej pozycji 1-0 = = 0 Poyczka jeli odjemnik jest wikszy od odjemnej to poyczamy od najbliszej wyszej niezerowej pozycji odjemnej. Odejmujc 0 1, otrzymujemy wynik 1 i poyczk od nastpnej pozycji. Poyczka oznacza konieczno odjcia 1 od wyniku odejmowania cyfr w nastpnej kolumnie. Identycznie postpujemy w systemie dziesitnym. Na razie załómy jednak, i od liczb wikszych odejmujemy mniejsze (w przeciwnym wypadku musielibymy wprowadzi liczby ujemne, a nie chcemy tego robi w tym miejscu). Zasada rozmieniania : (1 x 2 n ) = (1 x 2 n x 2 n-1) Przykład 1. Wykonaj odejmowanie (101) B (11) B odjemna < odjemnik (101) B (11) B = (1 x x x 2 0 ) B - (1 x x 2 0 ) B = poyczka = (0 x x x x 2 0 ) B - (1 x x 2 0 ) B = = (0 x x x x x x 2 0) B = = (1 x 2 1 ) B = (10) B strona 15

16 Ad.2 Odejmowanie - przykłady. Przykład 2. Odejmij dwie liczby binarne: (101011) B - (10110) B poyczka Odjemna Odjemnik Rónica Przykład 3. Odejmij liczby binarne: (110001) B - (10011) B poyczka Odjemna Odjemnik Rónica Ad.3 Dzielenie - przykłady. Przykład 4. Wykonaj dzielenie liczb binarnych: ( ) B : (110) B : ( ) B : (110) B = (1011) B reszta (11) B strona 16

17 Przykład 5. Wykonaj dzielenie liczb binarnych: ( ) B : (1011) B : ( ) B : (1011) B = (1001) B r (1010) B Ad.5 Praca domowa Odejmij liczby binarne: - ( ) B - (110110) B ( ) B - ( ) B - (110111) B ( ) B Podziel liczby binarne: - ( ) B : (11001) B (100 r 11) B - (110100) B : (1111) B (11 r 111) B strona 17

18 L 08, 09 Działania na liczbach w systemie binarnym wiczenia 1. Wykonaj działania w systemie dwójkowym, a wyniki podaj w systemie dwójkowym i dziesitnym. Przy dzieleniu w systemie dwójkowym wykonaj działania z reszt w zaokrgleniu do 3 pozycji, a przy przeliczaniu liczb dziesitnych na system dwójkowy zaokrglaj wynik do 2 miejsc po przecinku. a ,11 B 38,4 D b. 12,8 D * ,101 B c. 128,4 D : 12,2 D d ,11 B ,11 B e ,1 B ,1 B f. 14,6 D + 45,7 D g. (11011,1 B 1001,1 B) *12,4 D h. (133,4 D ,11 B) : 1101 B i ,11 B ,11 B ,01 B j. (333,3 D + 77,7 D) * 10111,1 B k ,1 B 23,7 D *57,3 D l ,01 B : 111 B m B B B n. 423,4 D 232,7 D * 1101 B o ,11 B B B L 10 Ósemkowy i szesnastkowy system zapisu liczb. 1. Zapis liczby w systemie D, B, 8, H. 2. Konwersja dwójkowo ósemkowa. 3. Konwersja dwójkowo szesnastkowa. 4. Konwersja ósemkowo dziesitna. 5. Konwersja dziesitno -ósemkowa. 6. Konwersja szesnastkowo- dziesitna. 7. Konwersja dziesitno szesnastkowa. 8. Praca domowa. strona 18

19 Ad.1 Zapis liczby w systemie D, B, 8, H dziesitny dwójkowy ósemkowy szesnastkowy A B C D E F Ad.2 Konwersja dwójkowo - ósemkowa. Przykład 1. Wykonaj konwersj z B na 8: ( ) B ( ) B = (2713) Ad.3 Konwersja dwójkowo - szesnastkowa. Przykład 2. Wykonaj konwersj z B na H: ( ) B ( ) B = (2E32) H Ad.4 Konwersja ósemkowo - dziesitna Przykład 3. Wykonaj konwersj z 8 na D: (1047) ( ) 8 = (1* *8 2 +4*8 1 +7*8 0 ) D = ( ) D = (551) D strona 19

20 Ad.5 Konwersja dziesitno - ósemkowa. Przykład 4. Wykonaj konwersj z D na 8: (364) D 364 : 8 = 45 r 4 LSB 45 : 8 = 5 r 5 5 : 8 = 0 r 5 MSB (364) D = (554) 8 Ad.6 Konwersja szesnastkowo - dziesitna. Przykład 5. Wykonaj konwersj z H na D: (4C7A) H (4 C 7 A) H = (4* C* * A*16 0 ) = = (4* * * *16 0 ) D = = ( ) D = (19578) D Ad.7 Konwersja dziesitno - szesnastkowa. Przykład 4. Ad.8 Praca domowa. Wykonaj konwersj z D na H: (4583) D 4583 : 16 = 286 r 7 LSB 286 : 16 = 17 r : 16 = 1 r 1 1 : 16 = 0 r 1 MSB (4583) D = (11E7) H Wykona po dwa przykłady konwersji przerobionych na lekcji. L 11, 12 Ósemkowy i szesnastkowy system zapisu liczb - wiczenia. 1. Wykonaj działania w systemie dwójkowym, a wynik podaj w systemie ósemkowym i przekonwertuj na dziesitny. a * 1111 b c : 11 d Wykonaj działania w systemie dwójkowym, a wynik podaj w systemie szesnastkowym i przekonwertuj na dziesitny. a * 1111 b c : 100 d Zapisz liczby dziesitne w systemie ósemkowym i szesnastkowym. a. 786 b. 777 c d. 883 e f. 988 g. 331 strona 20

21 L 13, Zapis znak moduł (ZM). Zapis liczby binarnej ze znakiem. 2. Zapis znak uzupełnienie do 1 (U1). 3. Zapis znak uzupełnienie do 2 (U2). 4. Wady i zalety zapisu liczby ze znakiem. 5. Praca domowa. Ad.1 Zapis znak moduł (ZM). Zapis znak moduł (ZM) jest zapisem w naturalnym kodzie dwójkowym (NKB) uzupełnionym o dodatkowy bit okrelajcy znak liczby. Liczb dodatni oznaczamy bitem 0, liczb ujemn bitem 1. Przykład 1. Liczba dziesitna Zapis w NKB (4bity) Zapis ZM B ZM ZM B ZM ZM za W zapisie ZM wyniki działa nie zawsze s poprawne! Ad.2 Zapis znak uzupełnienie do 1 (U1). Zapis U1 jest take dwuczciowy- bit znaku i moduł liczby. Zapis liczby dodatniej w U1 jest taki sam jak w zapisie ZM. Zapis liczby ujemnej w U1 polega na zanegowaniu wszystkich bitów modułu liczby zapisanej w NKB oraz zmianie bitu znaku na 1. Przykład 2. Liczba dziesitna Zapis w NKB (4bity) Zapis ZM Zapis U B ZM U ZM U B ZM U ZM U1 Działania w zapisie U1 wykonuje si łcznie z bitem znaku. strona 21

22 Przykład 3. Wykonaj działania w kodzie U1: (5-9) D ; (5+(-9)) D ; (9+(-4)) D ; (-9) (-4) (1) (1) korekcja (100 B ) Jeeli w wyniku działania przed bitem znaku pojawi si (1) musimy przeprowadzi korekcj wyniku. Korekcja polega na przesuniciu tej jedynki na najmniej znaczca pozycj i wykonaniu jeszcze raz tego samego działania. Ad.3 Zapis znak uzupełnienie do 2 (U2). Zapis U2 liczby dodatniej niczym nie róni si od zapisu ZM i U1. Liczb ujemn w zapisie U2 tworzy si jako dopełnienie modułu tej liczby do wartoci 2 n, gdzie n jest pozycj bitu okrelenia znaku. Praktycznie liczb ujemn w kodzie U2 otrzymuje si przez negacje kadego bitu modułu tej liczby zapisanego w NKB (czyli zapisania modułu tej liczby w U1), a nastpnie dodanie liczby 1. Przykład 4. Liczba dziesitna Zapis w NKB (4bity) Zapis ZM Zapis U1 Zapis U B ZM U U ZM U U B ZM U U ZM U U2 Przykład 5. Zapisz liczb (-7) D w kodzie U2. Bit znaku + negacja moduł modułu + 1 D B B U1 B U2 (-7) D - (7) D - (0111) B (1.1000) U1 (1.1001) U2 strona 22

23 Przykład 6. Podaj warto dziesitn liczby zapisanej w kodzie U2: (1.1001) U2 (1.1001) U2 = [ 1* 2 4 (1* * * *2 0 )] D = [ 16 (8 + 1)] D = (16-9) D = (-7) D (1.1001) U2 (1.1000) U B -7 D Przykład 7. Wykonaj działania w kodzie U2: (5-9) D ; (5+(-9)) D ; (9+(-4)) D ; (-9) (-4) Wszystkie wyniki otrzymujemy take w kodzie U2. Ad.4 Wady i zalety zapisu liczby ze znakiem. Rodzaj zapisu Wady Zalety Zapis znak-moduł ZM Zapis znak-uzupełnienie do 1 U1 Zapis znak-uzupełnienie do 2 U2 Nie zawsze wynik działania jest prawidłowy. Nie wolno odejmowania zastpowa dodawaniem. Konieczno przeprowadzania korekcji wyniku w przypadku wystpienia poyczki lub przeniesienia. Podwójna reprezentacja zera: +0 (0.0000) ; -0 (1.1111) Skomplikowane tworzenie zapisu liczby ujemnej. Najprostszy sposób zapisu liczby binarnej ze znakiem. Tworzenie zapisu liczby ujemnej jest proste (negacja modułu). Wynik działania zawsze w U1. Działania wykonuje si bardzo prosto. Wynik działania zawsze w U2. Tabela 1. Wady i zalety zapisu liczby ze znakiem Ad.5 Praca domowa. Wykonaj nastpujce działania kolejno w zapisie U1, U2 : 6 8; 6 + (-8); 4 9; 4 + (-9) Sprawd, czy wyniki działa s poprawne. strona 23

24 L 15, 16 Zapis liczby binarnej ze znakiem - wiczenia. 1. Wykonaj działania w binarnym kodzie U1. Wynik przelicz na zapis w NKB, a nastpnie na system dziesitny: a. (12 + (-15)) D b. (7-11) D c. (17 + (-13)) D d. (8-14) D e. (9 + (-16)) D f. (3-19) D g. (6 21) D h. (4 + (-20)) D 2. Wykonaj działania w binarnym kodzie U2 Wynik przelicz na zapis w NKB, a nastpnie na system dziesitny: a. (12-15) D b. (7 + (-11)) D c. (17-13) D d. (8 + (-14)) D e. (9-16) D f. (3 + (-19)) D g. (6 + (-21)) D h. (4-20) D L 17,18 Reprezentacja stało- i zmienno-przecinkowa. 1. Zapis ułamków. 2. Zapis stałoprzecinkowy. 3. Zapis zmiennoprzecinkowy. Ad.1 Zapis ułamków. Liczby w pamici komputera zapisywane s zawsze przy uyciu okrelonej iloci bitów. Aby zapisa liczb składajc si z czci całkowitej i ułamkowej niezbdne jest wskazanie w którym miejscu znajduje si przecinek (midzy którymi bitami zapisu liczby). W zalenoci od przyjtej formy wyróniamy zapis stało- i zmiennoprzecinkowy. strona 24

25 Ad.2 Zapis stałoprzecinkowy. W tym zapisie połoenie przecinka jest z góry ustalone i niezalene od zakresu wartoci liczb. Wykorzystujemy tutaj zapis znak-moduł, a wic najstarszy bit w zapisie bdzie bitem znaku a najmłodsze bity, do miejsca połoenia przecinka s bitami reprezentujcymi cz ułamkow. Pozostałe bity okrelaj cz całkowit liczby. Przykład 1. Liczb 31,75 D zapisujemy w notacji stałoprzecinkowej 8 bitami a przecinek znajduje si midzy drugim a trzecim bitem: , 1 1 Bit znaku Cz całkowita Cz ułamkowa Od iloci bitów przeznaczonych na zapis liczby zaley moliwy do zapisania zakres liczb oraz precyzja ich zapisu. W naszym przykładzie moemy zapisa liczby z przedziału od 31,75 do -31,75 z precyzj 0,25. Operacje stałoprzecinkowe s wykonywane przez mikroprocesor w bloku ALU (jednostce arytmetyczno logicznej) i charakteryzuj si krótkim czasem realizacji. Ad.3 Zapis zmiennoprzecinkowy. Zapis zmiennoprzecinkowy wykorzystuje notacj wykładnicz (naukow). Połoenie przecinka oddzielajcego cz całkowit od czci ułamkowej jest zmienne. Posta notacji wykładniczej opisuje wzór: L =M z *P E gdzie: L zapisywana liczba, M z mantysa znormalizowana, P podstawa systemu liczbowego, E wykładnik inaczej zwany te cech - oznacza w praktyce o ile miejsc został przesunity przecinek w liczbie. Mantys znormalizowan nazywamy mantys, która przed przecinkiem nie ma cyfr znaczcych, za pierwsza cyfra po przecinku jest cyfr znaczc. Trzeba pamita, e zapis ten jest prawidłowy dla systemu dziesitnego, a w przypadku innych systemów liczbowych naley przeliczy na system dziesitny wartoci mantysy i wykładnika i zastosowa podstaw systemu, z którego dokonało si przelicze. strona 25

26 Przykład 2. Zapisz liczb 31,75 D w notacji wykładniczej. L = 31,75 M z = 0,3175 P = 10 E = 2 31,75 = 0,3175*10 2 Mantysa powstaje przez przesunicie przecinka tak, by pierwsza znaczca cyfra (róna od 0) znajdowała si na pierwszej pozycji po przecinku. Wówczas E stanowi liczb równ iloci pozycji przesunicia przecinka, a P to podstawa systemu, w którym dokonujemy oblicze w dziesitnym10, w binarnym 2. W zapisie zmiennoprzecinkowym liczby zapisuje si w pojedynczej lub podwójnej precyzji (float lub double w jzyku programowania C++). Format zapisu jest nastpujcy: S/E/M z gdzie: S- bit znaku mantysy, E warto wykładnika w kodzie U2, M z - moduł znormalizowanej mantysy. Format zapisu zmiennoprzecinkowego pojedynczej precyzji (float): S 1 b Wykładnik (E) 8 b Mantysa (M) 23 b Format zapisu zmiennoprzecinkowego podwójnej precyzji (double): S 1 b Wykładnik (E) 11 b 64 b Mantysa (M) 52 b Operacje zmiennoprzecinkowe s skomplikowane i czasochłonne. Mikroprocesor wykonuje je w bloku FPU (ang. Floating Point Unit) Liczba zmiennoprzecinkowa jest komputerow reprezentacj liczb rzeczywistych zapisanych w postaci wykładniczej. Ze wzgldu na wygod operowania na takich liczbach przyjmuje si ograniczony zakres na mantys i cech. Powoduje to, e liczba jest okrelana z pewn dokładnoci i moe wystpowa w okrelonym zakresie. 32 b E E E E M M M M 2 n n Wykładnik Mantysa Zamiana ułamka dziesitnego na warto binarn Metoda zamiany jest dwuetapowa. 1) Najpierw zamieniana jest cz całkowita ułamka. Wtedy stosuje si cykliczne dzielenie przez 2 i sprawdzanie reszty z dzielenia. strona 26

27 2) Nastpnie zamienia si cz ułamkow. Zamiana polega na cyklicznym mnoeniu ułamka razy 2 i sprawdzaniu, czy wynik nie jest wikszy lub równy 1. Jeeli jest >= 1 to wyznaczony bit czci ułamkowej jest take równy jeden. Do dalszych oblicze bierze si cz ułamkow wyniku. UWAGI: Czasem zamiana czci ułamkowej na posta binarn prowadzi do osignicia nieskoczenie długiej kombinacji zer i jedynek. Dlatego zawsze naley przyj dodatkowy warunek - ile bitów jest przeznaczone na zapis czci ułamkowej. Obliczenia wykonuje si wtedy dotd, a osignie si potrzebn liczb bitów. W ramach wicze bdziemy operowa na liczbach dwójkowych zmiennoprzecinkowych (FP), w których: 4 najstarsze (od lewej strony) bity s przeznaczone na zapis wykładnika (cechy) w kodzie U2, pozostałe bity bd przeznaczone na zapis mantysy równie w kodzie U2. Bdziemy wykonywa wiczenia tylko na liczbach dodatnich (dlatego pomijamy bit informacji o znaku), czyli liczba w kodzie U2 bdzie miała tak sama posta jak w ZM. Algorytm przeliczania liczby dziesitnej na liczb zmiennoprzecinkow w innym systemie pozycyjnym: Przeliczamy dan liczb dziesitn na liczb w systemie docelowym. Wynik jest wartoci mantysy przy wykładniku (cesze) równym 0. Normalizujemy mantys przesuwajc przecinek tak by przed przecinkiem nie było cyfry znaczcej, za pierwsza cyfra po przecinku była znaczc - modyfikujc przy tym odpowiednio wykładnik (cech) liczby. Wyjtek zrobimy tylko dla liczb z systemu dziesitnego mniejszych od 1, w których nie bdziemy modyfikowa mantysy, aby nie uzyska ujemnej wartoci wykładnika (to by wymagało zastosowania dodatkowego bitu informacyjnego). Przykład 3 25 Zamieni ułamek = 0, na posta binarn (skoczona długo kombinacji zer i jedynek) 64 1) Jest to liczba mniejsza od zera, wic wykładnik bdzie miał warto ) Nastpnie obliczamy warto po przecinku, czyli w tym przypadku mantys: 25 * = 0 poniewa wynik mnoenia jest mniejszy od * 2 = = 1 1 poniewa wynik jest >= strona 27

28 36 * * * * = = = = = 1 w tym momencie nastpiło zakoczenie oblicze gdy wynikiem jest liczba ) zapisujemy liczb binarn: Wykładnik Mantysa 4) Sprawdzamy poprawno wykonanego obliczenia korzystajc z ogólnego wzoru L =M z *P E : M z = 0* * * * * * = 1* + 1* + 1* = = + + = (= 0,25 + 0, , = 0,390625) E = 0 ; P = 2 => P E = 1 => L= M z Wynik jest poprawny. Przykład 4 Zamieni liczb 12,7 na posta binarn (nieskoczona długo kombinacji zer i jedynek) 1) Zakładamy, e liczba po przecinku bdzie zawierała si w 4 bitach 2) Zamieniamy cz całkowit (12) na posta binarn: 12 : 2 = : 2 = : 2 = : 2 = 0 1 Liczba (12) D = strona 28

29 3) Nastpnie obliczamy warto po przecinku: 7 * * * * = = 1 1- poniewa wynik mnoenia jest wikszy od = 0 poniewa wynik jest mniejszy od = = = = 1 1-na tym etapie koczymy, gdy w załoeniu mamy, e cz ułamkowa liczby binarnej bdzie zawierała si w 4 bitach 4) Zapisujemy liczb binarn 1100,1011 Musimy przesun przecinek o 4 pozycje i uzyskujemy mantys natomiast wykładnik to 4 D = 100B wic nasza liczba przedstawia si nastpujco: Wykładnik Mantysa 5) Sprawdzamy poprawno wykonanego obliczenia korzystajc z ogólnego wzoru L =M z *P E : M z = 1* * * * * * * * 2-8 = 1* * * * + 1* = B = 4 D to E = 4 E = 4 ; P = 2 => P E 203 = 16 => L= M z * 16 = * 16 = 12, ,7 256 Wynik jest poprawny, a jego niedokładno jest zwizana z przyblieniem jakie zastosowalimy przy przeliczaniu czci ułamkowej liczby dziesitnej na system dwójkowy. L 19,20 Reprezentacja stało- i zmienno-przecinkowa - wiczenia. Zapisz w notacji stałoprzecinkowej (2 miejsca po przecinku) oraz w notacji zmiennoprzecinkowej nastpujce liczby: 0,512 D ; 4,85 D; 12,234 D; 27,87 D; 33,69 D; 0,924 D Zakładamy, e liczba po konwersji na system binarny po przecinku bdzie zawierała si w 4 bitach. strona 29

30 L 21,22 liczbowe. Powtórzenie i utrwalenie wiadomoci z działu: Systemy 1. Binarny system zapisu liczb. 2. Ósemkowy i szesnastkowy system zapisu liczb. 3. Konwersja zapisu liczby midzy systemami. 4. Zapis ZM, U1, U2. 5. Działania na liczbach binarnych. 6. Reprezentacja stało i zmiennoprzecinkowa. Ad.1 Binarny system zapisu liczb. Dokona konwersji dwójkowo-dziesitnej nastpujcych liczb: (11101,0101) b ; ( ,1) b ; (1010,01011) b Dokona konwersji dziesitno dwójkowej nastpujcych liczb: (628,16) D ; (21674) D ; (17,518) D Ad.2 Ósemkowy i szesnastkowy system zapisu liczb. Przedstaw liczby w systemie ósemkowym i szesnastkowym: 287 D, 47 D, 4389 D Przedstaw liczby w systemie dziesitnym: DF23 H, , 98AE H, Ad.3 Konwersja zapisu liczby midzy systemami. Przedstaw liczby w systemie ósemkowym i szesnastkowym: b, b, b Przedstaw liczby w naturalnym kodzie binarnym: EF57 H, , A21B H, Ad.4 Zapis ZM, U1, U2. Podaj wartoci liczb w systemie dziesitnym: ZM, U1, U2, ZM, U1, U2 Zapisz liczby w kodzie U1 i U2: 12, -12, 22, -22 Ad.5 Działania na liczbach binarnych. Odejmij liczby binarne: ( ) NKB - (110100) NKB ( ) NKB - ( ) NKB strona 30

31 Podziel liczby binarne: ( ) NKB : (11001) NKB ( ) NKB : (1101) NKB Dodaj liczby binarne: - ( ) NKB + ( ) NKB - ( ) NKB + ( ) NKB + ( ) NKB Pomnó liczby binarne: - ( ) NKB * (11011) NKB - ( ) NKB * ( ) NKB Wykonaj nastpujce działania kolejno w zapisie ZM, U1, U2 i sprawd, czy wyniki działa s poprawne: 5 12; 6 + (-9); 4 11; 3 + (-7) Ad.6 Reprezentacja stało i zmiennoprzecinkowa. Zapisz w notacji stałoprzecinkowej (2 miejsca po przecinku) oraz w notacji wykładniczej nastpujce liczby: 5,12 D ; 7,8 D; 8,34 D strona 31

32 L 23 Pisemny sprawdzian wiadomoci z działu: Systemy liczbowe. 1. Zasady sprawdzianu. 2. Arkusz sprawdzianu. Ad.1 Zasada sprawdzianu. Pisemny sprawdzian wiadomoci z arytmetyki cyfrowej obejmuje nastpujce zagadnienia: - Binarny system zapisu liczb. - Ósemkowy i szesnastkowy system zapisu liczb. - Konwersja zapisu liczby midzy systemami. - Zapis ZM, U1, U2. - Działania na liczbach binarnych. - Reprezentacja stało i zmiennoprzecinkowa. Ad.2 Arkusz sprawdzianu. Ucze przygotowuje czyst, podpisan kartk papieru oraz długopis. Uywanie kalkulatorów jest niedopuszczalne! Po otrzymaniu arkusza sprawdzianu wpisuje w metryczk swoje dane i zapoznaje si z treci sprawdzianu (czas 2 minuty). Wszystkie niezbdne obliczenia przeprowadza na swojej kartce. Wyniki oblicze wpisuje w odpowiednie pola czytelnie i bez skrele. Pola zakropkowane wypełnia nauczyciel (punktacja). Kade zadanie ma przypisan warto punktow (na kocu polecenia do zadania). Czas trwania sprawdzianu 40 minut. L 24 Analiza wyników i poprawa sprawdzianu wiadomoci z działu: Systemy liczbowe. strona 32

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Podstawy informatyki (2)

Podstawy informatyki (2) Informacje Podstawy informatyki (2) dr inż Sebastian Pluta pluta@icispczpl Instytut Informatyki Teoretycznej i Stosowanej informatyka to nauka o przetwarzaniu i przechowywaniu informacji informacja to:

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

Pracownia Komputerowa wykład VI

Pracownia Komputerowa wykład VI Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Pracownia Komputerowa wyk ad V

Pracownia Komputerowa wyk ad V Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

PROWIZJE Menad er Schematy rozliczeniowe

PROWIZJE Menad er Schematy rozliczeniowe W nowej wersji systemu pojawił si specjalny moduł dla menaderów przychodni. Na razie jest to rozwizanie pilotaowe i udostpniono w nim jedn funkcj, która zostanie przybliona w niniejszym biuletynie. Docelowo

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Program SMS4 Monitor

Program SMS4 Monitor Program SMS4 Monitor INSTRUKCJA OBSŁUGI Wersja 1.0 Spis treci 1. Opis ogólny... 2 2. Instalacja i wymagania programu... 2 3. Ustawienia programu... 2 4. Opis wskaników w oknie aplikacji... 3 5. Opcje uruchomienia

Bardziej szczegółowo

Wstęp do informatyki- wykład 1 Systemy liczbowe

Wstęp do informatyki- wykład 1 Systemy liczbowe 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

1. Reprezentacja danych w komputerze

1. Reprezentacja danych w komputerze 1. Reprezentacja danych w komputerze 1.1 Sekwencje bitów W komputerze dane reprezentowane s przez sekwencje bitów cyfry liczbowego systemu binarnego. Te sekwencje bitów interpretowane s w terminach wewntrznych

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Podstawy Informatyki dla Nauczyciela

Podstawy Informatyki dla Nauczyciela Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

Wydział Mechaniczny. Instrukcja do zajęć laboratoryjnych

Wydział Mechaniczny. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Mechaniczny Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Arytmetyka układów cyfrowych część 1 dodawanie i odejmowanie liczb binarnych Numer ćwiczenia: 1 Laboratorium

Bardziej szczegółowo

Pozycyjny system liczbowy

Pozycyjny system liczbowy Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w

Bardziej szczegółowo

Proces tworzenia programu:

Proces tworzenia programu: Temat 1 Pojcia: algorytm, program, kompilacja i wykonanie programu. Proste typy danych i deklaracja zmiennych typu prostego. Instrukcja przypisania. Operacje wejcia/wyjcia. Przykłady prostych programów

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

Pracownia komputerowa. Dariusz Wardecki, wyk. V

Pracownia komputerowa. Dariusz Wardecki, wyk. V Pracownia komputerowa Dariusz Wardecki, wyk. V Powtórzenie Co wykona następujący skrypt? #! /bin/bash! for i in `ls /dmj/2002`! do! mkdir ~/$i! cp -r /dmj/2002/$i/obrazy ~/$i! done Zapis binarny, bity

Bardziej szczegółowo

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa. INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

PODSTAWY DZIAŁANIA UKŁADÓW CYFROWYCH

PODSTAWY DZIAŁANIA UKŁADÓW CYFROWYCH PODSTAWY DZIAŁANIA UKŁADÓW CYFROWYCH Podstawy działania układów cyfrowych Obecnie telekomunikacja i elektronika zostały zdominowane przez układy cyfrowe i przez cyfrowy sposób przetwarzania sygnałów. Cyfrowe

Bardziej szczegółowo

Instrukcja obsługi programu MechKonstruktor

Instrukcja obsługi programu MechKonstruktor Instrukcja obsługi programu MechKonstruktor Opracował: Sławomir Bednarczyk Wrocław 2002 1 1. Opis programu komputerowego Program MechKonstruktor słuy do komputerowego wspomagania oblicze projektowych typowych

Bardziej szczegółowo

Podstawy programowania

Podstawy programowania Podstawy programowania Elementy algorytmiki C w środowisku.e (C#) dr inŝ. Grzegorz Zych Copernicanum, pok. 104 lub 206a 1 Minimum programowe reści kształcenia: Pojęcie algorytmu. Podstawowe konstrukcje

Bardziej szczegółowo

Wstęp do informatyki- wykład 1

Wstęp do informatyki- wykład 1 MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

Planowanie adresacji IP dla przedsibiorstwa.

Planowanie adresacji IP dla przedsibiorstwa. Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego

Bardziej szczegółowo

Pracownia komputerowa. Dariusz Wardecki, wyk. VIII

Pracownia komputerowa. Dariusz Wardecki, wyk. VIII Pracownia komputerowa Dariusz Wardecki, wyk. VIII Powtórzenie Podaj wartość liczby przy następującej reprezentacji zmiennoprzecinkowej (Kc = 7) Z C C C C M M M 1 0 1 1 1 1 1 0-1.75 (dec) Rafa J. Wysocki

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Arytmetyka stało i zmiennoprzecinkowa

Arytmetyka stało i zmiennoprzecinkowa Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja

Bardziej szczegółowo

Cyfrowy zapis informacji

Cyfrowy zapis informacji F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Zastosowanie programu Microsoft Excel do analizy wyników nauczania

Zastosowanie programu Microsoft Excel do analizy wyników nauczania Grayna Napieralska Zastosowanie programu Microsoft Excel do analizy wyników nauczania Koniecznym i bardzo wanym elementem pracy dydaktycznej nauczyciela jest badanie wyników nauczania. Prawidłow analiz

Bardziej szczegółowo

Pracownia komputerowa. Dariusz Wardecki, wyk. VI

Pracownia komputerowa. Dariusz Wardecki, wyk. VI Pracownia komputerowa Dariusz Wardecki, wyk. VI Powtórzenie Ile wynoszą poniższe liczby w systemie dwójkowym/ dziesiętnym? 1001101 =? 77! 63 =? 111111! Arytmetyka w reprezentacji bezznakowej Mnożenie liczb

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Pracownia komputerowa

Pracownia komputerowa Pracownia komputerowa Dariusz Wardecki, wyk. II Komputer Zasada działania komputera Urządzenia wej/wyj Procesor Pamięć Procesor EU REG ALU FPU AU BIU IU MMU EU - układ wykonawczy (Execution Unit) BIU -

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles). Wykład 1 1-1 Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 12 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 12 kwietnia

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

System Liczbowe. Szesnastkowy ( heksadecymalny)

System Liczbowe. Szesnastkowy ( heksadecymalny) SYSTEMY LICZBOWE 1 System Liczbowe Dwójkowy ( binarny) Szesnastkowy ( heksadecymalny) Ósemkowy ( oktalny) Dziesiętny ( decymalny) 2 System dziesiętny Symbol Wartość w systemie Liczba 6 6 *10 0 sześć 65

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30

Bardziej szczegółowo

Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek:

Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek: Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu:

Bardziej szczegółowo

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

ARYTMETYKA KOMPUTERA

ARYTMETYKA KOMPUTERA 006 URZĄDZENIA TECHNIKI KOMPUTEROWEJ ARYTMETYKA KOMPUTERA Systemy liczbowe o róŝnych podstawach 1 UTK System dziesiętny Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Liczba 764.5 oznacza 7 * 10 2 + 6 * 10 1 + 4

Bardziej szczegółowo

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,

Bardziej szczegółowo

Ćwiczenie 7 Liczniki binarne i binarne systemy liczbowe.

Ćwiczenie 7 Liczniki binarne i binarne systemy liczbowe. Ćwiczenie 7 Liczniki binarne i binarne systemy liczbowe. Cel. 1. Poznanie zasady działania liczników binarnych. 2. Poznanie metod reprezentacji liczby w systemach binarnych. Wstęp teoretyczny Liczniki

Bardziej szczegółowo

Systemem liczenia systemach addytywnych !!" Pozycyjny system liczbowy podstawą systemu pozycyjnego

Systemem liczenia systemach addytywnych !! Pozycyjny system liczbowy podstawą systemu pozycyjnego Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Podstawą systemów liczenia są systemy liczbowe

Bardziej szczegółowo

Program do konwersji obrazu na cig zero-jedynkowy

Program do konwersji obrazu na cig zero-jedynkowy Łukasz Wany Program do konwersji obrazu na cig zero-jedynkowy Wstp Budujc sie neuronow do kompresji znaków, na samym pocztku zmierzylimy si z problemem przygotowywania danych do nauki sieci. Przyjlimy,

Bardziej szczegółowo

REGULAMIN RADY RODZICÓW w Zespole Szkół w Choczewie

REGULAMIN RADY RODZICÓW w Zespole Szkół w Choczewie REGULAMIN RADY RODZICÓW w Zespole Szkół w Choczewie ROZDZIAŁ I. POSTANOWIENIA WSTPNE Podstaw prawn niniejszego regulaminu stanowi: 1/ Ustawa z dnia 07.09.1991r. art. 53 i 54 (Dz.U.Nr 425 z pón.zm.), 2/

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Przedmiot: Podstawy technik komputerowych technik informatyk. klasa 1, 3 godziny tygodniowo

WYMAGANIA EDUKACYJNE Przedmiot: Podstawy technik komputerowych technik informatyk. klasa 1, 3 godziny tygodniowo WYMAGANIA EDUKACYJNE Przedmiot: Podstawy technik komputerowych technik informatyk klasa 1, 3 godziny tygodniowo Ogólne kryteria oceny wiadomości i umiejętności: celująca Ocena Wiadomości Umiejętości Wykonanie

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 2: Reprezentacja danych Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Kilka ciekawostek Zapisy binarny, oktalny, decymalny

Bardziej szczegółowo

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko Jednostki miar stosowane w sieciach komputerowych mgr inż. Krzysztof Szałajko Jednostki wielkości pamięci Jednostka Definicja Przykład Bit (b) 0 lub 1 Włączony / wyłączony Bajt (B) = 8 b Litera w kodzie

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład Legenda Zezwolenie Dekoder, koder Demultiplekser, multiplekser 2 Operacja zezwolenia Przykład: zamodelować podsystem elektroniczny samochodu do sterowania urządzeniami:

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):

Bardziej szczegółowo